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The microbiome as a biosensor: functional
profiles elucidate hidden stress in hosts
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Abstract

Background: Microbial communities are highly responsive to environmental cues, and both their structure and
activity can be altered in response to changing conditions. We hypothesized that host-associated microbial
communities, particularly those colonizing host surfaces, can serve as in situ sensors to reveal environmental
conditions experienced by both microorganisms and the host. For a proof-of-concept, we studied a model plant-
soil system and employed a non-deterministic gene-centric approach. A holistic analysis was performed using
plants of two species and irrigation with water of low quality to induce host stress. Our analyses examined the
genetic potential (DNA) and gene expression patterns (RNA) of plant-associated microbial communities, as well as
transcriptional profiling of host plants.

Results: Transcriptional analysis of plants irrigated with treated wastewater revealed significant enrichment of
general stress-associated root transcripts relative to plants irrigated with fresh water. Metagenomic analysis of root-
associated microbial communities in treated wastewater-irrigated plants, however, revealed enrichment of more
specific stress-associated genes relating to high levels of salt, high pH and lower levels of oxygen. Meta-analysis of
these differentially abundant genes obtained from other metagenome studies, provided evidence of the link
between environmental factors such as pH and oxygen and these genes. Analysis of microbial transcriptional
response demonstrated that enriched gene content was actively expressed, which implies contemporary response
to elevated levels of pH and salt.

Conclusions: We demonstrate here that microbial profiling can elucidate stress signals that cannot be observed
even through interrogation of host transcriptome, leading to an alternate mechanism for evaluating in situ
conditions experienced by host organisms.
This study is a proof-of-concept for the use of microbial communities as microsensors, with great potential for
interrogation of a wide range of host systems.
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Background
Advances in sequencing have propelled the field of
microbiology and shifted focus from analysis of micro-
bial isolates or low diversity ecosystems to analysis of
environments with highly diverse microbial communi-
ties. Global surveys of microbial community structure

have been conducted in a wide range of natural environ-
ments [1–3], also reviewed in [4], and many of these
studies have focused on host-associated microbiomes.
Such host-associated microbial environments include
plant-associated communities [5–9] though the greatest
effort has been placed on the human-associated micro-
bial communities [10–13]. Studies examining plant host-
associated microbial communities frequently focused on
soil microorganisms that are enriched in the rhizo-
sphere—the soil surrounding and affected by the roots
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[8]. In the rhizosphere, soil type [6, 8, 9] and plant host
type [14, 15] have been identified as the main forces de-
termining rhizosphere and root microbiomes. The selec-
tion of rhizosphere-competent organisms from soil has
been well established, with specific plants and different
growth stages of plants each selecting for different mi-
crobial communities from among the high diversity of
microorganisms in soil [16, 17]. Rhizosphere microor-
ganisms are further enriched to form sub-populations
colonizing root surface [9], as plants shape the soil-plant
continuum in a gradient-depended manner [6, 8, 9]
mainly through carbon flux to the root environment
[18]. Functional profiling of microbial communities asso-
ciated with different plants has demonstrated that these
microbiomes differ in their metabolic activities and has
suggested the presence of niche conditions associated
with a wide range of factors, of which oxygen concentra-
tion is one [19].
More broadly, factors influencing plant root micro-

biome include geographic location [5, 9], plant develop-
mental stage [15, 20, 21], nutrient (e.g., N or P)
availability [7, 22] and redox status [23]. Numerous agri-
cultural practices, which modify many of the above, have
been shown to have an impact on root microbiome.
These include fertilization [24], compost amendment
[25] and irrigation with water of lower quality [26]. Each
of these practices alters a wide range of environmental
variables, thus confounding the ability to identify the
most consequential abiotic factor influencing the plant
system and modifying the root microbiome.
Microorganisms sense minor changes in environmen-

tal conditions and respond rapidly through trans-
criptional changes, as well as through microbial
amplification—the dynamic modification of the abun-
dance of microbial taxa; these changes occur on a time-
scale that is much shorter than for the host [27]. Thus,
interrogation of the microbial community may be used
as a means to understand environmental conditions on
short to long time scales, as well as small to large phys-
ical scale. In this study, the root surface is used as a
model to test the hypothesis that microorganisms can be
sensitive in situ detectors of environmental conditions.
The root zone has a number of favorable features for
such interrogation, including (a) the presence of a high
percentage of microorganisms that are transcriptionally
active; (b) high microbial competition for access to root
exudates, and therefore likely rapid turn-over if environ-
mental conditions change; and (c) access to high micro-
bial diversity in the soil. Thus, both the composition of
the root-associated microbial community and the tran-
scriptional activity of the microbial community can be
informative regarding root environmental conditions.
In this study, we followed the root surface microbiome

functional response as a micro-sensor to identify stresses

imposed by irrigation with water of lower quality, such
as treated wastewater (TWW). Our study employs the
basic assumptions that the microbiome inhabiting the
root surface is exposed to the same environmental con-
ditions as its host, and that the response of the micro-
biome (i.e., alteration of community structure, associated
gene abundance and transcriptional profiles) to stress
can identify the specific stress or stresses in the root en-
vironment. To examine these assumptions and our gen-
eral hypothesis, we performed deep DNA and RNA
sequencing of plant roots grown in soil irrigated with
fresh water (FW) or TWW. Plant transcriptional profil-
ing was examined together with microbial community
taxonomic and functional gene content characterization
(shotgun metagenome sequencing) and microbial tran-
scriptional profiling (shotgun metatranscriptome se-
quencing). We observed that the host responded to
TWW irrigation in a highly general manner, whereas
the microbial response was specific to stresses present in
TWW, including elevated salinity and elevated pH.

Results
Here, we assess the use of root-associated microorgan-
isms as an indicator tool to reveal environmental condi-
tions and stresses affecting plant hosts. Our model
system was a long-term anthropogenic disturbance
caused by soil irrigation with water of lower quality (i.e.,
treated wastewater, TWW) as compared to irrigation
with fresh water (FW). We characterized plant-host re-
sponse and root microbiome composition and response
using deep sequencing of RNA and DNA extracted from
roots. Shotgun metagenomic (DNA-based) and meta-
transcriptomic (RNA-based) analyses were performed on
root systems from two host plant types (tomato and
lettuce) with two different water treatments (FW or
TWW), to describe taxonomic shifts and functional re-
sponses associated with long-term root irrigation with
water of differing quality. The two plant host tested
represent common agricultural crops, with reasonable
(tomato) to limited (lettuce) deciphered genetic informa-
tion, facing an actual environmental stress.
Metagenomic predicted genes were mapped to the

SEED [28] and KEGG (Kyoto Encyclopedia of Genes
and Genomes) [29] databases for functional predictions,
and approximately 22% of non-redundant gene list were
annotated by each database. Metatranscriptome reads
were mapped to the metagenomic-predicted genes, or to
the available plant genome, producing comparable se-
quencing depth between host and associated micro-
biome (Table S1).

Host functions actively associated with TWW irrigation
Plant host physiological response to irrigation with water
of lower quality has been previously reported, with
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significantly reduced yield of both plants under TWW
irrigation (e.g., [26] Table S2). In this study, we per-
formed deep sequencing of plant transcripts to identify
stresses that TWW irrigation imposes on plant roots. A
total of 45 tomato genes and 645 predicted lettuce genes
were significantly differentially expressed between irriga-
tion treatments. Of the 645 lettuce transcripts, only 141
could be annotated by comparison with known tomato
genes (Table S3).
To identify the most robust effects of TWW treat-

ment, tomato and lettuce differentially abundant tran-
scripts were analyzed together. A network analysis of
enriched transcripts was performed to predict interac-
tions and highlight clusters of associated genes (Fig. 1).
The FW-enriched gene network consisted of 97 nodes,
indicating the number of enriched genes that were iden-
tified by the STRING protein-protein interaction net-
work database. Similarly, the TWW-enriched gene
network consisted of 86 nodes. The FW-enriched gene
network, however, was linked by only seven edges repre-
senting predicted protein interactions (direct physical in-
teractions, as well as predicted functional association). In
contrast, the TWW-enriched gene network was linked
by 69 edges, with a significantly higher number of inter-
actions then expected (p value < 0.0001, by Random
Graph with Given Degree Sequence (RGGDS)) (Fig 1a,
b). The TWW gene network of both plants was enriched
(aggregate fold change, permutation-based test) primar-
ily with various heat-shock transcripts, including Hsp20,
Hsp70, and DnaJ. Heat shock proteins are prevalent in
plants and are active during normal growth [30]. Such
genes also show a stress response, and can be activated
in response to many stress cues, including heat, cold,
water stress, salinity, osmotic stress, and oxidative stress
[30, 31]. In addition, tubulin and ‘FKBP-type peptidyl-
prolyl cis-trans isomerase’ genes were also significantly
enriched under TWW exposure (Fig. 1b, c). Tubulin
reorganization has been shown under salt stress, cold
shock, aluminum exposure, interaction with pathogens
and more [32–35]. Overall, the plant response to irriga-
tion with TWW, as detected by transcriptome analysis,
was largely restricted to highly general stress response
genes that are expressed under a wide range of environ-
mental conditions.

Shifts in microbiome associated with TWW irrigation
(DNA-based metagenomics)
Functional profiling demonstrates the extent to which root
microbiomes respond to environmental factors
The taxonomic affiliation of root-associated microbial
communities was determined by analysis of annotated
genes from the metagenomes (Fig. 2f; Table S4, S5). The
vast majority of annotated genes were derived from bac-
teria (96.7% of all mapped reads), while the percentage

of reads derived from Fungi (1.2%), Archaea (0.5%), and
viruses (0.13%) was much lower. Despite a prior map-
ping step to remove host reads, 1.2% of annotated gene
counts could still be mapped to plant genomes. The root
microbiome was primarily composed of bacteria from
the phyla Proteobacteria (44% of all mapped reads) and
Actinobacteria (33%).
The relative abundance of taxa was compared across

experimental conditions of plant host type (tomato vs.
lettuce) and irrigation water quality (FW vs. TWW)
using DESeq2 method for comparing differential abun-
dant count data [36] (Fig. 2f). Broadly, 34% of all taxo-
nomic groups (with highest available taxonomic
resolution, based on MEGAN6 least common ancestor)
were significantly (Wald test, FDR corrected p value <
0.05) more abundant in tomato roots, as compared to
31%, significantly associated with lettuce roots. Many
taxa from the phlya Actinobacteria and Bacteroidetes/
Chloroflexi were significantly more abundant in tomato
roots relative to lettuce, while Betaproteobacteria and
Planctomycetes were strongly and significantly associated
with lettuce roots. Irrigation water quality mostly af-
fected Proteobacterial taxa (10% of microbial taxa were
significantly more abundant in TWW-irrigated roots, as
compared to 11% of microbial taxa enriched in FW-
irrigated roots. 60% of all significantly abundant taxo-
nomic group were identified as Proteobacteria). Acido-
bacteria and Betaproteobacteria were significantly more
abundant in FW-irrigated roots and Gammaproteobac-
teria significantly more abundant in TWW-irrigated
roots (all data available at supplementary Table S4).
Root microbial metagenomes from lettuce and tomato

were annotated and mapped to the SEED database to
identify functional genes significantly associated with
plant host type (tomato and lettuce) and irrigation water
quality (FW and TWW). A comparison of differentially
abundant functional genes between tomato and lettuce
root microbiomes demonstrated strong host specificity
in microbiome gene content (Fig. 2a), consistent with
our prior analyses of root microbiomes of different plant
species grown in identical soils [19]. In this study,
greater than 50% of SEED annotated genes (from a total
of 2625 “functional role” [28]) were significantly (based
on Wald test, adjusted p value < 0.05) more abundant in
either tomato or lettuce roots (26% in tomato relative to
lettuce and 27% in lettuce relative to tomato; Fig. 2a).
Irrigation water quality also affected root-associated

microbiome functional profile (Fig. 2b–d). Initially, the
effect of irrigation type was examined in tomato and
lettuce systems independently by comparing SEED-
annotated gene abundance using DESeq2 method. Irri-
gation type determined 36% of the tomato root meta-
genome (15% of all annotated gene list in tomatoes were
significantly more abundant in FW-irrigated plants
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compared to 21% more abundant in TWW-irrigated
plants, Wald test, Fig. 2b) similarly to 34% of the lettuce
root metagenome (FW 16%, TWW 18%, Fig. 2c). To
identify commonalities in response to irrigation, irriga-
tion effects were examined in a dataset of both plant
hosts combined. This combined analysis identified
microbiome genes that were positively associated with
FW irrigation (11% of all SEED annotated genes) or with
TWW irrigation (14% of all SEED annotated genes) (Fig.
2d). Overall, the combined root microbiome functional
profiles were significantly associated with plant host

(tomato vs. lettuce, F = 10.1, p value = 0.001) and irriga-
tion treatment (FW vs. TWW, F = 6.6, p value = 0.004)
as determined by a PERMANOVA test based on the
Bray-Curtis dissimilarity index of the SEED annotated
gene counts (Figure S1). For further analyses, unless
otherwise indicated, ecosystem comparisons of plants
grown in FW and TWW were performed on data
combined from both plant hosts.
We previously measured significant increases in pH,

dissolved organic matter (DOC) and electrical conduct-
ivity (EC) in TWW-irrigated soils relative to FW-

Fig. 1 Plant host functional response to TWW irrigation revealed by tomato and lettuce transcriptome analysis. Differentially expressed plant
genes between FW or TWW irrigation were determined using the software package EdgeR, with significance set at FDR p < 0.05. Lettuce
transcripts were annotated by comparison to the tomato genome. STRING protein interaction networks are presented for a FW and b TWW
irrigation enriched gene list. Only nodes linked by edges are shown. The size of each node is proportional to the log10 (p value) of the enriched
gene. Colored are PFAM protein domains significantly enriched within the network landscape. The log10 (p value) of the enriched PFAM domains
are presented in c FW and d TWW enrichment analyses
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irrigated soils [26](also at Table S6). Similar patterns
were observed in this study through canonical corres-
pondence analysis (CCA) (Fig. 2e). The CCA presents
the relationship of the measured soil parameters and
root microbiome functional gene profile (all SEED-
annotated gene counts). An ANOVA permutation test
was significant (F = 3.2, p value = 0.001 for the full

model), and the constrained variables (i.e., pH, DOC,
EC) accounted for 54.8% of the variance. DOC (F = 2.4,
p value = 0.038, loading primarily on the CCA2, deci-
phering the irrigation treatments) and pH (F = 5.7, p
value = 0.002, loading primarily on the CCA1 axis separ-
ating plant hosts) were found to significantly explain
portions of the variance associated with the observed

Fig. 2 Effect of plant host type and irrigation treatment on root-associated metagenome. a VENN diagram of differentially-abundant genes
between FW-irrigated tomato and lettuce (DESeq2 FDR p < 0.05). VENN diagrams of differentially-abundant genes by irrigation type in b tomato
or c lettuce, and d in both hosts combined. e Canonical correspondence analysis (CCA) of all SEED-annotated genes with DOC, EC, and pH as
constrained variables. f Microbial composition predicted by a least common ancestor (LCA) pipeline (MEGAN6) of the predicted gene catalogue.
Taxonomic groups are displayed in the inner ring, and differentially abundant taxonomic groups between the two tested plant types are
highlighted in the middle ring. The outer ring highlights the taxonomic groups that are significantly differentially abundant between
irrigation treatments
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microbiome functional profile, while EC was not signifi-
cant (F = 1.57, p value = 0.163).

SEED and KEGG functional categories enriched or depleted
in metagenomes of TWW-irrigated roots relative to FW-
irrigated roots
SEED-annotated genes highly significantly (p < 0.01) as-
sociated with irrigation water quality across both plants
were examined, and in total 438 genes were identified
(Fig. 3). Of these genes, 286 were enriched in TWW-
irrigated roots and 152 enriched in FW-irrigated roots.
These genes were clustered into general categories
(SEED level 1, based on the hierarchical clustering avail-
able on MEGAN6): e.g., carbohydrates, amino acid de-
rivatives, membrane transports, respiration and
regulation of cell signaling (Fig. 3a). Rare categories (n <
5 genes) were removed from the analysis. To compare
category enrichment, we examined the proportion of
genes enriched for each category (Fig. 3b). For some
gene categories (e.g., cell division, cell cycle or carbohy-
drates), a similar number of genes were enriched in both

TWW- or FW-irrigated roots (i.e., no specific effect of
irrigation treatment), while others were more strongly
skewed to either FW or TWW. For example, membrane
transport and transposable element genes were substan-
tially enriched in TWW-irrigated roots. Conversely, the
gene categories of nucleosides and nucleotides and sul-
fur metabolism, were substantially enriched in FW-
irrigated roots.
An enrichment analysis was also conducted for gene

subsystem enrichment and depletion by irrigation
method (level 2, based on the SEED hierarchical cluster-
ing, tested using Wallenius non-central hypergeometric
distribution) (Fig. 4a, Table S7). The most strongly
enriched category (log2FC = 1.4; relative abundance =
0.07%, p value < 0.0001) was the Na(+)-translocating
NADH-quinone reductase (NQR), a membrane complex
that utilizes the respiratory chain to generate a sodium
gradient in place of a proton gradient in high pH and so-
dium conditions [37]. In addition, enrichment of mul-
tiple membrane-associated subsystems in TWW-
irrigated roots was observed, including (i) sodium-

Fig. 3 Genetic profile of the 438 significantly differentially abundant microbial genes between irrigation treatments. a Heatmap of genes
enriched or depleted (FDR p < 0.01) in the metagenomes of TWW-irrigated roots (displaying trimmed mean of M values TMM). Gene abundance
was normalized by scaling each row separately. The gene list was clustered to high hierarchy SEED categories. b The proportion of genes
enriched or depleted in TWW-irrigated root metagenomes compared to the total abundance of that category in all metagenome analyses.
Enriched category (TWW, magenta), deprived (FW, light blue), or the proportion within the full gene catalogue (marked as “all”, colored by
orange), are highlighted. The proportion was calculated based on the number of genes assigned to the different categories with-in each data set
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hydrogen antiporter, a common membrane transporter
that supports sodium balance in exchange for proton
motive force (log2FC = 1.67; p value = 0.002) , (ii) pH
adaptation potassium efflux system (log2FC = 1.87; p

value = 0.007), (iii) mannose-sensitive hemagglutinin,
type 4 pilus (MSHA4) (log2FC = 1.03; p value = 0.0009),
(iv) alginate metabolism membrane complex (log2FC =
0.23; p value = 0.01). In addition to membrane-

Fig. 4 Analyses of SEED subsystems and KEGG pathways significantly enriched or depleted in metagenome of TWW-irrigated roots. a Dot plot of
log2(fold-change) relative abundance of enriched or depleted SEED subsystem. Significantly (FDR p < 0.05, represented by more than two gene
families) enriched or depleted gene abundance was computed using the goseq software package, with correction for read counts. Symbols are
proportional to the sub-system relative abundance and colored based on the enrichment/depletion log10(p value). Circles indicate TWW-
enrichment while triangles indicated TWW-depleted categories. b Heatmap of TWW-enriched or depleted (p value < 0.05) KEGG pathways
(characterized by keggProfiler). Genes of interest, significantly enriched or depleted in TWW-irrigated root metagenomes, are highlighted and
colored in pink c.
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associated subsystems, other subsystems were enriched
in TWW-irrigated roots, including arginine degradation
(log2FC = 0.56; p value = 0.04). Five genes enriched
within this subsystem catalyze the complete arginine to
glutamate pathway (Table S7). Soil Na+ concentration,
K+ concentration and pH were correlated with observed
gene abundance patterns (Figure S2, Table S8). The rela-
tive abundance of TRAP transporters (Pearson's RDOM =
0.81, p valueDOM = 0.001; RNa = 0.78, PNa = 0.003; RK+ =
0.81, PK+ = 0.001) and sodium hydrogen antiporters
(RDOM = 0.86, PDOM = 0.0003; RNa = 0.78, PNa = 0.003;
RK+ = 0.8, PK+ = 0.001) correlated to organic matter and
Na+/ K+ concentrations. The relative abundance of po-
tassium antiporter genes was correlated with Na+ and
K+ concentrations (RNa = 0.9, PNa < 0.0001; RK+ = 0.86,
PK+ = 0.0003), and MSHA4 gene relative abundance was
correlated with pH (RpH = 0.88, PpH = 0.0001). NQR
gene abundance was significantly correlated with salt
concentration (RNa = 0.8, PNa = 0.002; RK+ = 0.81, PK+ =
0.001) and pH (RpH = 0.79, PpH = 0.002).
Analysis of enriched KEGG pathways (Fig. 4b, c, Table

S9) and modules (Figure S3) revealed additional bio-
logical processes enriched in TWW-irrigated root
microbiomes relative to FW-irrigated root microbiomes.
Two-component systems were significantly enriched (40
KEGG genes were enriched, p value < 0.0001) in TWW-
irrigated root microbiomes relative to FW-irrigated root
microbiomes, including pathways involved in misfolded
proteins, flagellar assembly, iron acquisition, and Mg2+

starvation (Fig. 4c). In addition, the denitrification gene
module was significantly (4 genes, p value = 0.006)
enriched in TWW-irrigated roots (Figure S3). Con-
versely, ABC transporter gene pathways associated
with sugar (maltose, galactose, and oligogalacturo-
nide), peptide (dipeptide and glutamate/aspartate), and
nutrient (cobalt or nickel) transport were enriched
(43 genes, p value < 0.0001) in FW-irrigated root
microbiomes relative to TWW-irrigated roots. A type 3
secretion system (T3SS) gene module was also enriched
(12 genes, p value < 0.0001) in FW-irrigated root
communities.

Meta-analysis of selected gene counts relative to
environmental variables from publicly available
metagenomes
A meta-analysis was conducted to establish a global link
between metagenome functional gene content and mea-
sured environmental variables. We focused on a subset
of prominent genes from this study that were strongly
positively correlated with pH (NQR, Na+–H+ antiporter)
or with dissolved organic matter- DOC (periplasmic ni-
trate reductase, napAB, nitric oxide reductase- norBC,
nitrous oxide reductase Z, nosZ). Metagenomes available
at the Joint Genome Institute’s (JGI) Integrated

Microbial Genomes and Microbiomes repository (n =
14,596) were screened. Environmental pH measurements
were available for a subset of these metagenomes (n =
1588), and of this subset, 160 metagenomes had a total
number of predicted genes greater than 100,000 (Table
S10). Within these 160 metagenomes, the relative abun-
dance of genes annotated as NQR (pairwise Wilcoxon
rank test, Bonfferoni correction p valuepH<7: pH7–8 =
0.02; p valuepH7–8:pH > 8 < 0.0001; p valuepH < 7:pH > 8 =
0.002) and Na+–H+ antiporter (p valuepH < 7: pH7–8 <
0.0001; p valuepH < 7:pH > 8 < 0.0001) were strongly asso-
ciated with higher measured pH values (Fig. 5a, b). Pre-
viously, it was suggested that TWW deliver higher levels
of organic matter and this may lead to localized oxygen
depletion [38]. Using the same filtering criteria, 257
metagenomes were identified with oxygen measure-
ments and greater than 100,000 predicted genes. In
these metagenomes, the abundance of napAB, norBC,
and nosZ, in the denitrification pathway, were enriched
in samples with lower measured oxygen (Fig. 5d–g). No
such trend was observed for housekeeping genes such as
gyrase B (gyrB, Fig. 5h). Salinity or Na+ concentrations
were measured only in small subset of available meta-
genomes and were not analyzed further.

Microbial gene expression patterns associated with TWW
irrigation (RNA-based metatranscriptomics)
An enrichment analysis of the root-associated microbial
metatranscriptomes was performed to identify SEED-
annotated genes and subsystems that were significantly
differentially transcribed between plants irrigated with
TWW relative to those irrigated with FW (Fig. 6, Table
S11). In total, 10.1% of SEED-annotated genes were sig-
nificantly differentially expressed in roots of TWW-
irrigated plants relative to FW-irrigated plants (Wald
test, FDR corrected p value < 0.05). Specifically, 7.2% of
such genes had higher expression and 2.9% lower ex-
pression in TWW-irrigated roots relative to FW-
irrigated roots. SEED-annotated genes were clustered
into 761 SEED subsystems (level 2, based on SEED
hierarchical clustering), and of these, 8 were over-
represented in TWW-irrigated root microbial communi-
ties while only a single subsystem was significantly over-
represented in the FW-irrigated root transcriptomes.
The most highly and significantly overexpressed gene
sub-systems in TWW-irrigated roots were NQR, TRAP
transporters, sodium-hydrogen antiporters, alginate me-
tabolism genes, and MSHA4 (Fig. 6a). All of these genes
were also significantly enriched in metagenomic analysis
of TWW-irrigated roots relative to FW-irrigated roots.
Genes involved in alginate metabolism were only slightly
enriched in metagenomes of TWW-irrigated roots
(log2FC = 0.23, p value = 0.01) but were strongly over-
expressed in TWW-irrigated metatranscriptomes relative
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to FW-irrigated roots (log2FC = 1.7, p value = 0.0004).
Conversely, the overall expression level of hydrogenase
subsystem genes was significantly higher in FW-irrigated
roots relative to TWW-irrigated roots (log2FC = 1.6,
p value > 0.0001), though their relative abundance at the
DNA level was not substantially affected by irrigation
treatment (Fig. 6b).

Enrichment analysis of KEGG pathways (Fig. 6c) and
modules (Figure S4) was performed (Table S12). The
transcriptome of the microbial community of TWW-
irrigated roots was significantly enriched in 2.75% of all
KEGG-annotated genes. In addition, 8 KEGG pathways
and 2 KEGG modules were significantly enriched in
TWW-irrigated root metatranscriptomes relative to FW-

Fig. 5 Meta- analysis of selected pH and oxygen responsive genes. Publicly available (by JGI) subset of 160 environmental metagenomes with pH
measurements, were screened. Box plot of gene counts in acidic pH (< 7), neutral (7–8), or alkaline (> 8) pH for a nqr operon (6 subunits), b Na-H
antiporter operon (7 subunits), and c gyrB as control. Detailed pattern for each subunit is available in Figure S6, S7. Outliers are not displayed (1.5
× 0.25–0.75 quantiles). Significant differences in gene counts, by Wilcoxon rank sum test (Bonfferoni correction, P < 0.05), are marked in letter
report (a–c) Oxygen measurements were available for a subset of 257 environmental metagenomes. In these metagenomes, the abundance of
napA (d), napB (e) norBC (f), and nosZ (g) was compared to oxygen levels. h gyrB was used as control. All gene counts are in proportion to
rpoB gene
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Fig. 6 Expressed functions associated with irrigation treatment. a Dot plot of Log2(fold-change) SEED subsystems enriched or depleted in TWW
irrigated root metatranscriptomes. Significantly (FDR p < 0.05, represented by more than two gene families) enriched or depleted transcript
abundance was computed using the goseq software package, with corrections for read abundance. Symbols are proportional to the sub-system
relative abundance and colored based on the enrichment or depletion log10 (p value). Circles indicate TWW-enriched categories and triangles
indicate TWW-depleted categories. b Differential metagenome enrichment (TWW/FW fold change) compared to differential metatranscriptome
expression level. Highlighted (colored) categories significantly enriched or depleted in the metatranscriptome analysis. “ns” = “not significant.”
Symbols are proportional to the log10(p value) enrichment in the metatranscriptome analysis. Numbers label the enriched category, as marked in
a. c KEGG pathway-level enrichment or depletion in TWW-irrigation root metatranscriptomes (p value < 0.05), based on keggProfiler enrichment
analysis. Significantly enriched or depleted gene clusters in TWW-irrigated roots are highlighted and colored in pink
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irrigated root metatranscriptomes. In contrast, the tran-
scriptome of the microbial community of FW-irrigated
roots was significantly enriched in 1.8% of all KEGG-
annotated genes. In addition, 3 KEGG pathways and 3
KEGG modules were significantly enriched in FW-
irrigated root metatranscriptomes relative to TWW-
irrigated root metatranscriptomes. This analysis revealed
higher microbial relative expression of two-component
systems, including the C4 dicarboxylate gene cluster, in
TWW-irrigated roots relative to FW-irrigated roots (Fig.
6c). Moreover, in TWW-irrigated roots, higher relative
expression of arginine and proline metabolism genes,
particularly those in the arginine-to-spermidine pathway,
was observed (Figure S5). The relative expression level
of ABC transporter genes, including glutamate and gal-
actose transporters, were higher in the metatranscrip-
tomes of FW-irrigated roots relative to TWW-irrigated
roots (10 enriched genes, p value = 0.0004). The level of
expression of type 6 secretion system (T6SS) genes was
most highly expressed under FW-irrigation conditions
(7 enriched genes, p value < 0.0001).

Discussion
We previously studied the effect of TWW irrigation on
soil and root microbial community structure and com-
position [26]. In that study, irrigation water quality and
soil type were major explanatory variables for the ob-
served soil microbial community structure and were of a
similar magnitude. Similarly, the effect of irrigation
water quality on root microbial community structure
was of a similar magnitude to the plant host effect [26],
demonstrating the responsiveness of the microbial com-
munity to both host and environmental factors. In the
current study, we have attempted to harness the rhizo-
plane microbiome—existing at the interface between the
plant and the surrounding soil—as a sensor for detecting
in situ environmental conditions at the plant-soil inter-
face, including factors leading to host stress. The main
incentive in using the host-associated microbiome as a
biosensor lies in the fact that high resolution is desired
for accurate definition of the factors contributing to host
physiological status [39]. Comparing the differences in
the relative abundance of microbial genetic features (i.e.,
metagenome analysis) or expression of microbiome
genes (i.e., metatranscriptome analysis) can aid in the
identification of long-term stressors imposed on the host
under these conditions as well as short-term stressors
revealed by expression of genes processing environmen-
tal cues at time of sampling. Analyses can be performed
at different levels of hierarchical gene annotation and
can be performed using gene level annotation (e.g.,
SEED database) and enriched pathways or modules
(e.g., KEGG annotation).

Most commonly used methods for studying root- soil
interface employs microelectrodes [40], or specific dyed
root imaging in “rhizoboxes” [41, 42]. Both methods
measure only pre-defined variables, eliminating the pos-
sibility of discovering novel or unsuspected stressors.
Moreover, experimental design forces manipulating nat-
ural environment by growing plants in designed cells or
by removing plants from soil for further experimental
procedure. Furthermore, in studies where transcriptional
response is examined, plant host response is often tested
under severe stress in unnatural short term experimental
design [43]. We sought to be able to assess environmen-
tal factors leading to crop plants physiological status
under more natural conditions. Here, we used non-
model plant cultivars in semi-controlled environment,
located under field conditions and exposed to moderate
integrated stress, e.g., water quality, to demonstrate a
possible application of microbiome as a bio-sensor
revealing hidden environmental stresses experienced by
the host.
A secondary motivating factor for the use of the

microbiome as a biosensor lies in the observed low-
resolution response of the host organism. In this study,
upregulation of stress response genes was identified in
the transcriptome of host roots irrigated with TWW
relative to those roots irrigated with FW. However, the
specific nature of the stresses remained unresolved, with
transcriptome analysis revealing only the differential ex-
pression of genes involved in a highly general stress re-
sponse associated with heat shock proteins [44, 45]. In
fields, plants are exposed to myriad fluctuating biotic
and abiotic environmental conditions, which force plants
to tailor their gene transcriptional profiles. Therefore, in-
dividual abiotic stress responses extrapolated to plant
experiencing multiple stress conditions should be treated
with caution. The exact nature of the stress can rarely
be predicted based on experimental profiling of individ-
ual stress response under regulated conditions [46, 47].
Moreover, other types of cellular regulation can also me-
diate plant stress responses [48, 49]. Such regulation is
not as easily measured as gene expression. Higher reso-
lution of sequences participating in plant transcriptional
response (by increasing sequencing depth) can improve
characterizing plant stress response, but here we demon-
strated within a single sample both plant transcriptional
response and equivalent microbiome response, compared
at a similar sequencing resolution.
In contrast to the host, the genetic diversity of the

host-associated microbiome is much greater [27], and
the extraordinarily high microbial diversity in soils pro-
vides the plant with a wide selection of organisms com-
peting for access to root exudates [18]. While the plant
host can alter gene expression profiles in response to
changing environmental conditions, both the
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membership of the root-associated microbial community
and the expression patterns of the root-associated mi-
crobial community can be altered. Thus, the microbiome
provides us with a highly dynamic and sensitive target
with the potential for both short-term responsiveness
(i.e., metatranscriptome) and long-term responsiveness
(i.e., metagenome). In this study, we observed that in re-
sponse to long-term irrigation with TWW, both the
metagenome and metatranscriptome were significantly
altered. Statistical analysis of microbial features lead to
the identification of significantly differently abundant
genes, gene transcripts, and pathways. Some genes of
interest, being most significantly enriched, or with
known and informative supported data, are presented in
Fig. 7. Critically, the identification of the differentially
abundant or expressed microbial features was consistent
with the known key stresses imposed by TWW irriga-
tion on the microbial community and the host.

Level of pH and salinity
Cytoplasmic pH in microorganisms must be at a range
suitable for maintaining protein integrity. Most non-
extremophiles bacterial cytoplasmic pH lies at a pH
range of 7.4–7.8 [50]. In alkaline environments, organ-
isms deploy various mechanisms to maintain intracellu-
lar pH and preserve electrochemical gradient in the
presence of low proton concentration. To prevent pro-
ton loss in alkaline environments, an increase in cyto-
plasmic pH is achieved by reducing the activity of the
proton pumping machinery of the cell respiratory chain.
Under such conditions, some bacteria form a transmem-
brane sodium gradient, alternatively or concomitantly
with a proton gradient [51]. In our plant system, the
abundance and expression of Na+-transporting NADH:
ubiquinone oxidoreductase (nqr) genes was significantly
enriched under TWW irrigation relative to FW irriga-
tion. In many alkaline environments, NQR constructs
the primary sodium efflux system through oxidation of
NADH and reduction of quinone. This process creates
an electrochemical gradient of net negative charge in the
cytosol [52], and the gradient is used by cation/proton
antiporters (e.g., Na+/H+, and K+/H+) to exchange non-
balanced movement of positive charge (H+) to the cell
(more protons enter the cytoplasm as compared to the
efflux of sodium or potassium ions [50, 52–54]. In a glo-
bal mapping of soil bacterial communities, cation/proton
antiporters were observed to be key genes overrepre-
sented in dryland soil, presumably due to the high levels
of salt and pH in arid soils [55]. Additionally, we mea-
sured an increase in the relative abundance and expres-
sion of tripartite ATP-independent periplasmic (TRAP)
transporters in TWW roots, recently demonstrated to
use a membrane-associated sodium gradient to facilitate
transport of ligands [56–58]. Similarly, the increase in

abundance in flagella assembly genes under TWW irri-
gation conditions may also suggest the use of sodium
motive force for flagella performance [59, 60]. The signs
for high pH stress obtained by the metagenome and
metatranscriptome analysis are consistent with soil
chemical analysis, as elevated pH conditions can result
from long-term TWW irrigation [61].
Bacterial adaptation to alkaline conditions is frequently

dependent on salt concentration, and elevated salt levels
are also found in TWW and TWW-irrigated soils [62].
Elevated soil salinity can develop through long-term
TWW irrigation, and can adversely affect protein and
cell membrane stability. Commonly, microorganisms
stabilize salt concentration in the cell by regulating cat-
ion proton antiporter activity [63]. Efflux of sodium ions
by NQR activity and the activation of cation/proton
transporters demonstrate that the TWW-irrigated root
microbiome and the plant roots are indeed exposed to
elevated salinity as compared to the FW-irrigated roots.
This finding is consistent with the measurement in this
study of higher levels of Na+ in the leaves of TWW-
irrigated tomato and lettuce plants relative to FW-
irrigated plants (Table S2) and in other plants [64].
The association between our significantly differenti-

ated genes to processing specific environmental condi-
tions is established in vitro in numerous studies [52, 65].
Here, we hypothesized that differentially abundant genes
could be used as predictive markers of environmental
cue, and this hypothesis is supported by meta-analyses
demonstrating a link between single isolate studies and
microbial communities in vivo.

Oxygen levels
Microbial gene content and expression patterns have
great potential for identifying oxygen conditions in situ,
as previously demonstrated [19]. In this study, we ob-
served an enrichment in denitrification genes in TWW-
irrigated root metagenomes relative to FW-irrigated
metagenomes, possibly suggesting a lower oxygen con-
centration under TWW-irrigation [63]. However, the ex-
pression level of denitrification genes was not
significantly higher in TWW-irrigated roots relative to
FW-irrigated roots. This difference in enrichment be-
tween metagenome and metatranscriptome could be due
to enrichment in the TWW-irrigated rhizoplane of fac-
ultative denitrifying microorganisms, with rhizosphere
selection based on other physiological capabilities (e.g.,
motility). Conversely, the lack of enrichment in denitrifi-
cation genes in TWW-irrigated metatranscriptomes
could be a result of time of sampling. The root micro-
biome functional profile is expected to fluctuate by diur-
nal or hydration-dehydration cycles [66–68]. Therefore,
gene abundance is indicative of the chronic, long term
exposure to stress imposed by TWW, while expression
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levels may represent transient conditions. Plants in this
study were subject to twice-daily irrigation and irrigation
conditions in TWW deliver higher levels of organic

matter and this may lead to localized oxygen depletion
[38]. However, at the time of sampling, oxygen levels
may have increased. Further short-term longitudinal

Fig. 7 Conceptual model of hypothetical bacteria harboring physiological features (i.e., genes, pathways and modules) associated with water
quality. Features enriched in a TWW- or b FW-irrigated root microbiomes. White symbols indicate features that are significantly enriched at the
DNA level (metagenomes), grey features are highly expressed (metatranscriptomes), and green features are significantly abundant and expressed
in one treatment relative to the other
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analysis will be required to demonstrate diel- and
irrigation-derived shifts in denitrification gene expres-
sion patterns.

Bacterial lifestyle
We observed a significant enrichment of genes associ-
ated with surface attachment, colonization and biofilm
formation in TWW-irrigated root microbiome. These
enriched microbial features included genes encoding for
flagella and MSHA type 4 pili; both features have been
previously demonstrated to facilitate near-surface motil-
ity and bacterial attachment [69]. Furthermore, an in-
crease in the relative abundance and expression of
alginate producing genes, which catalyze the formation
of extracellular polysaccharide matrix in biofilms of
many bacterial clades [70], was observed. These results
further point to the critical importance of both motility
and attachment for rhizoplane microorganisms, as has
been previously indicated [71]. The reason for significant
enrichment of these genes in TWW-irrigated roots rela-
tive to FW-irrigated roots is not entirely clear but may
be due to overall elevated organic matter in TWW [72].
While the focus in this study has been largely on genes
enriched in TWW-irrigated systems, several key ABC
transporters were depleted in the metagenomes of roots
of both plant types irrigated with TWW relative to those
irrigated with FW. These genes include transporters for
oligogalacturonide, maltose, general sugar, and glutam-
ate. The change in relative abundance of these trans-
porters was also observed in other plants [19], and may
indicate differential pattern of root deposits. Plant glu-
tamate secretion patterns have been shown to be medi-
ated by external cues such as salinity, oxidative stress,
and availability of nutrients [73]. Glutamate ABC trans-
porters were depleted, while glutamine was enriched in
TWW-irrigated roots.

Conclusions
We hypothesized that the microbial functional gene pro-
files and expression patterns can serve as in vivo sensors
of environmental factors affecting hosts and host-
associated microbial communities. As the host and its
microbiome are similarly exposed to environmental con-
ditions, genetic profiling, and expression analysis of the
microbiome may be used as a predictive tool to identify
stresses affecting hosts. It is beyond the scope of the
current study to determine which of the abiotic factor is
directly influencing the host (and subsequently reducing
plant yield), but the suggested methodology can better
elucidate the environmental conditions encountered by
the host. Environmental surveys or host-associated
microbiome analyses frequently yield contradictory or
context-dependent results, making the predictive power
of such observations inconclusive. Studying the

microbiome as a functional unit reacting to a specific
environment, however, constitutes a non-deterministic
approach, thereby eliminating the need for marker fea-
tures (e.g., genes, pathways or specific taxa) associated
with specific conditions. In this study, we employ a well-
defined plant host-microbiome system under experimen-
tal treatment, but this approach may be used to define
microscale conditions in other host systems, potentially
reveal other host physiological stressors.

Materials and methods
Experimental design: mesocosm scale experiment
Lysimeters (0.5 m3), located at Kiryat-Gat-Lachish
agricultural research station, northern Negev, Israel
(31.605760, 34.791179), were filled with loamy sand soil
collected from agricultural fields in the western Negev,
Israel (31.351722, 34.403471). Prior to this experiment,
the lysimeters were repeatedly irrigated for 8 summers
with fresh water (FW) or tertiary treated wastewater
(TWW), derived from the Kiryat Gat wastewater treat-
ment plant (WWTP), and rain-fed during winters.
Tomato (Solanum lycopersicum-Heinz 4107) and lettuce
(Lactuca sativa-Romaine-Assaph) were grown in the
lysimeters for 98 and 42 days over two consecutive sum-
mers (2014, 2015), respectively, and irrigated with either
fresh water or TWW. Each replicate comprised compos-
ite sample, consisting of 2–4 plants collected from a sin-
gle lysimeter, with three replicates (individual lysimeters)
per treatment. An exception was FW-irrigated lettuce
plants which were collected from only two lysimeters,
yet the three replicates were still composites of two
plants each. At harvest, roots were collected, vigorously
washed, dried, and frozen on site for further procedures.
Detailed procedures, including soil and plant measure-
ments, were described previously [26].

DNA and RNA extraction
Standard phenol-chloroform nucleic acid extraction
protocol was employed for DNA and RNA isolation [26,
74]. In brief, 0.2 gr of homogenized roots were moder-
ately bead beaten for 45 s at low speed (4.5 m/s) by Fast
Prep FP120 (Savant Instruments Inc., Holbrook, NY,
USA) with phenol, phosphate buffer pH 8 (with add-
itional 10 μl ml−1 β-mercaptoethanol -Sigma-Aldrich, St
Louis, MO, USA) and 1.25% CTAB (hexadecyltrimethy-
lammonium bromide, Sigma Aldrich). Following phenol-
chloroform wash, nucleic acids were precipitated with
polyethylene glycol (PEG) and ethanol. Nucleic acids
were split for DNA and RNA isolation. RNA samples
were treated with RQ1-DNase (Promega, Madison, WI,
USA) and complete DNA removal from RNA samples
was validated by real-time reverse transcription PCR.
RNA integrity was evaluated with Agilent TapeStation
(Santa Clara, CA, USA). Ribosomal RNAs were removed

Zolti et al. Microbiome            (2020) 8:71 Page 14 of 18



using the Ribo-Zero rRNA Removal Kit (Illumina, San
Diego, CA, USA), combining bacteria and plant probes.
Double- strand complementary DNA (cDNA) synthesis
was conducted by Maxima H Minus Reverse Transcript-
ase (Thermo Fisher Scientific, Waltham, MA, USA).

Library prep and sequencing
Shotgun metagenome libraries were generated using a
Nextera XT library preparation kit according to the
manufacturer’s instructions (Illumina). Complementary
DNA for transcriptome analysis was sheared using a
Covaris S2 acoustic device, and libraries were generated
using a Accel-NGS 1S Plus DNA Library Kit (Swift Bio-
sciences, Ann Arbor, MI) according to the manufac-
turer’s instructions. Libraries were pooled sequenced
using high-output flow cells with paired-end 2 × 150
base reads on an Illumina NextSeq500 sequencer.
Library preparation and sequencing was performed at the
University of Illinois at Chicago Sequencing Core (UICSQC).

Bioinformatic analysis
Quality control of raw double-strand FASTQ sequences
was evaluated by FASTQC software [75], and adjusted
by Trimmomatic [76] with customized parameters set
to: SLIDINGWINDOW:4:15 MINLEN:100 CROP:145
HEADCROP:15.

Metagenome analysis
For shotgun metagenome analyses, 25–49 million DNA
sequences (paired-end) were generated per sample (sup-
plementary Table S1). In tomato roots, 13 to 28% of the
reads mapped to the host genome, with the remaining
reads were attributed to the microbiome. In lettuce, 55–
69% mapped to the host with the remaining reads attrib-
uted to the microbiome. Host sequences were removed
by comparing quality checked reads to host genome
(tomato or lettuce) with bowtie2 [77], and subsequently
removing the reads with SAMtools [78]. Metagenomics
reads from all three replicates were de novo assembled
together with metaSPAdes [79]. This assembly yielded 1,
760,490 contigs larger than 500bp, and this assembly
had an N50 value greater than 1600 bases. Gene predic-
tion was performed on scaffolds using the software pack-
age Prodigal [80], yielding 6,422,376 predicted genes.
The predicted genes from all samples were combined,
and a non-redundant gene catalog was established with
5,359,885 genes (based on 95% similarity), using CD-
HIT [81].The gene catalog was aligned to the NCBI
non-redundant protein database using the software
package DIAMOND in sensitive mode [82]. Sequence
annotation (theSEED [28] and Kyoto Encyclopedia of
Genes and Genomes-KEGG [29]) and predicted tax-
onomy were achieved with MEGAN V6 [83]. To attain
count data (number of mapped reads for each gene),
quality checked reads (after host read removal) were

aligned to the annotated gene catalog by bowtie2, while
analogous read annotated terms were summed using a
custom python script

Metatranscriptome analysis
Shotgun metatranscriptome analyses generated 27–33
million sequences (paired-end) per sample (Table S1).
Quality checked RNA reads were aligned to the
gene catalog established from the metagenomics
analysis, in a similar fashion to metagenomics count
data (microbial transcriptome, with 11–51% of the
sequences mapped to the microbiome, and an average
of 27%).

Host RNAseq
Metatranscriptome reads were mapped to the plant gen-
ome (host transcriptome analysis, with 7–41% of the se-
quences mapped, and an average of 32%). An estimation
of transcript abundance for tomato root samples was ob-
tained by aligning quality checked sequences (prior to host
reads removal) to the predicted Solanum lycopersicum
transcripts with Trinity RSEM transcript quantification
method [84]. As the lettuce genome is not fully annotated,
sequence data generated from lettuce plants were
screened for orthologs of known tomato genes. Lettuce
transcripts first predicted by Tophat and cufflinks for
transcript prediction [85], than infered to ortholog tomato
genes by OrthoFinder. Transcript quantification was done
following similar analysis as for tomato samples.

Statistical analysis
Metagenome and metatranscriptome statistical enriched
gene list (SEED or KEGG annotated) or taxonomic
groups were obtained by DESeq2 [36] and compared
using the VennDiagram R package [86]. DESeq2 assume
most genes are shared between the compared treat-
ments. Therefore, the plant host effects might be an
overestimation. Nevertheless, the main focus remained
the irrigation derived functional shift, with values at the
range suitable for this analysis. Taxonomic trees were vi-
sualized using the interactive tree of life [87] and apply-
ing the least common ancestor MEGAN algorithm.
SEED subsystems enrichment analysis was conducted
with the ‘R’ goseq package [88], normalizing to SEED
counts. KEGG pathway and module enrichment were
analyzed by clusterProfiler package in R [89]. Statistical
test (MANOVA, ANOSIM) were conducted in R pack-
age ‘vegan’ [90], and figures were plotted with R ‘ggplot2’
[91] or ‘pheatmap’ [92]. Count read data was normalized
by trimmed mean of M values (TMM) using the EdgeR
‘R’ package [93]. Differentially expressed host transcripts
were obtained using the EdgeR ‘R’ package [93], followed
by annotation and visualization using the STRING net-
work [94, 95] Cytoscape integrated application [96] for
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both plant hosts combined. The minimum required
interaction score was customized to medium confidence
(0.4), and PFAM protein domain enrichment was set to
a false discovery rate p value of 0.05.
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