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Abstract

Background: Soil ecosystems consist of complex interactions between biological communities and physico-
chemical variables, all of which contribute to the overall quality of soils. Despite this, changes in bacterial
communities are ignored by most soil monitoring programs, which are crucial to ensure the sustainability of land
management practices. We applied 16S rRNA gene sequencing to determine the bacterial community composition
of over 3000 soil samples from 606 sites in New Zealand. Sites were classified as indigenous forests, exotic forest
plantations, horticulture, or pastoral grasslands; soil physico-chemical variables related to soil quality were also
collected. The composition of soil bacterial communities was then used to predict the land use and soil physico-
chemical variables of each site.

Results: Soil bacterial community composition was strongly linked to land use, to the extent where it could
correctly determine the type of land use with 85% accuracy. Despite the inherent variation introduced by sampling
across ~ 1300 km distance gradient, the bacterial communities could also be used to differentiate sites grouped by
key physico-chemical properties with up to 83% accuracy. Further, individual soil variables such as soil pH, nutrient
concentrations and bulk density could be predicted; the correlations between predicted and true values ranged
from weak (R2 value = 0.35) to strong (R2 value = 0.79). These predictions were accurate enough to allow bacterial
communities to assign the correct soil quality scores with 50–95% accuracy.

Conclusions: The inclusion of biological information when monitoring soil quality is crucial if we wish to gain a
better, more accurate understanding of how land management impacts the soil ecosystem. We have shown that
soil bacterial communities can provide biologically relevant insights on the impacts of land use on soil ecosystems.
Furthermore, their ability to indicate changes in individual soil parameters shows that analysing bacterial DNA data
can be used to screen soil quality.
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Background
Soil quality is underpinned by a complex suite of below-
ground processes in both natural and agricultural eco-
systems. Soil quality is defined as the ability of soil to
function as an ecosystem component capable of main-
taining the quality of surrounding air and water while
supporting plant and animal productivity [1]. High-
quality soils are therefore crucial for sustaining agricul-
tural and pastoral industries upon which both food se-
curity and financial stability depend [2]. Soils harbour a
rich collection of microbial life [3], which contribute to
the cycling of important nutrients [4], impact plant
growth [5] and can act as, or protect other organisms
from, pathogens [6]. Macroorganisms interact with mi-
croorganisms to facilitate this and independently are im-
portant for processes such as decomposition [7]. Despite
the importance of living organisms for maintaining
healthy soil ecosystems, most initiatives that directly
monitor soil quality for applied purposes focus on
changes in abiotic variables such as soil nutrients, metal
pollutants and soil structure [8]. Where biological mea-
sures are included in monitoring efforts, they are often
crude and generalized, such as microbial biomass or soil
respiration [8], although some use more specific organ-
isms, such as earthworms, as more sensitive indicators
[9]. As well as relaying important information about the
biological functioning of the ecosystem, soil organisms
only respond to bioavailable nutrients and contaminants,
unlike chemical measures which reflect the total propor-
tion present [10]. Better incorporation of biological indi-
cators in soil monitoring will provide a more sensitive,
relevant and holistic insight into how anthropogenic ac-
tivity impacts the soil environment.
Soil bacterial communities are strongly impacted by

changes in soil conditions. The diversity and compos-
ition of bacterial communities change with changing soil
acidity [11–13]. At national scales or larger, this is often
observed to be the strongest explanatory variable for
bacterial community richness [14, 15] to the extent
where large-scale predictions of bacterial diversity are
possible based on pH data alone [16]. Additionally, plant
diversity, nutrient concentrations, soil moisture and soil
type have all been shown to correlate with changes in
bacterial communities [14, 17, 18]. Importantly, there is
ample evidence that bacterial communities directly, or
indirectly, respond to changes in the soil environment
brought on by anthropogenic activity. Land use has been
shown to correlate with changes in bacterial community
composition [19], and heavily managed soils contain dis-
tinct bacterial communities compared to unmanaged
soils [20]. More specifically, management practices such
as fertilising, altering soil pH and creating monocultures
of plants or animals have all been shown to influence
soil microbial communities [21–23]. Overall, the

composition of bacterial communities appears to be
heavily influenced by changes in the soil environment,
many of which are the direct result of land use activities.
Given their ubiquitous nature, and sensitivity to envir-

onmental changes, bacterial communities are gaining
recognition as useful indicators of environmental health
[24]. In stream ecosystems, bacterial communities have
been shown capable of indicating the level of catchment
disturbance, with results correlating with both abiotic
water quality data and traditional macroinvertebrate
community indicator data [25]. In soil ecosystems, simi-
larly strong correlations between specific microbial taxa
and soil variables have been reported, suggesting micro-
bial community data can be used to indicate changes in
physico-chemical conditions [17], serve as indicators of
ecological restoration [26] and even predict crop yields
[27]. While progress has been made towards better un-
derstanding how bacterial communities can be indicative
of environmental health, more effort needs to be made,
and soil bacteria remain largely understudied in this re-
gard. Investigating if soil bacterial communities respond
in a predictable manner to human land use and soil
physico-chemical changes across a wide variety of differ-
ent soils, spatial gradients and climatic conditions will
reveal their potential to serve widely as indicators of soil
quality.
There are many statistical methods available for indi-

cator development based on bacterial community data;
particularly promising are machine learning approaches
[24]. Broadly speaking, these involve creating a predict-
ive model through identifying discriminating independ-
ent variables; if successful, the model can then be used
to classify new samples from an assessment of the bio-
logical data. Random forest analysis is an example of
machine learning where an ensemble of decision trees
are generated to iteratively identify the optimal set of ex-
planatory variables to predict variation in a response
variable [28]. Random forest models based on bacterial
community composition have been successfully used to
determine whether groundwater samples are contami-
nated with uranium or nitrate and to quantitatively pre-
dict a wide range of geochemical variables such as pH
and metal concentrations [29]; similar outcomes have
also been reported from the assessment of aquatic com-
munities [30, 31]. Random forest models may outper-
form other modelling methods when using microbial
data to predict environmental changes [29] and offer a
straightforward and well-documented approach for cre-
ating predictive tools.
While there is ample evidence that soil bacterial com-

munities act as useful indicators of soil quality, there is a
lack of research directly exploring this. Incorporating
biologically relevant measures of soil quality is essential
for efficiently monitoring whether agricultural and
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pastoral practices are conducted in a sustainable man-
ner. Therefore, using an extensive dataset of soil samples
collected from a variety of different natural and managed
land uses across New Zealand, we aimed to (1) deter-
mine how bacterial communities in managed soils differ
to those in natural, undisturbed environments, (2) deter-
mine the extent to which bacterial communities in man-
aged soils can predict soil physico-chemical
characteristics and (3) explore if these predictions are
accurate and reliable enough to be applied for soil qual-
ity monitoring.

Results
The composition of soil bacterial communities was de-
termined for 606 sites across New Zealand (Fig. S1, Add-
itional file 1). These sites were categorized as being
dominated by indigenous forest, exotic forest, horticul-
ture or pastoral grasslands; soil physico-chemical vari-
ables were collected to characterise the soil
environment. Random forest models were then used to
assess if bacterial community composition could be used
to predict the land use type, general soil characteristics
and specific soil physico-chemical variables (Fig. 1).

Soil bacterial community composition across different to
land use types
Bacterial community composition was significantly dif-
ferent in each of the four land uses (PERMANOVA pair-
wise adjusted P < 0.01), and land use was able to explain
17.9% of the variation in bacterial community compos-
ition. The measured soil variables correlated significantly
with underlying differences in bacterial community com-
position among sites. Of the explanatory variables, pH
and C:N had the highest correlations (Fig. 2a). C:N was
higher in the two forested land uses, while horticulture
sites had higher concentrations of Olsen P, and higher
bulk density (Fig. 2a).
Using random forest models, we confirmed that the

composition of bacterial communities was strongly
linked to land use, to the extent where soil bacteria at a
site could be used to predict the land use with 85% ac-
curacy (Fig. 2b).

Using bacterial community composition to predict soil
conditions
For subsets of bacterial community data, including data
from either all managed (AM), or all non-pastoral grass-
land managed (NPG) sites, ‘soil clusters’ were assigned
for which the soil physico-chemical environment could

Fig. 1 Summary of the steps taken to produce the random forest models. A range of models were created, based on three different subsets of
the data: all native and managed sites, all managed (AM) sites only, or non-pastoral grassland (NPG) managed sites only. Random forest analyses
were performed using the ‘randomForest’ package with default parameters (Liaw and Wiener 2002)
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be generally defined. For example, cluster A for the AM
bacterial dataset contained sites which in general had
the lowest carbon, low total nitrogen and anaerobic min-
eralizable nitrogen, high pH and Olsen P concentration
and the highest bulk density when compared to all other
sites in different clusters (Fig. 3a). Using random forest
models, the cluster to which a site belonged could be
correctly predicted 60% of the time for AM sites and
83% of the time for NPG sites based only on assessment
of the bacterial community data. Groups E and D for the
AM and NPG sites, respectively, had small sample sizes
and consisted of outlier sites; this likely contributed to
the fact that these clusters could not be correctly
assigned. In general, incorrectly assigned sites tended to
be located on the border of the data cluster when

plotted based on PCA scores, whereas correct assign-
ments were typically located closer to the centroid of
their group (Fig. S2, Additional file 1).
The bacterial communities at each site were also used

to predict individual soil physico-chemical variables and
soil PCA scores (Fig. 4). When including all managed
(AM) sites, regression models comparing the predicted
to actual soil variables ranged from weak to strong cor-
relations (adjusted R2 0.35–0.73). Excluding the pastoral
grassland sites resulted in moderate to strong correla-
tions (adjusted R2 0.48–0.79, Fig. 4); models containing
only pastoral grassland sites performed poorly (Fig. S3–
S4, Additional file 1). The pastoral grassland sites had a
weaker relationship between bacterial community dis-
similarity and soil environmental differences compared

Fig. 2 a Relative compositional differences (Bray-Curtis dissimilarity) between bacterial community composition at sites with different land uses.
Vectors represent soil environmental variables which significantly correlated with the ordination (P < 0.05 based on 999 permutations); variables
in black represent those with well-defined soil quality guidelines which were therefore used in subsequent modelling. Stress value for the
ordination was 0.14. b The number of correct (n = 103) and incorrect (n = 18) predictions of land use type, based on a random forest
classification of bacterial community data. Black borders indicate correct classifications
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to other land uses (Fig. S5, Additional file 1), despite com-
parable variability in bacterial community composition
and the soil environment (Fig. S6, Additional file 1).
Predicting pH was more accurate for AM sites (slope

= 0.96) than for NPG sites (slope = 0.93). NPG models
had slopes closer to 1 (which represents a perfect predic-
tion) when predicting all variables except macroporosity,
bulk density and PCA axis 2 (Fig. 4). To confirm that

the success, or otherwise, of each model was not biased
by the combination of selected ‘validation’ sites, 100 dif-
ferent randomly selected subsets were created and ana-
lysed. These results were consistent with what was
found using a single subset (Fig. S7, Additional file 1).
Proteobacteria, Acidobacteria and Actinobacteria were

the most abundant phyla across all the soil samples (Fig.
S8, Additional file 1), and at least half of the OTUs

Fig. 3 The number of correct and incorrect predictions of the chemistry cluster to which a site belongs, based on a random forest classification
of bacterial community data. Models were based on either a all sites belonging to all managed (AM) land use type (horticulture, exotic or
pastoral grassland) or b sites belonging to non-pastoral grassland (NPG) managed land uses. Black borders indicate correct classifications (a n =
62 out of 104; b n = 33 out of 40). Each cluster can be defined by the soil characteristics of the sites within those clusters, as indicated to the
right of each matrix
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which were the most important for each random forest
model belonged to these phyla (based on the decrease in
mean squared error when those OTUs are included in
the model; Fig. 5). Several of the important OTUs for
the AM models were Verrucomicrobia, but this taxon

was less abundant amongst the important OTUs for the
NPG model (Fig. 5a). Full taxonomic information for the
OTUs identified as being important for the models are
provided in Tables S1–2 (Additional file 1). For AM
sites, the majority of the top 15 most important OTUs

Fig. 4 Predicted a–g soil variable values or h, i PCA axes scores based on random forest regression analyses versus actual values. Models were
based on either (in grey) all sites belonging to a managed land use type (AM; horticulture, exotic or pastoral grassland) or (in green) sites
belonging to non-pastoral grassland managed land uses (NPG). Dashed black lines indicate where points should fall for a perfect prediction.
Adjusted R2 and slope values for each linear regression are indicated on the plots
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were unique for each model, while for NPG sites, ~ 55%
of OTUs were important in at least two models (Fig. 5b).

Determining the quality status of soils based on
predicted physico-chemical values
Many current quality monitoring guidelines have recom-
mended ranges for specific soil variables that are consid-
ered acceptable [32, 33]. According to these guidelines
the predicted values from Fig. 4 were converted to the
following categories: very low, low, normal, high and
very high (see Tables S3–S9, Additional file 1 for more
details). We then determined if the predicted variables

resulted in the correct assignment (e.g. a site’s actual
score was ‘low’ and the predicted score was also ‘low’), a
better assignment (e.g. a site’s actual score was ‘low’ but
the predicted score was ‘normal’) or a worse assignment
(e.g. a site’s actual score was ‘low’ but the predicted
score was ‘very low’). For both the models incorporating
all managed (AM) sites, and models using only non-
pastoral grassland managed (NPG) sites, the predicted
variables were assigned to the correct categories at least
50% of the time (Fig. 6). The pH categories were pre-
dicted correctly 87.5% and 95% of the time for AM and
NPG models, respectively, while the TN categories were

Fig. 5 Phylum-level classification of the OTUs which comprised the top 15 most important taxa for each random forest model. a The models for
which each OTU was important. b The total number of models for which each OTU was important, while there were nine models (one for each
soil variable predicted), no single OTU was important in more than six models
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also predicted correctly 95% of the time for the NPG
model. Where the models were incorrect, they tended to
result in better quality scoring categories than what was
true.

Discussion
Given the importance of maintaining a healthy and pro-
ductive soil environment for sustainable global crop pro-
duction, food stability and economic growth [2],
improving current soil monitoring programs is highly
beneficial. Here, we explored the use of soil bacterial
communities as indicators of human impact, and
changes in specific soil variables directly related to soil
quality. Our results indicate that bacterial communities
are strongly manipulated by land management practices,
bacterial community data formed groups based on simi-
lar soil conditions, and specific qualitative values of soil
variables could be successfully predicted. This work re-
veals the exciting potential of soil bacterial communities
to be utilised as bioindicators of soil quality.
The presence of human activity in a site could be ac-

curately predicted from the composition of bacterial
communities, despite the inherent variation introduced
by sampling across a ~ 1300 km distance gradient, with
diverse soil types. This supports previous reports of the
impacts human activity has on bacterial communities

[19, 23]. However, there were clear weaknesses in our
models, especially in the assignment of indigenous sites
compared with other land uses. This could in part be
due to greater similarities in bacterial communities be-
tween some indigenous and managed sites, which has
been previously reported [34]. However, this weak result
was most likely due to the small sample size from indi-
genous forest soils. The sampling strategy of the soil
monitoring program that collected the samples for this
study prioritises high-risk soils (i.e. those most heavily
impacted by human land use) as an efficient use of mon-
itoring resources. However, this sampling strategy inevit-
ably leads to an underrepresentation of low-risk soils
such as those in indigenous forests. The aboveground
plant species composition of native forests can vary de-
pending on the dominant canopy species and latitudinal
location of the forest [35]. The relationships between
aboveground plant cover and soil bacterial communities
are well documented ([36, 37] [38]), and since it is likely
that not enough of the variation in forest types was cap-
tured by our sample size, this could explain the reduced
accuracy of the model. Indeed, most of the incorrectly
assigned indigenous forest sites were in southern New
Zealand, while most samples taken in indigenous forest
sites were from northern New Zealand. The inclusion of
data from a wider range of native forests therefore could
improve the predictive power of the models.
While pastoral grassland sites were correctly classified

to their land use type with the highest accuracy, the bac-
terial communities served as poor predictors of specific
soil variables. The poor modelling results were not due
to insufficient variability in bacterial communities, but
rather likely reflect that the variability is related to other
unmeasured variables. If bacterial communities are
responding more strongly to changes or differences not
related to soil quality, their ability to predict soil quality
will be weaker. The differences in bacterial community
composition at grazed grassland sites can be related to
changes in soil variables such as pH, soil fertility and soil
organic matter [39, 40]. However, there are additional
factors that impact bacterial communities in pastoral
grassland sites such as geographical distance, climate
and the intensity of grazing [17, 41]. Measuring, and ac-
counting for these additional sources of variation may
improve the models based on pastoral grassland sites.
Soil pH, which is arguably one of the best described,

and most strongly correlated variables when it comes to
changes in soil microbial communities [11, 12, 16], was
the most accurately predicted variable. Bacterial commu-
nity composition has previously been used to accurately
predict the pH of contaminated groundwater [29], and
the results presented here confirm that soil microbial
communities can be used in a similar manner. Predicted
Olsen P, macroporosity and soil bulk values all showed

Fig. 6 The accuracy of the soil variable quality scores calculated
from the models in Fig. 4a–g. Soil quality categories for each
variable were calculated while considering land use type and/or soil
type. Predicted soil variables resulted in either the correct quality
score (according to the quality score assigned to the actual value), a
worse or better quality category, or a quality category of equal
magnitude but the wrong direction (e.g. extremely high when the
real score was extremely low). Detailed thresholds for each variable
can be found in Tables S3-9 (Additional file 1)
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strong correlations to the measured variables. These soil
variables have all been previously shown to result in
changes in microbial communities; increasing Olsen P
by using fertilisers has been shown to result in changes
in the composition and diversity of microbial communi-
ties [42], and soil compaction, indicated by decreased
macroporosity and increased bulk density, has previously
been identified as having a significant effect on bacterial
communities [43, 44]. Anaerobically mineralizable
nitrogen (AMN) did not model well, as indicated by the
weak correlation between predicted and measured
values. AMN has previously been shown to correlate
with differences in bacterial communities [17] and
indeed in our dataset correlated with bacterial
community composition. The weak correlation could
therefore suggest that the subset of bacterial taxa which
were used in our models were not strongly related to
changes in AMN.
Despite a degree of error in the predicted soil variable

values, the predicted values translated to the correct
‘quality score’ much of the time, highlighting the poten-
tial of bacterial communities as indicators of soil quality.
Where the quality score was incorrectly predicted, the
models tended to assign a better quality score than what
was true. Therefore, samples classified as having poor
soil quality are likely to be reliable, while a portion of
the samples our models assigned as having good quality
soil using will be incorrect. This may indicate the need
for further refinements, which could be achieved
through the inclusion of more samples with a wider
range of soil chemistries; the inclusion of a larger num-
ber of degraded sites would be especially useful as these
were underrepresented in the current dataset. However,
the inaccuracy of the models could also suggest that
current thresholds for what is considered acceptable
may need to be revisited. A major benefit of using soil
bacterial communities as indicators is that they respond
only to the bioavailable portions of the nutrients and
contaminants in their environment, which can be greatly
impacted by many soil characteristics [10]. The fact that
the bacterial data did not always classify a site as outside
of target ranges when the chemical data would may
therefore indicate that changes in the soil chemistry are
not always affecting the biological communities in the
same way. This is crucial information and highlights the
advantages of assessing soil bacterial communities when
monitoring soil quality. Indeed, the guidelines for meas-
uring soil quality continue to be updated [45], and the
results presented here can be used to help establish new
guidelines and are flexible enough to be adapted if new
guidelines arise. Ultimately, we would like to use bacter-
ial communities to add biologically relevant information,
rather than as direct proxies for soil physico-chemical
variables. Our results show that bacterial communities

respond in a predictable manner to changes directly re-
lated to land use activities, an important first step.
The results presented here highlight the potential of

bacterial communities to serve as useful indicators of
soil quality; this proof of concept should encourage fur-
ther research to refine and complement the findings pre-
sented here. For example, determining community
composition using RNA, rather than DNA, and therefore
examining the active portions of bacterial communities
could highlight stronger relationships between soil qual-
ity and bacterial communities; there are examples of
DNA- and RNA-based methods being used in comple-
ment to increase our understanding of microbial re-
sponses to contamination events [46]. Alternatively,
exploring the bacterial communities’ functional contri-
butions to the soil may provide information on ecosys-
tem processes occurring within the soil and how these
are being influenced by land management. Microbial
genes such as those involved in the nitrogen cycle have
previously been targeted to offer insights into the ecosys-
tem services provided by bacteria [47]. Metagenomic,
transcriptomic and proteomic methods are all rapidly
advancing and becoming more accessible and affordable
[48]. Since they provide functional insights, these
methods may even increase our understanding of what
constitutes a ‘healthy’ soil if we can differentiate between
beneficial or negative ecosystem processes. Understand-
ing the functional contributions of soil bacterial commu-
nities to the soil ecosystem may also allow us to better
predict how our soils will function into the future as the
climate and intensity of human land use continues to
change. Finally, expanding the results presented here to
incorporate a wider range of non-bacterial taxa that are
important to soil ecosystem [49], such as fungi and other
microeukaryotes, could benefit not only our ability to
predict soil quality but also our understanding of the
biological roles different organisms have in determining
soil quality. Overall, applying additional methods to de-
lineate the microbial communities in healthy and de-
graded soils has the potential for increasing our
understanding of how human activity impacts the eco-
system services being provided by soil microbes.

Conclusions
With global estimates that over a third of soil is in a
state of degradation [50] increased monitoring coupled
with better land management is crucial to ensure the
sustainability of agricultural and pastoral industries.
Given the importance of biological communities to en-
sure the functioning of a healthy soil ecosystem, it is
time that monitoring efforts better account for changes
in biotic variables, instead of relying on abiotic changes
to determine the quality of soils. The research presented
here shows the great potential of bacterial communities
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to measure the impact of human land use, and the
changes these impacts have on the soil environment
both generally and for specific soil variables. A greater
use of the soil microbial communities as indicators in
production landscapes will not only improve our ability
to manage our soil resources but also contribute import-
ant insights to our understanding of what exactly consti-
tutes ‘healthy’ soil.

Methods
Sample collection
Samples were collected from ten regions across New
Zealand, covering approximately 196,000 km2 of land
(Fig. S1, Additional file 1). Sample collection occurred
between 2013 and 2018, and a total of 606 sites were
sampled. Sites were chosen according to national guide-
lines [32, 51] based on the area extent of the soils and
land uses. The land uses sampled included indigenous
forest (n = 61), exotic forest (predominantly Pinus
radiata plantation; n = 72), horticulture (n = 139) and
pastoral grassland (predominantly dairy, sheep or beef
farms, n = 334).
Sampling for molecular analyses involved collecting

five individual soil cores (0–10 cm in depth, 2.5 cm in
diameter) at each site across a transect at 10-m intervals.
When present, leaf litter and plant biomass were dis-
placed prior to collecting bulk soil samples. Soil samples
were stored on ice until they could be transferred to −
20 °C storage at the end of the sampling day. Additional
composited soil samples consisting of 25 cores collected
every 2 m along the same transect were collected for soil
chemical analyses, and three intact soil cores (0–10 cm
deep, 10 cm wide) were collected at 15-m intervals for
soil physical analyses (Table 1 [32];).

Molecular methods
To ensure soil samples for molecular analysis were proc-
essed in a similar manner to those collected and ana-
lysed for soil physico-chemical attributes, soil samples
including bulk soil, plant roots and other biomass were
processed in their entirety. Individual soil cores were
manually homogenised and DNA extracted from 25mg
of soil using the PowerSoil-htp/DNeasy PowerSoil-htp
DNA extraction kit (Mo Bio Laboratories Inc. or Qiagen,

respectively). DNA extractions were performed as per
manufacturer’s instructions, except that mechanical lysis
was performed by agitating the plates in a Qiagen Tis-
sueLyser II (Retch) for 4 min at 30 Hz and plates were
incubated at room temperature for 5 min after adding
the elution buffer, prior to the final centrifuge. In total,
DNA was extracted from 3,030 samples, which were
stored at − 20 °C.
Bacterial communities have been shown to respond

strongly to changes in their soil environment, especially
variables directly related to soil quality [11, 14, 17]. Fur-
thermore, there are well-established molecular methods
for determining the composition of bacteria within the
soil environment. Bacteria therefore make ideal candi-
dates for the exploration of biological indicators at large
scales. The V3-V4 region of the bacterial 16S rRNA gene
was amplified from each DNA extract as described pre-
viously [52]. Normalised PCR products were barcoded
(Nextera XT dual indices, Illumina Inc., USA), pooled,
and sequenced on an Illumina MiSeq instrument using
V3 chemistry to generate 2x300 bp reads. Multiple se-
quencing runs were performed, each with ~ 384
samples.

Bioinformatics and statistical analyses
Sequence data were processed as described previously
[52] by using USEARCH v 7.0 [53] to filter sequences,
remove chimeras, cluster into operational taxonomic
units (OTUs) at 97% sequence similarity, and classify
against the Greengenes reference database v13.8 [54]. A
very small portion of OTUs (0.02%) were classified as
unknown Archaea. While we chose not to remove these
OTUs from our dataset, we refer to ‘bacterial communi-
ties’ in this manuscript given the pre-dominance of bac-
terial taxa within our dataset.
All statistical analyses and data visualisations were per-

formed in R v3.6.1 (R Core Team 2016). Prior to all ana-
lyses, the OTU table was rarefied to 2000 reads per
sample using the ‘rarefy’ function in the ‘vegan’ package
[55], to ensure sequencing depth was comparable across
all samples. Furthermore, the replicate data for each site
(n = 5) were averaged to obtain one representative bac-
terial community per site. This was necessary as the soil
physico-chemical data were measured for composite soil

Table 1 Metadata collected at each site. While a range of soil variables were collected, only the subset of variables for which there
are clear soil quality guidelines [32] available were used for the random forest models.

Chemical Physical

Measured and used in
models

pH, carbon (%), total nitrogen (%), anaerobically mineralizable nitrogen
(AMN, mg/kg), Olsen P (mg/kg).

Macroporosity (MP, % v/v), bulk density
(BD, t/m3).

Measured but not used
in models

C:N, NO3-M (mg/kg), NH4-N (mg/kg), Arsenic* (mg/kg), Cadmium* (mg/kg),
Chromium* (mg/kg), Copper* (mg/kg), Nickel* (mg/kg), Lead* (mg/kg), Zinc*
(mg/kg).

*There are clear guidelines around the concentration of metals deemed acceptable, but an insufficient number of sites (< 5%) in the dataset had ‘contaminated’
soils; therefore, these variables were not modelled.
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collected across the entire transect, rather than for each
individual soil sample. The ‘vegan’ package was also used
to compute a Bray-Curtis dissimilarity matrix to com-
pare the bacterial communities among all sites. Differ-
ences in bacterial community composition between land
uses were visualised using non-metric multidimensional
scaling and tested using PERMANOVA with 999
permutations.
After rarefying, there were 42,812 OTUs across all the

samples. To reduce the number of explanatory variables
entering each random forest model, the OTU table was
filtered to select OTUs which best represented differ-
ences amongst the samples. For this, samples were clus-
tered according to the composition of their bacterial
communities using Ward’s minimum variance cluster-
ing; this step was performed on three variants of the
OTU table, corresponding to the three different datasets
that were modelled (Fig. 1). The first OTU table con-
tained sample data from all sites (indigenous, exotic,
horticulture and pastoral grassland), the second all man-
aged (AM) sites (exotic, horticulture and pastoral grass-
land), and the third only from non-pastoral grassland
managed (NPG) sites (exotic and horticulture). To inter-
pret and compare clusters, a single cutting level for each
dendrogram was picked. To judge which cut off level
was the most appropriate, several criteria were assessed:
silhouette width, dissimilarity and binary matrix correl-
ation, and species fidelity analyses (see [56] for detailed
explanations). Ultimately, the cut off level was based on
the optimal level as determined by these parameters,
while maintaining an adequate number of samples per
cluster for downstream analyses. For the OTU table with
all sites, five clusters were created, while for the AM and
NPG OTU tables, seven clusters were used. To select
representative OTUs for each cluster, the ‘indicspecies’
package was used [57]. Using the ‘indicators’ command,
we selected OTUs which were indicators of each data
cluster with At (specificity) and Bt (fidelity) scores of >
0.4 for the five ‘all samples’ clusters and > 0.5 for the
seven AM and NPG clusters. This gave 648, 688 and
830 OTUs for all the sites, AM sites and NPG sites, re-
spectively. These OTUs were then used as explanatory
variables for the random forest analyses.
Ward’s minimum variance clustering was also used to

cluster the managed sites based on the soil conditions at
each site (Fig. 1). This was performed as per the OTU-
based clustering, except with the soil variables in row
one of Table 1. For the AM subset, this resulted in five
clusters, while for the NPG subset there were four clus-
ters (Fig. S9, Additional file 1). Dunn’s test for multiple
comparisons with Bonferroni corrections was used to
determine how the soil variables differed among the dif-
ferent clusters and could therefore be used as descriptors
for the sites in those clusters. Additionally, a Bayesian

PCA was performed using the ‘pcaMethods’ package
[58] to obtain PCA scores for each site based on the soil
chemistry.
There are many different machine learning approaches

that can be used to create predictive models, each with
their strengths and weaknesses [59]. Here, we use Ran-
dom forest analyses [28]. This method has previously
been shown to outperform other modelling approaches
when used for environmental bacterial datasets [29].
Random forest analyses were performed using the ‘ran-
domForest’ package with default parameters (Liaw and
Wiener 2002). Stratified random sampling was used to
select 80% of sites from each land use to be used as the
training dataset for the models. The random forest
models were then validated on the remaining 20% of the
sites. Details for the explanatory and response variables
used in each model can be found in Fig. 1 and were ei-
ther qualitative, meaning the algorithm was performed
classifications, or quantitative meaning regressions were
performed. The ‘varImpPlot’ command was used to ob-
tain the top 15 most important OTUs for each model
based on the decrease in mean squared error (% Inc.
MSE) when those OTUs are included. While these
OTUs should not be considered indicator species, as
alone they are not able to predict the soil characteristics,
they can be considered important to the model’s overall
success.
Linear regression models were used to assess the ac-

curacy of the random forest predictions for quantitative
response variables; R2 and slope values closer to 1 indi-
cate better models. Additionally, predicted soil environ-
mental variables were converted to soil quality scores.
These scores were based on guidelines as detailed by Hill
and Sparling (2009; see Tables S3–S9, Additional file 1
for more details). The predicted soil quality scores were
compared to the true scores for each site, to determine
the extent to which the random forest models can be
used to indicate the quality of managed soils.
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