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Abstract

Background: Mass transit environments, such as subways, are uniquely important for transmission of microbes
among humans and built environments, and for their ability to spread pathogens and impact large numbers of
people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables
that affect microbial composition and those microorganisms that are unique to specific habitats.

Methods: We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway
stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface
were identified using random forest classification analyses, followed by in-depth diversity analyses.

Results: There were significant differences between the air and surface bacterial communities, and across seasons.
Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and
abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families
and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups
were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely
that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was
higher during spring and summer. Temperature had a strong effect on diversity in air but not on surface diversity.
Among-sample diversity was also significantly associated with air/surface, season, and temperature.

Conclusions: The results presented here provide the first direct comparison of air and surface bacterial
microbiomes, and the first assessment of seasonal variation in subways using culture-independent methods.
While there were strong similarities between air and surface and across seasons, we found both diversity and the
abundances of certain taxa to differ. This constitutes a significant step towards understanding the composition and
dynamics of bacterial communities in subways, a highly important environment in our increasingly urbanized and
interconnect world.
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Background
Microorganisms are ubiquitous in the truest sense of the
word; regardless of where humans reside, they are sub-
jected to a plethora of microbes, some of which have
profound impacts on our health [1, 2], and our individ-
ual microbiomes [3]. The built environment (BE) is the
primary environment of modern humans [4], and hence
where we mainly encounter microorganisms. Mass tran-
sit environments such as subways facilitate a constant
flow of microbes among humans and among different
BEs [5]. They are thus particularly important for human
health due to their potential for spreading pathogens [6]
and impact large numbers of people.
The subway surface microbiome has already been

characterized using both 16S rRNA gene amplicon se-
quencing [5, 7] and shotgun metagenomics [5, 8, 9].
Notably, the MetaSUB project [10] has produced a
microbiome and antimicrobial resistance atlas from mass
transit surface samples spanning 58 cities across the
world [11]. Subway air—which is of particular interest
with regard to bioterrorism [12] and infectious diseases
[13]—has also been studied using both culture-based
[14–17] and more recently culture-independent ap-
proaches [18–21]. Robertson et al. [21] described the
composition and diversity of subway air microbiomes in
New York. Leung et al. [20] found extensive bacterial di-
versity in the air of the Hong Kong subway system,
showing that changes in microbial communities were
governed by temperature, humidity, and the number of
commuters. Triadó-Margarit et al. [19] investigated air
microbiomes in the Barcelona subway system and found
significant overlap among different environments within
the subway and dominance of a few widespread groups
of microorganisms. Fan et al. [18] observed variation in
the fungal and bacterial air microbiomes of the Beijing
Subway between peak and non-peak commuting hours.
While many studies have addressed subway air or
surface microbiomes separately, to our knowledge, no
study has yet provided a direct comparison of these two
important and probably closely interacting sample
matrices.
Seasonality is a time-dependent, fundamental shift in

environmental conditions that is expected to vary greatly
across geographical scales. It is well known that outdoor
microbiomes show significant variation across seasons
[22–24] and that outdoor air strongly contributes to
indoor microbiome composition [25]. Hence, seasonal
effects on BE microbiomes are to be expected. However,
two BE studies of seasonal microbiome variation, one in
Finnish office buildings [26] and another at a children’s
daycare center in Virginia, USA [27], found no signifi-
cant seasonal trends. Patel et al. [28] cultivated bacteria
from dust collected at railway stations in England and
Scotland and found seasonal trends in bacterial

abundance, and Heo et al. [14] found concentrations of cul-
turable bacteria in underground subway air to vary across
seasonal transitions; however, culture-independent methods
have not been utilized to evaluate seasonal microbial diver-
sity in subways or similar environments.
In the present study, we analyzed surface and air sam-

ples collected at 16 subway stations in Oslo, Norway, a
relatively small capital city—compared with cities previ-
ously studied in this context—at the northern boundary
of the temperate region. The aim of this work is to pro-
vide a direct comparison of surface and air bacterial
microbiomes—to identify unique and ubiquitous taxa
and to quantify differences in diversity among these
sample matrices. Furthermore, we address an important
knowledge gap, namely that of seasonal dynamics in
subway air and surface bacterial microbiomes. The main
hypotheses tested here are (1) that bacterial microbiome
composition and diversity varies significantly across sea-
sons, and (2) that bacterial microbiomes found on sur-
faces and in air differ with regard to composition and
diversity.

Methods
Air (69) and surface (177) samples were collected at 16
subway stations in Oslo, Norway across four seasons
from November 2016–June 2017 (Additional file 1:
Tables S1 and S2). At each sampling location, one air
sample and three surface samples were collected. An
Aerotrak 8220 (TSI, Shoreview, MN, US) optical particle
counter fitted with an external probe (Model: 1300102)
was used to record temperature and humidity.

Air sampling
Air samples were collected and air filters extracted as
previously described in Bøifot et al. [29]. Briefly, particu-
lates in air were collected on an electret filter with a
SASS3100 air sampler for 30 min, and at 300 L of air per
minute (Research International, Monroe, WA, USA). Fil-
ters were placed in 50-mL centrifuge tubes and stored in
a transport cooler with ice packs before they were trans-
ferred to − 80 °C upon return to the laboratory. Particu-
lates were extracted from the filter with NucliSENS lysis
buffer (10 mL, BioMérieux, Marcy-l’Étoile, France), and
the filter extract was centrifuged at 7000g for 30 min.
The supernatant was transferred to a new 50-mL tube,
while the centrifuged pellet was resuspended with
PowerBead Solution (550 μL, Qiagen, Hilden, Germany)
and transferred to autoclaved (121 °C, 45 min) bead
tubes (2 mL, Sarstedt, Nümbrecht, Germany) filled with
600 mg, 0.1-mm zirconia/silica beads (BioSpec Products,
Bartlesville, OK, USA). PowerSoil Solution C1 (60 μL,
Qiagen) was added and bead beating (1 min, maximum
intensity) was performed in a Mini-Beadbeater-8 (BioS-
pec Products). Bead tubes were centrifuged at 13,000g
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for 2 min and potential inhibitors removed according to
the DNeasy PowerSoil Kit with Solution C2 (250 μL) and
C3 (200 μL). Following inhibitor removal, we combined
the supernatant with that from the filter extract and iso-
lated DNA according to the manufacturer’s protocol of
the NucliSENS Magnetic Extraction Reagents Kit
(BioMérieux). Negative controls (reagents) were pre-
pared by processing blank samples (unexposed filters)
along with the air samples.

Surface sampling
Surface samples were collected for three surface types at
each station: kiosks, railings, and benches. A nylon,
flocked swab (Copan eSwab 490 CE.A, Copan Diagnos-
tics, CA, USA) wetted in Amies liquid medium, was
used to swab the surface for 3 min, covering an area as
large as possible. The swab was placed in a 15-mL cen-
trifuge tube and stored in a transport cooler with ice
packs before they were transferred to − 80 °C upon
return to the laboratory. DNA was isolated according to
the DNeasy PowerSoil Kit (Qiagen) protocol, except that
the standard PowerBead Tubes were replaced with the
customized bead tubes described above for air samples.
Swabs were cut with sterilized scissors into bead tubes
filled with PowerBead Solution (550 μL, Qiagen) and Solu-
tion C1 (60 μL, Qiagen) before tubes were bead beaten (1
min, maximum intensity) in a Mini-Beadbeater-8 (BioSpec
Products). Negative controls (reagents) were prepared by
cutting clean swabs into bead tubes and performing DNA
isolation.
ZymoBIOMICS Microbial Community Standard

(10 μL, Zymo Research) was added to one bead tube be-
fore DNA isolation (isolated according the protocol de-
scribed above), which served as a positive control.

Quantification of total DNA and bacterial 16S rRNA gene
copies
DNA yield was measured with Qubit 3.0 Fluorimeter (Life
Technologies, Carlsbad, CA, USA) using the Qubit
dsDNA HS assay (Life Technologies). Bacterial 16S rRNA
gene copy yield was determined with a qPCR assay per-
formed according to Liu et al. [22] on a LightCycler 480
(Roche Diagnostics, Oslo, Norway). A standard curve was
generated with serial dilutions of Escherichia coli DNA
(seven 16S rRNA gene copies per genome). Bacterial 16S
rRNA gene copy yields were analyzed with linear models
in R [30]. Given that air and surface samples were col-
lected with different sampling protocols, the data was
grouped by air and surface prior to analysis. Surface type,
surface material, surface treatment, season, indoor/
outdoor station, time of day, temperature (mean and
standard deviation), humidity (mean and standard de-
viance), and sequence run were included as predictors
in these models, which were subsequently subjected

to a stepwise model (predictor variable) selection with
the stepAIC R function [31].

16S rRNA gene amplicon sequencing
The 16S rRNA gene was amplified by PCR (Additional
file 1: Table S3), using forward primer 341F, 5′-CCTAC
GGGNGGCWGCAG-3′ and reverse primer 805R, 5′-
GGACTACHVGGGTWTCTAAT-3′, targeting the V3
and V4 regions of the gene. Sequence libraries were
prepared following the 16S Metagenomic Sequencing
Library Preparation protocol [32] and sequenced on Illu-
mina MiSeq in four separate runs. Four swab negative
controls, three air negative controls, and one ZymoBIO-
MICS Microbial Community Standard positive control
were included as study controls.

Sequence analysis
Primers and adapters were removed from demultiplexed
sequence reads using TrimGalore [33], a perl wrapper
for Cutadapt [34] and FastQC [35]. A big data pipeline,
i.e., forward reads only, was used to infer amplicon se-
quence variants (ASV) using the dada2 R package [36].
Filtering was performed with the filterAndTrim function
in dada2; reads that mapped to the phiX genome were
removed, all reads were truncated to 250 bp, and reads
of < 250 bp, that contained any unassigned bases or
bases of quality score < 2, were discarded, and the max-
imum number of expected read errors per read was set
to 2. Learned error rates were used for inferring ASV be-
fore removing chimeras (dada2 functionality). Dada2
analyses were run separately for the four sequence runs,
before merging the feature tables. SILVA SSU v.132 [37],
which is the largest dedicated 16S taxonomy database,
was used for assigning taxonomy to the ASVs. The ASV
table, taxonomy table, and metadata were imported into
the phyloseq R package [30] for analyses.
Reads not assigned to the phylum level were removed

before rarefication. All samples were rarified to the low-
est read depth after assessing rarefication curves with
observed diversity and Shannon’s diversity index. The
data set was split into air and surface samples, and into
surface types, before summarizing the most abundant
phyla, families, and genera in both subsets.
Three random forest classification analyses were per-

formed with 10,001 trees, using air/surface, the four sea-
sons, and surface type as classification bins. ASVs not
assigned to genus were discarded before conglomerating
all ASVs to the level of genus. A prevalence filter of < 10
and a total abundance filter of < 20 were implemented
prior to calculating Z-scores from abundances for the
remaining 817 genera. The most important features
(genera) for correctly assigning samples to their correct
bin (air/surface, season, or surface type) was identified
using mean decrease in model accuracy (MDA), i.e., the
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negative impact on model accuracy by excluding a
feature.
Shannon’s diversity index scores were analyzed using

linear models in R [31]. Firstly, variables only relevant
for surface samples (surface type, material, and treat-
ment (painted/not painted)) were analyzed. Second, air/
surface, season, indoor/outdoor station, time of day,
temperature (mean and standard deviance), humidity
(mean and standard deviance), and sequence run, along
with all possible two-way interactions, were included as
predictors of Shannon’s diversity index scores in a separ-
ate model. This model was subjected to a stepwise
model selection with the stepAIC R function [38].
Prior to analyses of among-sample diversity, ASVs

with prevalence < 5 were removed. A Bray–Curtis dis-
similarity matrix was ordinated using PCoA, and PER-
MANOVA tests were performed using the same
predictor variables (including all two-way interactions)
mentioned above. Manual AIC model selection was per-
formed by dropping the least significant variable in a
step-wise fashion, until further removals no longer im-
proved the model’s AIC score.

Results
All negative controls (four swabs and three air samples)
failed to generate sequenceable libraries in the library
preparation step due to insufficient DNA yields. The
positive controls showed no sign of contamination and
yielded the correct genera. Analyses of 16S rRNA gene
copy yields found that bacterial numbers decreased with
increasing humidity, peaked during spring for air sam-
ples (Additional file 1: Table S4; Figure S1), and were
highest during summer, at outdoor stations, and on
kiosks for surface samples (Additional file 1: Table S4;
Figure S2). For surface samples, the number of 16S rRNA
gene copies was also significantly higher in one of the se-
quence runs (Additional file 1: Table S4; Figure S2).
After QC filtering, 41M forward reads remained (Add-

itional file 1: Figure S3). A total of 12.6% were lost in the
ASV inference step (dada2, with error modeling), and a
further 15.1% were removed as chimeras, leaving 30.7M
forward reads. From this material, dada2 identified 328,
615 ASVs. A total of 13,788 of these were not assigned
to phylum and removed. Rarefication curves for ob-
served diversity and Shannon’s diversity index (Add-
itional file 1: Figure S4) were evaluated before rarefying
all samples to a common read depth of 6358, which re-
moved only three samples.

Taxonomy and community composition
In both air and surface samples, the phyla Actinobacteria
and Proteobacteria dominated, with abundances of
42.9% and 23.9%, and 31.3% and 27.5% respectively
(Table 1; Fig. 1a). The top 20 phyla were the same in

both air and surface samples, with the top five also
showing identical ordering by abundance. At the family
level, Micrococcaceae was most abundant in both air and
surface samples (10.5% and 7.2% respectively; Table 1).
Notably, Rubrobacteriaceae and Pseudonocardiaceae,
who were highly abundant in air samples (ranking as the
5th (3.5%) and 12th (2.1%) most abundant), were not
found among the surface sample top 20 families, ranking
as the 53rd (0.3%) and 48th (0.4%). The two unique fam-
ilies in the surface top 20 (Lactobacillaceae, Deinococca-
ceae) were both in the air top 25. At the genus level,
similarities between the air and surface top 20 were still
pronounced (Table 1). Most notably, Staphylococcus was
the 2nd most abundant in air (3.8%) and most abundant
in surface samples (4.7%). In line with the theme from
the family level results, Rubrobacter (Rubrobacteriaceae),
which ranked as the third most abundant in air (3.5%),
was the 49th (0.3 %) most abundant in the surface
samples. Of the other genera that appeared exclusively
in the air top 20, only Pseudonocardia (1.1%) and Nester-
enkonia (0.9%) had a substantially lower abundance
ranking in surface (76th (0.2%) and 68th (0.2 %), respect-
ively). Of the five genera that were exclusively in the sur-
face top 20, only Pseudomonas ranked outside the air
top 30 (37th).
Abundance plots of phyla across seasons, and air and

surface (Fig. 2a), showed a relatively stable distribution;
however, Firmicutes exhibited higher relative abundance
in winter and spring, while Cyanobacteria appeared to
be more abundant during summer and autumn. As also
seen in the top 20 abundance table (Table 1), Actinobac-
teria had a higher relative abundance in air samples, and
Proteobacteria was more abundant in surface samples.
We observed notable seasonal differentiation in three
Verrucomicrobia families (Verrucomicrobiaceae, Rubrita-
leaceae, and Chthoniobacteraceae; Fig. 1b), who were all
most abundant during summer, especially in surface
samples. Streptomycetaceae, Pseudonocardiaceae, Rubro-
bacteriaceae, and Halococcaceae all showed higher rela-
tive abundance in air samples with no strong seasonal
patterns (Fig. 1b).
The comparison of highly abundant taxa in surface

samples taken from kiosks, benches, and railings re-
vealed a high degree of similarity across surface types
(Additional file 1: Table S5; Figure S5).

Indicator genera: random forest classification
Random forest classification analyses, using genera as
classification features, showed a high level of success in
assigning samples to their correct bins (air or surface
and correct season). The season classification had an
out-of-bag error rate of 8.9%, with the highest class error
found for summer samples, where nine samples were
incorrectly classified as autumn samples (Table 2).
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Table 1 Top 20 phyla, families, and genera in air samples (N = 69) and surface samples (N = 177). Dots indicate that a group is also
represented in the top 20 set from the other sample matrix. Prevalence is the sum of prevalence of all ASVs within a taxonomic
group

Air samples Surface samples

Phylum Prevalence Abundance (%) Phylum Prevalence Abundance (%)

Actinobacteria • 32638 42.92 Actinobacteria • 59693 31.32

Proteobacteria • 27216 23.88 Proteobacteria • 61648 27.47

Firmicutes • 12494 11.97 Firmicutes • 28790 16.65

Bacteroidetes • 13390 8.10 Bacteroidetes • 34972 10.99

Cyanobacteria • 3988 6.29 Cyanobacteria • 10775 7.88

Chloroflexi • 2731 1.53 Deinococcus-Thermus • 3184 1.37

Acidobacteria • 2451 1.10 Acidobacteria • 4904 1.05

Deinococcus-Thermus • 1445 1.06 Chloroflexi • 3591 0.67

Planctomycetes • 1976 0.68 Fusobacteria • 1557 0.59

Euryarchaeota • 294 0.66 Planctomycetes • 3321 0.51

Gemmatimonadetes • 1335 0.53 Verrucomicrobia • 2281 0.37

Patescibacteria • 998 0.34 Patescibacteria • 2086 0.33

Verrucomicrobia • 910 0.33 Gemmatimonadetes • 1667 0.26

FBP • 410 0.17 FBP • 958 0.18

Armatimonadetes • 381 0.15 Armatimonadetes • 773 0.12

Fusobacteria • 250 0.10 Euryarchaeota • 162 0.11

Chlamydiae • 185 0.06 Epsilonbacteraeota • 155 0.03

Epsilonbacteraeota • 65 0.03 Chlamydiae • 172 0.02

Nitrospirae • 56 0.02 Spirochaetes • 111 0.02

Spirochaetes • 28 0.01 Nitrospirae • 69 0.01

Family Prevalence Abundance (%) Family Prevalence Abundance (%)

Unassigned • 19657 15.01 Unassigned • 42005 14.23

Micrococcaceae • 3092 10.49 Micrococcaceae • 5787 7.21

Sphingomonadaceae • 3354 4.78 Sphingomonadaceae • 8367 5.84

Staphylococcaceae • 1965 4.26 Staphylococcaceae • 4280 5.00

Burkholderiaceae • 5034 4.06 Streptococcaceae • 3810 4.53

Rubrobacteriaceae 1143 3.52 Burkholderiaceae • 10578 4.42

Hymenobacteraceae • 4187 3.35 Hymebacteraceae • 9178 3.84

Nocardioidaceae • 2899 3.24 Moraxellaceae • 3982 3.35

Moraxellaceae • 1689 2.96 Corynebacteriaceae • 4365 3.34

Acetobacteraceae • 2555 2.60 Acetobacteraceae • 5957 2.64

Corynebacteriaceae • 1578 2.49 Cardioidaceae • 4933 2.29

Intrasporangiaceae • 1498 2.30 Propionibacteriaceae • 2947 2.20

Pseudonocardiaceae 1755 2.14 Beijerinckiaceae • 3413 2.06

Beijerinckiaceae • 1558 2.07 Microbacteriaceae • 3654 1.93

Geodermatophilaceae • 969 2.06 Flavobacteriaceae • 4970 1.89

Microbacteriaceae • 1604 1.80 Intrasporangiaceae • 2498 1.52

Propionibacteriaceae • 1224 1.71 Geodermatophilaceae • 1747 1.46

Streptococcaceae • 955 1.43 Rhodobacteraceae • 3227 1.28

Rhodobacteraceae • 1543 1.27 Lactobacillaceae 1474 1.16

Flavobacteriaceae • 1476 1.13 Deinococcaceae 2604 1.15
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Psychrobacter was the most important genus for correct
season classification (MDA = 0.043, Table 2; Additional
file 1: Figure S6).
The classification of samples as either air or surface

had an out-of-bag error rate of 6.1%. The model was
highly successful in correctly classifying surface samples,
with only two samples being wrongly assigned as air
samples (class error = 1.1%). Air samples, on the other
hand, had a substantial class error (18.8%), with 13 of 69
air samples being classified as surface samples (Table 3).
Ralstonia was the most important genus for correct
classification (MDA = 0.015; Table 3; Additional file 1:
Figure S7).
The classification analysis of samples by surface type

had a substantially higher out-of-bag error rate (42.37%;
Additional file 1: Table S6), with a large number of sam-
ples being misclassified for all surface types. The error
was particularly pronounced for railing samples, where
41 out of 56 samples were not binned correctly (class
error of 73.2%).

Diversity
When assessing all ASVs without prevalence or abun-
dance filtering, we found the majority to be exclusive to

one season, and either surface or air (Fig. 2a). On the
other hand, ASVs that had prevalence > 4 and abun-
dance > 10 were largely present across all seasons and in
both surface and air samples (Fig. 2b).
For Shannon’s diversity index scores, the models that

assessed variables specific to surface (surface type, mater-
ial, and treatment) were all non-significant (all p > 0.16).
The step-wise AIC model selection scheme on a model
with the remaining predictors—air/surface, season, in-
door/outdoor station, time of day, temperature, humidity,
sequence run, and all possible two-way interactions—
returned a model which contained four significant predic-
tors (temperature, p < 0.001; air/surface, p = 0.005; season,
p < 0.001; and humidity, p = 0.017; Fig. 3) and four signifi-
cant interactions, which together explained 27% of the
variance in Shannon’s diversity index scores and had an
overall p value of 1.04 × 10−09 (Table 4). Diversity was
higher during spring and summer, in air samples, and at
higher temperatures and lower levels of humidity (Fig. 3).
Of the significant interaction effects, temperature: air/sur-
face (p = 0.002) was most notable; closer inspection indi-
cated that surface samples had higher diversity than air
samples at low temperatures, and lower diversity at higher
temperatures (Additional file 1: Figure S8).

Table 1 Top 20 phyla, families, and genera in air samples (N = 69) and surface samples (N = 177). Dots indicate that a group is also
represented in the top 20 set from the other sample matrix. Prevalence is the sum of prevalence of all ASVs within a taxonomic
group (Continued)

Air samples Surface samples

Genus Prevalence Abundance (%) Genus Prevalence Abundance (%)

Unassigned • 38724 26.51 Unassigned • 82052 24.72

Micrococcus • 377 3.97 Staphylococcus • 3208 4.57

Staphylococcus • 1445 3.83 Sphingomonas • 3184 4.23

Rubrobacter 1143 3.52 Streptococcus • 2430 3.96

Sphingomonas • 1260 3.37 Hymenobacter • 8696 3.75

Hymenobacter • 3850 3.19 Corynebacterium • 3278 2.70

Arthrobacter • 999 2.99 Arthrobacter • 1904 2.07

Corynebacterium • 1248 2.13 Kocuria • 915 1.99

Nocardioides • 1867 2.06 Micrococcus • 594 1.82

Psychrobacter • 453 1.49 Psychrobacter • 1106 1.65

Blastococcus 494 1.38 Flavobacterium • 3355 1.54

Kocuria • 383 1.26 Nocardioides • 2985 1.43

Streptococcus • 658 1.22 Cutibacterium 523 1.23

Pseudonocardia 753 1.10 Lactobacillus • 1459 1.16

Nesterenkonia 378 0.92 Deinococcus • 2528 1.14

Flavobacterium • 907 0.92 Massilia 1738 1.01

Methylobacterium 315 0.84 Pseudomonas 1545 0.92

Deinococcus • 1025 0.80 Acinetobacter 1596 0.84

Lactobacillus • 629 0.80 1174-901-12 1076 0.83

Acidiphilium • 593 0.80 Acidiphilium • 1432 0.78
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In a multivariate PERMANOVA model of among-
sample diversity (ordinated Bray–Curtis dissimilarity)
with predictors specific to surface, we found only surface
type to be significant (F = 2.03, R2 = 0.02, p = 0.001;
Additional file 1: Figure S9). A PERMANOVA model
with the remaining predictors (air/surface, season, in-
door/outdoor station, time of day, temperature, humid-
ity, sequence run, and all possible two-way interactions)
was subjected to a step-wise AIC model selection
scheme, which produced a model that explained 56% of

among-sample diversity. This model included six predic-
tors, and three two-way interactions (Table 5). Whether
samples were taken from air or surface was a highly sig-
nificant predictor (p = 0.001), explaining 4% of the total
variance. Season (p = 0.001) and subway station (p =
0.001) explained 11%, and 15% of the variance respect-
ively. Sequence run was also a significant predictor of
among-sample diversity (p = 0.001) and explained 2% of
the variance. Ordination plots revealed clear differenti-
ation for air/surface, season, and sequence run (Fig. 4);

Fa
m
ily

Fig. 1 Taxonomic overview. a Relative abundances of the top 15 phyla. b Heatmap of most abundant families (relative abundance ≥ 0.01), color
coded by phylum following the legend in panel a. Particularly differentiated features are highlighted with arrows, where green indicate seasonal
variation and red variation between air and surface samples
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however, subway stations, which explained the largest
amount of variance, showed no discernable clustering.

Discussion
Mass transit systems are BEs critical to the everyday
lives of a vast number of people, and its potential role in
the transmission of infectious diseases as well as bioter-
rorism risk cannot be understated [6, 12, 13]. With the
advent of molecular assay techniques—more recently
high-throughput sequencing—we are no longer re-
stricted to culture-based techniques and can better un-
ravel microbial diversity in mass transit systems.
Characterization of microbial diversity in such environ-
ments is vital to understand the dynamics of antimicro-
bial resistance and enables the detection and monitoring
of potential pathogens and bioterrorism threat agents.
Furthermore, it is essential for the understanding of how
our own microbiomes interact with the microbiomes
that surround us, and how this ultimately may affect our
health and wellbeing [3, 9]. A vital step in this effort is
to explore the variability of mass transit microbiomes
across sample matrices and temporal scales, and identify
important drivers of such variation. In this study, we de-
scribed the biological background in both air and sur-
faces from 16 subway stations in Oslo, Norway—a
smaller and more northerly city compared with other
cities where subway microbiomes have previously been
mapped. We provide a direct comparison of surface and
air communities, and an assessment of seasonal variation
in subway microbiomes.

Taxonomy, relative abundances, and ecology
In the entire dataset, over 300 K unique ASVs were iden-
tified. This is substantially higher than comparable stud-
ies [5, 7, 20, 21]; however, direct comparisons of studies
are not feasible since differences in sampling and wet lab
protocols, and sequencing depths may strongly influence
results. Further, the use of different taxonomic classifiers
with different sensitivities will have substantial effects on
the number of OTUs/ASVs reported [39].
The top five most abundant phyla in both surface and

air samples (Table 1; Fig. 1a) matched the top five phyla
in the Mexico City subway (station and train surfaces)
[7] perfectly, the only difference being their ordering by
relative abundance. Further, three genera in the top five
overlapped between our surface samples and the Mexico
City study: Staphylococcus, Streptococcus, Corynebacter-
ium. Major phyla identified in the subway studies from
Hong Kong subway [20] and New York [21] were also
the same as those identified in the present study.
We found that many less abundant ASVs were unique

to specific seasons or sample matrices, while abundant
groups were, for the most part, ubiquitous across sea-
sons, and surface and air samples; importantly, a very
low filtering cutoff was sufficient to remove almost all
taxa only present in single seasons or a single sample
matrix (Fig. 2). In surface and air samples, the top 20
most abundant phyla were the same and ordered identi-
cally. Two families were highly abundant in air but not
in surface samples: Rubrobacteriaceae and Pseudonocar-
diaceae with relative abundances of 3.52% and 2.14% in

Fig. 2 The distribution of amplicon sequence variants (ASVs) across seasons and sample matrices. Panel a includes all ASVs and panel b only
ASVs with prevalence > 4 and abundance > 10
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air samples. Our findings were similar at the genus level:
the radiotolerant [40] Rubrobacter (which constituted
the Rubrobacteriaceae contribution in its entirety;
3.52%) had a uniquely high abundance in air, along with
Pseudonocardia (most notably producers of antibiotics
for use in pest control by fungus farming ants [41];
1.10%), and Nesterenkonia (ubiquitous, and in extreme
environments, opportunistically pathogenic [42] 0.92%).
We have no explanation for why these particular bac-
teria were so abundant in air, but not on surfaces. One
might expect that all bacteria in air eventually settle on
surfaces; however, the chemical and biological proper-
ties, and size of bacteria [43], along with environmental
variables in air, can affect both deposition and

Table 2 Random forest classification models of season

Season

Out-of-bag estimate of error rate: 8.94%

Confusion matrix Autumn Spring Summer Winter Class
error
(%)

Autumn 53 1 5 1 11.7

Spring 0 54 1 1 3.6

Summer 9 0 63 0 12.5

Winter 2 2 0 54 6.9

Most important genera in sample classification

Family:genera Autumn Spring Summer Winter MDA

Moraxellaceae:
Psychrobacter

0.026 0.039 0.040 0.069 0.043

Microbacteriaceae:
Cryobacterium

0.022 0.057 0.011 0.004 0.022

Flavobacteriaceae:
Flavobacterium

0.009 0.012 0.021 0.040 0.020

Nocardioidaceae:
Nocardioides

0.020 0.024 0.011 0.013 0.016

Flavobacteriaceae:Gillisia 0.024 0.003 0.002 0.014 0.010

Chitinophagaceae:
Ferruginibacter

0.009 0.012 0.007 0.009 0.009

Gaiellaceae:Gaiella 0.000 0.011 0.002 0.018 0.008

Ilumatobacteraceae:
CL500-29_marine_group

0.001 0.015 0.003 0.012 0.007

Burkholderiaceae:
Polaromonas

0.008 0.015 0.001 0.002 0.006

Rubritaleaceae:
Luteolibacter

0.000 0.018 0.003 0.004 0.006

Sphingomonadaceae:
Qipengyuania

0.001 0.001 0.009 0.010 0.005

Clostridiaceae_1:
Clostridium_sensu_
stricto_13

0.000 0.016 0.001 0.006 0.005

Xanthomonadaceae:
Thermomonas

0.001 0.006 0.003 0.012 0.005

Chthoniobacteraceae:
Candidatus_Udaeobacter

0.001 0.009 0.002 0.009 0.005

Staphylococcaceae:
Staphylococcus

0.012 0.007 0.002 0.000 0.005

Microbacteriaceae:
Galbitalea

0.003 0.017 0.000 0.001 0.005

Pseudoalteromonadaceae:
Pseudoalteromonas

0.003 0.000 0.010 0.004 0.005

Phormidiaceae:
Tychonema_CCAP_1459:
11B

0.001 0.000 0.006 0.011 0.004

Ilumatobacteraceae:
Ilumatobacter

0.001 0.006 0.002 0.009 0.004

Demequinaceae:
Demequina

0.000 0.010 0.002 0.004 0.004

Confusion matrices show the classification of samples and the
associated class error. The mean decrease in model accuracy (MDA;
from removing the genus in question) and mean Z-scores are given
for the 20 most important genera for classifying samples

Table 3 Random forest classification models of air/surface

Air/surface

Out-of-bag estimate of error rate: 6.1%

Confusion matrix Air Surface Class
error (%)

Air 56 13 18.8

Surface 2 175 1.1

Most important genera in sample classification

Family:Genera Air Surface MDA

Burkholderiaceae:Ralstonia 0.027 0.010 0.015

Streptomycetaceae:Streptomyces 0.020 0.006 0.010

Pseudonocardiaceae:Pseudonocardia 0.018 0.006 0.009

Streptococcaceae:Streptococcus 0.015 0.004 0.007

Pseudonocardiaceae:
Saccharopolyspora

0.012 0.004 0.006

Neisseriaceae:Neisseria 0.013 0.003 0.006

Nocardiopsaceae:Nocardiopsis 0.011 0.004 0.006

Rubrobacteriaceae:Rubrobacter 0.011 0.004 0.006

Micrococcaceae:Micrococcus 0.008 0.004 0.005

Carnobacteriaceae:Granulicatella 0.012 0.003 0.005

Pasteurellaceae:Haemophilus 0.012 0.002 0.005

Peptostreptococcaceae:
Terrisporobacter

0.008 0.004 0.005

Micrococcaceae:Pseudarthrobacter 0.009 0.003 0.005

Planococcaceae:Planomicrobium 0.009 0.003 0.005

Halococcaceae:Halococcus 0.007 0.003 0.004

Micrococcaceae:Rothia 0.008 0.002 0.004

Halococcaceae:Halalkalicoccus 0.007 0.002 0.003

Porphyromonadaceae:
Porphyromonas

0.007 0.002 0.003

Planococcaceae:Planococcus 0.007 0.002 0.003

Pseudonocardiaceae:
Actinomycetospora

0.006 0.002 0.003

Confusion matrices show the classification of samples and the associated class
error. The mean decrease in model accuracy (MDA; from removing the genus
in question) and mean Z-scores are given for the 20 most important genera
for classifying samples
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resuspension rates, which introduces a high level of
complexity in the relationship between air and surface
microbiomes.
We observed that three Verrucomicrobia families (Ver-

rucomicrobiaceae, Rubritaleaceae, and Chthoniobactera-
ceae) varied in abundance across seasons, showing the
highest abundance during summer (Fig. 1b). Verrucomi-
crobia, which is part of the PVC superphylum, is eco-
logically diverse, often highly abundant and present in a
range of different environments [44].
Among the three investigated surface types—kiosks,

benches, and railings—we found more congruency
among the highly abundant taxa (Additional file 1: Table
S5), as compared with the level of differentiation ob-
served between air and surface (Table 1).
To identify genera that were highly divergent among

seasons, surface and air, and surface types, we performed
random forest classification analyses, where genera were
scored by their ability to bin samples in their correct cat-
egory (season/sample matrix/surface type). The two gen-
era with the highest importance for classifying samples
by season, namely Psychrobacter, and Cryobacterium
(Table 2) are both psychrophilic (cold tolerance or
preference towards colder temperatures) [45, 46]. Psy-
chrobacter was most abundant during winter and Cryo-
bacterium during spring (Table 2; Additional file 1:
Figure S6). For correctly binning surface and air samples,

Ralstonia and Streptomyces were the most important
genera, both being more abundant in air samples (Table
3; Additional file 1: Figure S7). Ralstonia are environ-
mental opportunistically pathogenic bacilli [47], while
Streptomyces is a species-rich genus, highly abundant in
soil where they play an important role in carbon cycling
[48]. We note that Ralstonia has been identified as a
common contaminant in sequence library preparation
steps [49] and that such contaminants may introduce
stronger bias in sequence data from low-biomass sam-
ples, such as air [50]. The random forest classification of
samples by surface type performed very poorly (Add-
itional file 1: Table S6), which indicated that genus level
taxonomic composition is not strongly diverged among
surface types. Thus, we conclude that taxonomic repre-
sentation is much more similar across surface types,
than across air/surface or different seasons.

Diversity
Analyses of within-sample diversity (Shannon’s diversity
index) and among-sample diversity (ordinated Bray–
Curtis dissimilarity distances) revealed several interesting
patterns. We analyzed diversity with some hitherto un-
tried predictors (season, surface/air, indoor/outdoor sta-
tions), and some that have been included in previous
subway studies (temperature, humidity, time of day, sur-
face types).

Fig. 3 Analysis of Shannon’s diversity index. The four significant predictors of within-sample diversity (see Table 4)
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We found no evidence for within-sample diversity dif-
fering among surface types (kiosks, railings, and
benches). Analysis of among-sample diversity did reveal
a significant association (Additional file 1: Figure S9), al-
though only a relatively small proportion of the variance
in among-sample diversity was explained by surface type
(~ 2%). This latter finding is congruent with that of Hsu
et al. [5], who found that microbial community structure
varied significantly across surface types in the Boston
metropolitan transit system.

Previous studies have found time of day to be a
highly important variable for understanding subway
microbiome fluctuations, with peak and non-peak
commuting hours showing marked differences [15,
17]. We found time of day to be a significant pre-
dictor of among-sample diversity (Table 5; Fig. 4), but
that it explained a relatively small proportion of the
total variance in diversity, as compared with the other
predictors. This may partly be due to the huge differ-
ence in number of commuters between Oslo, and

Table 5 The best-fit PERMANOVA model, which explained 56% of among-sample diversity (Bray–Curtis dissimilarity)

Predictor DF Sum Sq. Mean Sq. F R2 p

Air/surface 1 2.484 2.484 14.16 0.04 0.001

Season 3 6.593 2.198 12.52 0.11 0.001

Subway station 15 9.134 0.609 3.47 0.15 0.001

Temperature 1 0.475 0.475 2.71 0.01 0.001

Sequence run 3 1.063 0.354 2.02 0.02 0.001

Time of day 1 0.239 0.239 1.36 < 0.01 0.050

Season: air/surface 3 0.853 0.284 1.620 0.01 0.001

Subway station: air/surface 15 3.382 0.225 1.28 0.06 0.001

Season: subway station 44 9.792 0.223 1.27 0.16 0.001

Residuals 151 26.500 0.175 0.44

Table 4 The best-fit model for Shannon’s diversity index score, which explained 27% of within-sample diversity variance and had a
p value of 1.04 × 10−09. Slopes are given for continuous predictor variables and interactions between continuous and categorical
predictors with two levels. Observed trends, from low to high average Shannon’s diversity scores, are given for the categorical
predictors

Predictor DF Sum Sq. Mean Sq. F p Slope/trend

Temperature 1 0.089 0.089 17.62 < 0.001 0.0006

Air/surface 1 0.041 0.041 8.20 0.005 Surface > air

Season 3 0.102 0.034 6.75 < 0.001 Winter > autumn > summer > spring

Humidity 1 0.029 0.029 5.74 0.017 − 0.0017

Humidity SD 1 0.005 0.005 1.04 0.309 − 0.1415

Temperature SD 1 0.002 0.002 0.47 0.493 − 0.1018

Time of day 1 0.002 0.002 0.43 0.514 − 0.0001

Indoor/Outdoor 1 0.000 0.000 0.000 1.000 Outdoor > indoor

Temperature SD: temperature 1 0.097 0.097 19.11 < 0.001 − 0.0130

Temperature: air/surface 1 0.051 0.051 10.02 0.002 − 0.0047

Time: indoor/outdoor 1 0.029 0.029 5.75 0.017 0.0005

Humidity SD: season 3 0.061 0.020 4.04 0.008

Time: season 3 0.034 0.011 2.24 0.085

Season: indoor/outdoor 3 0.029 0.010 1.91 0.130

Humidity SD: humidity 1 0.005 0.005 1.01 0.316 0.0011

Temperature SD: season 3 0.006 0.002 0.37 0.773

Humidity SD: temperature 1 0.000 0.000 0.08 0.772 0.0060

Temperature SD: time of day 1 0.000 0.000 0.00 0.990 0.0004

Residuals 209 1.056 0.005
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Hong Kong and Beijing, and that the present study
sampled outside peak commuting hours. Furthermore,
the study design used here is not suited to properly

gauge the importance of time of day—since this
would require within-day repeated sampling for single
locations.

Fig. 4 Analysis of Bray–Curtis dissimilarity distances. PCoA plots of among-sample diversity with significant predictors from the PERMANOVA
model (see Table 5). Dashed circles represent 95% CI for each cluster
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Temperature was a highly significant predictor of both
within-sample (Table 4; Fig. 3) and among-sample diver-
sity (Table 5; Fig. 4), whereas humidity was only signifi-
cant for within-sample diversity (Table 4; Fig. 3). Note
that a very small proportion of the among-sample diver-
sity total variance was explained by temperature (Table
5), while the effect size on within-sample diversity was
pronounced (Fig. 3). Leung et al. [20] also found
temperature and humidity to influence microbial diver-
sity in the Hong Kong subway; note however, these asso-
ciations were only significant when including outdoor
stations. Our results show that humidity had a weak
negative impact on diversity (Fig. 3), which is not con-
gruent with Leung et al. who found a positive associ-
ation. This incongruity may be explained by the
variability and non-linear nature of the association be-
tween humidity and bacterial survival rates [51], which
may give rise to different results across geographical
areas and temporal scales. Humidity ranged from ap-
proximately 50 to 80% in the Leung et al. study, while
our data ranged from 29.8 to 76.3%. Leung et al. found a
negative association between temperature and diversity,
the opposite of what we observe. Again, this is perhaps
explained by the lack of overlap in the temperature
range in the two studies (Leung et al.: approximately
24–30 °C; our study: − 5.45–24.91 °C).
Three of the 16 stations included in this study were

outdoor subway stations. Indoor/outdoor was borderline
significant in a univariate test (p = 0.08) of within-
sample diversity; however, there was no significant asso-
ciation in the final multivariate model. The temperatures
at outdoor stations will vary significantly throughout the
seasons and even throughout the day, which may drive
the (nearly significant) association between indoor/out-
door and within-sample diversity. When removing
temperature from the final model of within-sample di-
versity, indoor/outdoor was again borderline significant
(p = 0.07), which leads us to conclude that temperature
outcompetes indoor/outdoor in our model (Table 4).
Much like for temperature, we found indoor/outdoor to
be a significant predictor of diversity in air samples (uni-
variate; p = 0.04), but not in surface samples (univariate;
p = 0.29). Reiterating the observed dynamic between in-
door/outdoor and temperature mentioned above, a
model with indoor/outdoor and temperature as predic-
tors of air sample diversity only supported temperature
(p = 0.23, p = 5 × 10−10, respectively). Although outdoor
air is known to be a major source for indoor micro-
biomes [25], one would expect commuters, another im-
portant source [20], to be a more significant contributor
in indoor environments. Hence, the lack of significance
in univariate tests of indoor/outdoor as a predictor of di-
versity is an unexpected finding. One possible explan-
ation is that there are relatively few commuters in Oslo,

making human sources less dominant, or that effective
air exchange reduces the differences between indoor and
outdoor air.
A major aim of this study was to compare subway air

and surface microbiomes, and we found air/surface to be
a highly significant predictor of both within-sample and
among-sample diversity (Tables 4 and 5; Figs. 3 and 4).
Importantly, the effect of this association was dependent
on temperature; we found air to have lower within-
sample diversity at low temperatures, and higher diver-
sity at high temperatures (Additional file 1: Figure S8).
This can be explained by microbial diversity in air being
more sensitive to temperature, as compared with sur-
face. To evaluate this hypothesis, we ran post hoc uni-
variate analyses of Shannon’s diversity index scores and
temperature on air and surface samples separately,
which found temperature to be a non-significant pre-
dictor for surface samples, (R2 = 0.01; p = 0.08), but
highly significant for air samples (R2 = 0.52; p = 4.05 ×
10−11). It appears that the diversity differences in air and
surface microbiomes to a large extent are driven by dif-
ferential effects of temperature. One explanation for this
observation is the association between temperature and
air circulation regimes, which can strongly influence air
microbiome composition [52].
We found significant differences in within-sample and

among-sample diversity across seasons (Tables 4 and 5;
Figs. 3 and 4). Within-sample diversity was highest
during spring and summer (Fig. 3). Apart from subway
station, seasons explained the largest amount of among-
sample diversity of all included predictors (R2 = 0.11;
Table 5). Seasonal variation has not previously been
evaluated in subways using culture-independent
methods; however, Patel et al. [28] cultured bacteria and
fungi from dust collected at railway stations in England
and Scotland, and Heo et al. [14] measured concentra-
tions of culturable bacteria in underground subway sta-
tions through spring and autumn. Both studies are
congruent with the results presented here; bacterial
numbers increased from spring through summer and de-
crease towards winter. Several studies have observed sea-
sonality in atmospheric microbiome composition [22–
24]. With the outdoors being an important source for
BE microbiomes [25], this suggests that seasonal varia-
tions in subway microbiomes may be influenced, at least
partly, by seasonal changes in atmospheric microbial
communities.
Subway station was a highly significant predictor of

among-sample diversity, explaining 15% of the total vari-
ance (Table 5). However, when inspecting the clustering
of PCoA ordinated values in Fig. 4, there are no clear
patterns. We suspect that this result is mainly a conse-
quence of including a categorical predictor with too
many levels. Hence, we must refrain from concluding on

Gohli et al. Microbiome           (2019) 7:160 Page 13 of 16



the importance of subway station as a predictor of
microbiome composition in our study. Sequence run
was also a significant predictor of among-sample diver-
sity and explained 2% of the total variance. We propose
that this stems from an unbalanced partitioning of sam-
ples from different seasons, sample matrices, or other
variables into the four sequence runs. Alternatively, the
association with sequence run may be explained by pre-
dictors not included. Both these explanations are con-
gruent with the qPCR results, which show higher
bacterial load in the samples from sequence run 3 (Add-
itional file 1: Table S4 and Figure S2).

Caveats
In our study, seasonality was assessed by sampling on
single days within seasons without accounting for the
variation in shorter time periods (e.g., weekly variation)
or repeatability across years. While patterns such as dif-
ferential abundance of certain taxa in spring and sum-
mer, compared with autumn and winter are convincing,
a higher resolution sampling scheme should be imple-
mented in the future to distinguish between variations
that occur on different timescales. Although we provide
a relatively high level of geographical resolution in the
present study, we recommend that future studies address
seasonal and air/surface variability across cities, coun-
tries, and continents using standardized methods.

Conclusions
Understanding the composition and dynamics of air and
surface microbiomes in mass transit environments—given
their role in facilitating interactions among human and
other BE microbiomes as well as infectious disease trans-
mission and bioterrorism risk—is important for future de-
velopments in human health and security. Here we provide
increased resolution to the state-of-knowledge regarding
subway microbiomes by showing that there are significant
differences between air and surface microbiomes, identify-
ing seasonality as a central driver of subway microbiome
variability, and confirming patterns previously observed in
different geographical and demographical contexts. These
results imply that biological detection, identification, and
monitoring efforts in BEs should take into consideration
the different characteristics/properties of air and surfaces,
and that studies of microbial community composition
should include seasonal sampling.
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