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Background: Sharp increases in food production worldwide are attributable to agricultural intensification aided by
heavy use of agrochemicals. This massive use of pesticides and fertilizers in combination with global climate
change has led to collateral damage in freshwater systems, notably an increase in the frequency of harmful
cyanobacterial blooms (HCBs). The precise mechanisms and magnitude of effects that pesticides exert on HCBs
formation and proliferation have received little research attention and are poorly constrained.

Results: We found that azoxystrobin (AZ), a common strobilurin fungicide, can favor cyanobacterial growth
through growth inhibition of eukaryotic competitors (Chlorophyta) and possibly by inhibiting cyanobacterial
parasites (fungi) as well as pathogenic bacteria and viruses. Meta-transcriptomic analyses identified AZ-responsive
genes and biochemical pathways in eukaryotic plankton and bacteria, potentially explaining the microbial effects of

Conclusions: Our study provides novel mechanistic insights into the intertwined effects of a fungicide and
eutrophication on microbial planktonic communities and cyanobacterial blooms in a eutrophic freshwater
ecosystem. This knowledge may prove useful in mitigating cyanobacteria blooms resulting from agricultural
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Background

In the past century, agricultural intensification supported
by the use of agrochemicals increased human food
supply to keep pace with a rapidly increasing population
on Earth. However, this massive use of pesticides and
inorganic fertilizers in combination with global climate
change has led to extensive collateral damage in aquatic
ecosystems, most notably an increase in the frequency of
harmful cyanobacterial blooms (HCBs) [1, 2]. HCBs lead
to bottom water oxygen depletion and cyanotoxin accu-
mulation (microcystins, anatoxins, etc.) with negative
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effects on diverse ecosystems, including habitat loss and
economic costs (loss of fisheries, recreational use, and
tourism) as well as human health risks [3—5]. Cyanobac-
terial dynamics on a short-time scale (weeks) are related
to a range of abiotic factors [6], such as nutrient avail-
ability, light, temperatures and precipitation patterns [7],
and biotic factors, including allelopathic interactions be-
tween cyanobacteria and other microbial species [8, 9].
Several persistent organic pollutants, including pesti-
cides, are also increasingly recognized as a potential con-
tributing factor for cyanobacterial blooms [10, 11], but
the underlying mechanisms at the molecular level re-
main largely unknown.

Fungicide residues in aquatic environments, which
usually co-exists with human-induced eutrophication,
can inhibit the growth of fungi, eukaryotic algae, and
some zooplankton species [12-14]. Cyanobacterial
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populations are controlled by many biotic factors,
including viral and bacterial attack, fungal parasitism,
zooplankton grazing and allelopathic interactions with
various microbes [15]. Here, we investigate the possibil-
ity that fungicide contamination could inhibit the growth
of cyanobacterial competitors and potentially contribute
to cyanobacterial dominance and HCBs.

Azoxystrobin (AZ), a globally distributed fungicide
($1.165 billion in global sales reported for 2016) (http://
cn.agropages.com/, accessed on October 19, 2017), is a
broad-spectrum strobilurin fungicide that protects food
crops against many pathogenic fungi. The extensive use
of AZ has led to contamination of nearby freshwater
ecosystems at concentrations reaching 0.01-29.70 pg L™
in streams, ponds, groundwater, and lakes in Denmark,
Germany, France, Brazil, and the USA [14, 16, 17]. AZ
can have toxic effects on a number of aquatic organisms
[14, 18, 19]. Eukaryotic algae and fungi are particularly
sensitive to AZ, compared to cyanobacteria, potentially
affecting microbial community structure and enhancing
cyanobacterial growth [20].

Here, we study the effects of AZ on microbial commu-
nity composition in microcosms containing water from a
large eutrophic freshwater Chinese lake. We show that
AZ favors cyanobacterial bloom species, and we unravel
the previously unrecognized physiological and molecular
mechanisms underlying community change using meta-
transcriptomic analyses. Our study suggests that AZ
application can paradoxically worsen HCBs through
modulating microbial interactions.

Materials and methods

Aquatic microcosm set up and AZ exposure

A series of 2-L water samples was collected from 0.5-m
depth in Lake Taihu (March, 2017), which is located in
the Yangtze Basin, bordering Shanghai, Jiangsu, and
Zhejiang provinces in the southeastern part of China
(30°55'40"-31°32'58" N; 119°52'32"-120°36'10" E).
The water samples were filtered through a 0.22 um poly-
carbonate membrane (Jinjing'™, Shanghai, China). Fil-
tered material was resuspended in a small volume of
sterile nutrient-enriched BG-11 medium (initial pH =
7.1, chemical composition in Additional file 1: Table S1)
to prepare the microbial community stock cultures
(MTC). The medium containing macronutrients was
autoclaved at 121 °C for 25 min. The trace metal solution
was filter-sterilized beforehand and then mixed with
macronutrients. The MTC solution was then inoculated
in the microcosms, consisting of 2 L of modified BG-11
medium contained in a beaker. The optical density of all
replicated microcosms at 680 nm, a proxy for algal bio-
mass, was adjusted to 0.01, ie., ca. 0.07mg Chl-a L.
After MTC inoculation, AZ was added in the micro-
cosms at initial concentrations between 0.5 and 25 mg
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L™". The microcosms were placed in an artificial green-
house at 25+ 0.5°C under cool-white fluorescent light
(46 umol photons m™>s™') with a 12-h:12-h light: dark
cycle. Because other pollutants, including pesticides,
exist in natural lake water, the experiments involving
transfer of the plankton community from lake water to a
pesticide-free artificial medium were meant to isolate
and asses the effect of one stressor (AZ addition) on the
communities under a controlled condition.

Microalgae monoculture and AZ growth inhibition
Axenic strains of the green algae Chlorella pyrenoidosa
(FACHB-9) and Monoraphidium sp. (FACHB-1853), as
well as of the cyanobacterium Microcystis aeruginosa
(FACHB-905) and Synechococcus sp. (FACHB-805), ob-
tained from the Institute of Hydrobiology at the Chinese
Academy of Sciences (Wuhan, China), were cultivated at
the same condition as those used for the microcosms.
The tested species were maintained in exponential
growth in batch cultures in 250-mL Erlenmeyer glass
flasks containing 150 mL of modified BG-11 medium.
All cultures were manually agitated three times a day.
The cell density of the culture was measured every 24 h,
using a spectrophotometer at an optical density of 680
nm (ODggp). Standard curves that expressed cell density
as a function of ODggo for each alga were generated
using standardized algal culture and a hemocytometer
[20, 21]. The initial cell density was set at 600,000 and
200,000 cells/mL for C. pyrenoidosa and M. aeruginosa,
respectively. AZ were added at different initial concen-
trations between 0.5 and 5mgL™". Algal growth inhib-
ition over time at a given AZ concentration was
calculated as follows: % inhibition = 100 x [(Acontrol — Aex-
posed)/Acontrol]’ where Aexposed and Acontrol are the cell
densities at times 2 to 7days in the AZ-treated and
control cultures, respectively.

Analysis of photosynthetic pigments

After 72h, the microcosms’ chlorophyll a (Chl-a)
contents were measured as described by Inskeep and
Bloom [22] in microcosms exposed to 0-25mgL ™" AZ
(n=4). In parallel, phycocyanin was extracted in a so-
dium phosphate buffer and measured by spectrophotom-
etry according to the methodology detailed in Silveira et
al. [23] (n =4).

Measurement of dissolved azoxystrobin

Residual AZ concentration was determined in the
dissolved phase of the batch cultures or microcosms
(after 0, 7, and 15 days) by solid-phase extraction-HPLC
(high-performance liquid chromatography) using the
following methodology (# = 4). Five-milliliter microcosm
samples were successively passed through a 0.45-pm
aperture pinhole filter and a solid-phase extraction
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apparatus with WondaSep C18 column. The column
was eluted with 1 mL of acetonitrile three times. The
eluates were collected in a 10-mL centrifuge tube and
diluted with acetonitrile. AZ was finally quantified by
HPLC using a 250-nm UV detection wavelength at 25 °C
with Acetonitrile:Water (68:32) as the mobile phase.

Co-cultivation of Synechococcus sp. and Monoraphidium
sp.

Synechococcus sp. and Monoraphidium sp. were grown
together in batch cultures for 7 days. Co-cultivation was
carried out in both the modified BG-11 medium and
filtered eutrophic lake water. The chemical composition
of inorganic nutrients in modified BG-11 medium was
the same as that in microcosms. Regarding the co-cul-
tures in lake water, the lake water was autoclaved and
filtered through a 0.22-um polycarbonate membrane
(Jinjing™, Shanghai, China) and N and P were added
using NH4;NO3; and KH,PO, autoclaved stock solution
(final N and P concentrations in lake water were ad-
justed to 6mgL™ and 0.3mgL™", respectively). Cell
number was calculated using a hemocytometer (n = 20).

Meta-transcriptomic sample preparation and sequencing
Three control microcosms (Conl, Con2, and Con3) as
well as three other microcosms with 2.5mgL™" AZ
(initial concentration) (AZ1, AZ2, AZ3) were harvested
after 7 days of culture for the meta-transcriptomic work.
Microbial biomass in the six aquatic microcosms was
centrifuged at 6500 g for 5 minutes at 4 °C and then the
supernatant was processed by gentle filtration on a 0.2-
um filter. The microbial community collected on the
filter as well as the centrifugal precipitation were used
for RNA extraction. Total RNA was purified using TRI-
zol Reagent (Invitrogen, Thermo fisher, USA) and the
RNeasy Mini Kit (Qiagen, Germany). RNA was quanti-
fied and characterized using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA), and a
NanoDrop (Thermo Fisher Scientific Inc.). Gel electro-
phoresis (1% agarose formaldehyde) was used as an
RNA integrity test. One microgram total RNA with a
RIN (RNA integrity number) value above seven was used
for library preparation. The ribosomal depleted mRNA
was then fragmented, reverse-transcribed and the se-
quences were processed and analyzed by GENEWIZ
(Suzhou, China). Transcriptome sequencing (RNA-seq)
was performed on an Illumina HiSeq 4000 platform.
The raw data was quality trimmed, assembled, and
annotated as detailed in Additional file 1: Extended
Materials and Methods. Detailed statistics of clean data
and sample transcripts from six microcosms are shown
in Additional file 2: Dataset 1.
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Data analysis

We used FPKM (expected number of fragments per
kilobase of transcript sequence per millions base pairs
sequenced) to calculate relative transcript level of genes.
All experiments were repeated three times independ-
ently. Data are presented as means + standard errors.
Significant differences among treatments were tested
with one-way ANOVAs (StatView 5.0). The ANOVA
assumptions of normality and homogeneity of variance
of residuals were validated with the Kolmogorov-Smir-
nov one-sample test and Levene’s test, respectively (Stat-
View 5.0). Differences were considered statistically
significant when p < 0.05.

Results and discussion

Toxicity of AZ on green algae and cyanobacteria

Model cyanobacterium M. aeruginosa as well as a com-
mon green alga C. pyrenoidosa were used to investigate
the toxicity of AZ on green algae and cyanobacteria.
Growth of M. aeruginosa was not suppressed by the
range of AZ concentrations during the 7-day treatment
(Fig. 1a), while C. pyrenoidosa growth was inhibited by
approximately 9.2-30% at the three tested AZ concen-
trations after 7 days (Fig. 1a). Growth of C. pyrenoidosa
in the presence of a low AZ concentration (5-10 pg L")
and at low initial algal cell density (about 20,000 cells/
mL, close to the algal density in nature), which are
conditions representative of naturally contaminated
environments [14, 16, 17], was inhibited significantly by
20~30% (Additional file 1: Figure S2) (p < 0.05), while M.
aeruginosa growth remained unaffected at the same
tested AZ concentrations. Previous laboratory studies
also showed that AZ inhibitory toxic effects varied dra-
matically between green algae and cyanobacteria; for
instance, the toxicity of dissolved AZ on the growth of
the chlorophyte Pseudokirchneriella subcapitata was
nearly 500-fold higher than that reported in the cyano-
bacterium Anabaena flos-aquae [24, 25].

Microcosms were used to study the effects of AZ to
the plankton community. Microorganisms were sepa-
rated from natural lake water by filtration and trans-
ferred to an artificial medium, after which a range of AZ
concentrations was added to the microcosms. Concen-
trations of Chl-a and phycocyanin were measured in the
microcosms after AZ treatment. The Chl-a concentra-
tion, which estimates total phytoplankton biomass [26],
reached 4 mgL™" in the control microcosms after 3 days
of culture in the medium and a phytoplankton bloom
occurred (Fig. 1b). Exposure to AZ concentration higher
or equal than the lowest concentration tested (0.5 mg
L") for 3 days decreased Chl-a concentration, indicating
that AZ can have toxic effects on the phytoplankton
populations comprising the green algae (Fig. 1b). Chl-a
concentration decreased by 8.7% to 37.3% over the range
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Fig. 1 Influence of azoxystrobin (AZ) on microalgae. a Growth inhibition of Chlorella pyrenoidosa and Microcystis aeruginosa grown in batch
cultures over 2-7 days in the presence of 0.5, 2.5, or 5mg L' initial AZ concentration. Chl-a (b) and phycocyanin (c) concentration in microcosms
after a 3-day AZ exposure. d Dissolved AZ concentrations (nominal initial concentration = 2.5 mg L") in BG-11 medium, batch cultures of C.
pyrenoidosa and M. aeruginosa, and in the microcosm over time. Asterisks (¥) denote significant differences (p < 0.05) compared to the first
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of AZ concentrations tested in microcosms. In contrast,
production of another pigment, phycocyanin, which was
used as a proxy for cyanobacterial biomass [26], increased
after the 3-day exposure at concentrations of AZ higher
than or equal to 2.5mgL™" (Fig. 1c), suggesting that AZ
favored cyanobacterial growth in the microcosm.

The rate of azoxystrobin decomposition in the aquatic
environment is stimulated by light and AZ has an aque-
ous photolysis DT5o (time to 50% dissipation) (pH 7)
between 8.7 and 13.9 days [14]. Interestingly, dissolved
AZ concentrations decreased differently over time in
response to green algae and cyanobacteria; decreasing
more rapidly in C. pyrenoidosa than in M. aeruginosa
cultures (Fig. 1d). This indicated that the eukaryotic alga
C. pyrenoidosa took up more dissolved AZ than M.
aeruginosa, even though they were inoculated at the
same optical density. Depletion of the dissolved AZ
concentration in the microcosms was also more rapid
than in the M. aeruginosa cultures (Fig. 1d). AZ deple-
tion in the microcosms could be explained by preferen-
tial AZ uptake/adsorption in green alga (the major

component in microcosms) as well as higher AZ adsorp-
tion on other aquatic microorganisms except cyanobac-
teria. The above results suggest that C. pyrenoidosa was
much more sensitive to AZ than M. aeruginosa, prob-
ably due in part to a higher AZ consumption (uptake/
adsorption) in C. pyrenoidosa.

Transcripts proportions variation after AZ exposure in the
whole plankton community

Meta-transcriptomic sequencing was carried out to
investigate the changes in transcription of the whole
plankton community after AZ exposure. A summary of
the meta-transcriptomic sequencing results is provided
in Additional file 1: Extended Results. Taxonomic pro-
portions of transcripts in two groups at different taxo-
nomic levels are shown in Additional file 2: Dataset 2,
which were represented by the relative abundance of
taxonomically annotated transcripts (RAT). The RAT
value does not represent microbial biomass, but rather
the changes in transcriptional activity among species,
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which represents the active metabolic states and func-
tions of the microbial community.

The relative abundance of RAT in control microcosms
after 7 days of culture was mainly controlled by Monora-
phidium sp. (a Chlorophyta genus) (Fig. 2). However, the
relative abundance of RAT of Chlorophyta decreased
from 63.6% in the control to 35.8% in AZ-treated micro-
cosms (Fig. 2a, Additional file 1: Table S2) even though
the taxonomic transcript counts of major classes inside
the Chlorophyta phylum was not affected much by AZ
treatment (Fig. 2c). The relative abundance of RAT of
other eukaryotic algal species among the Phaeophyceae
and Eustigmatophyceae also decreased significantly in
the microcosms treated with AZ (p <0.05), while the
abundance of Bacillariophyta increased by ~ 6-fold
(Additional file 1: Table S2). Meanwhile, the RAT of
Cyanobacteria (mainly composed of Symechococcales)
dramatically increased by more than 20-fold, i.e., from
1.7% in the control group to 38.3% in the AZ group.
The sequence abundance ratio of eukaryota/prokaryota
decreased from 3.1 to 0.9 (Fig. 2b) in the AZ-treated mi-
crocosms mainly due to the drastic increase of Cyano-
bacteria and the decrease of Chlorophyta, respectively.
The rise in Cyanobacteria in AZ-treated microcosms
was coupled to a higher proportion of Synechococcales
and a lower proportion of Chroococcales (Fig. 2d),
whereas AZ did not affect the relative abundance of
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orders within the Chlorophyta, the main eukaryotic
division (Fig. 2c). Cyanobacteria within the order Syne-
chococcale can form toxic blooms, potentially affecting
eukaryotic algal competitors [27-29].

AZ inhibits both Monoraphidium sp. and Synechococcus
sp. in monocultures

As the RAT of Monoraphidium sp. was halved and the
RAT of Symechococcus sp. sharply increased after AZ
treatment, AZ toxicity bioassays in laboratory batch
cultures of Symechococcus sp. and Monoraphidium sp.
were carried out to strengthen our hypothesis that AZ
addition in the microcosms could preferentially benefit a
cyanobacterium (Synechococcus sp.) over a green algal
competitor (Monoraphidium sp.). Interestingly, the
growth of monocultures of Synechococcus sp. in BG-11
medium as inhibited by ~ 28% after 7 days (Fig. 3a) (p <
0.05) to an initial AZ concentration of 2.5mg LY
although it was not significantly influenced after 4 days
of exposure (p =0.21), indicating that Synechococcus sp.
growth could be inhibited by long-term exposure to high
AZ concentrations. In contrast, the growth of Monora-
phidium in laboratory monoalgal cultures was always
inhibited throughout the entire cultivation process; with
a cell yield inhibited by ~ 45% after 7 days of exposure to
25mgL™ AZ (initial concentration) (Fig. 3b). The
above results indicate that Monoraphidium sp. is more

a
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Fig. 3 Monoculture and co-cultivating of Synechococcus sp. and Monoraphidium sp. in response to AZ. Algal cell number of Synechococcus sp. (@)
and Monoraphidium sp. (b) grown in batch cultures for 1 to 7 days with no added azoxystrobin (AZ) or with 0.5 - 25mg L™ AZ. Algal cell
number of Synechococcus sp. and Monoraphidium sp. co-cultured in lake water for 7 days with the initial AZ concentration 0 (c), 25 pg L' (d), 250
ug L' (e), and 2.5 mg L™ (f). N and P concentrations in lake water were adjusted to 6mg L™ and 0.3 mg L™, respectively. Cell number was
calculated by a hemocytometer (n = 20)

sensitive to AZ than Synechococcus sp. Due to the re-
markable growth advantage of Synechococcus sp. in the
AZ-treated microcosms (Fig. 2d), it appears that AZ
plays an indirect role in benefiting Synechococcus sp.

AZ inhibits Monoraphidium sp. and benefits
Synechococcus sp. in co-cultures

When co-cultivating the two algae species, it was found
that the addition of AZ benefits Synechococcus sp. over
Monoraphidium sp. in both filtered eutrophic lake water
(Fig. 3c—f) and modified BG-11 medium (Additional file 1:
Figure S3), which was in accordance with the RAT results
of meta-transcriptomic analysis. After a 7-day culture in
eutrophic lake water, the cell number ratio (Synechococ-
cus/Monoraphidium) was enhanced by the AZ treatment,
from 1.2 in the control to 2.3, 3.6, or 7.7, for the treatment
with 25 ug L™, 250 ug L™}, or 2.5 mgL™" AZ, respectively
(Fig. 3c—f). The results of prokaryotic and eukaryotic algal
growth in modified BG-11 medium (Additional file 1:
Figure S3) were similar to that in eutrophic lake water,
where the Synechococcus sp. gain dominance in the AZ
treatment. There exists a balance between green algae and
cyanobacteria in natural water, driven by several factors
including allelopathic interactions and positive feedback
[8, 30-33]. The presence of AZ disturbed this balance,

probably through altering the metabolism of green algae
[20], and stimulated Synechococcus sp. growth relative to
that of Monoraphidium sp. in the co-cultures (Fig. 3c—f).
After AZ treatment, the cell number of Synechococcus sp.
increased to ~ 1.5-fold in co-culture (Fig. 3c—f) while the
RAT of Synechococcus sp. increased more than 20-fold in
microcosm compared to control. Since RAT cannot be
easily compared to cell density, it is difficult to quantita-
tively compare the laboratory and microcosm experi-
ments. However, both experiments suggest that AZ favors
cyanobacterial growth through altering competition with
green algae.

AZ changes the transcriptional activity of fungi, viruses,
bacteria, and zooplankton

The RAT of fungi, including Zygomycota, Basidiomy-
cota, Chytridiomycota, and Ascomycota, all decreased
significantly (p < 0.05) after exposure to AZ compared to
the control (Additional file 1: Table S2) due to the fungi-
cidal action of AZ. It is worth noting that the RAT of
the phylum Chlorobi, which includes photosynthetic
bacteria that do not produce oxygen and prefer anaer-
obic environments, also increased significantly (~ 8-fold)
(» <0.05) in the AZ-treated microcosms. Although total
dissolved oxygen concentration (DO) remained super-
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saturated in the AZ-treated microcosms compared to
the control (Additional file 1: Figure S4), anoxic micro-
zones surrounding microbial (perhaps cyanobacterial)
aggregates may be well developed in the AZ-treated
microcosms [34], which would be in line with the in-
crease in the RAT of Chlorobi. The RAT of zooplankton
in most phylum, such as Arthropoda, Nematoda, and
Chnidaria, decreased under AZ exposure relative to the
control (Additional file 1: Table S2), while the reverse
was true for some genera like Acanthamoeba (Table 1). In
general, the RAT of some zooplankton (such as Daphnia,
from Arthropoda), fungi (belonging to Chytridiomycota),
heterotrophic bacteria (Cytophaga and Bdellovibrio), and
viruses (Podoviridae, Siphoviridae, and Myoviridae) sig-
nificantly decreased (p <0.05) in AZ-treated microcosms
compared to that in the control (Table 1, Fig. 4). The
above planktonic organisms can graze, parasitize or lyse
cyanobacteria and play roles in controlling their abun-
dance [15, 35-37] and hence might explain partly cyano-
bacteria dominance in the presence of AZ. Another
possibility for the decrease in relative abundance of zoo-
plankton is that these changes may reflect the decrease of
edible chlorophytes and increase of inedible cyanobacteria,
for chlorophytes have the higher sensitivity to AZ than
cyanobacteria.

It is also known that fungal zoospores play critical
roles in linking inedible cyanobacteria and zooplankton.

Table 1 Variations of biotic factors potentially affecting
cyanobacteria growth in the microcosms exposed to
azoxystrobin for 7 days (AZ) as inferred from fold change in
relative abundance of taxonomic transcripts of selected
organisms in the control group (Con) or the AZ-treated
microcosms (AZ).

Organisms Relative abundance Fold
Con %)  AZ (%) (C/:‘;/”ge

Con)

Graze Daphnia 2.60 0915 0.35
Acanthamoeba 0.0286 0.0512 1.82

Bacterial lysis Alcaligenes 505E-05 149E-04 295
Flavobacterium 0413 0.205 0.50

Cytophaga 0.00633 0.00190 0.30

Pseudomonas 0.203 0412 203

Bdellovibrio 0.105 0.0105 0.10

Bacillus 0.0105 0.00963 0.92

Viral lysis Podoviridae 1.55E-04 1.18E-05 0.8
Siphoviridae 6.95E-04 356E-04 051

Myoviridae 0.00380 0.00157 041

Allelopathy Chlorophyceae 587 329 0.56
Cylindrospermopsis  0.00131 0.0351 269

Fungal parasitism  Chytridiomycota 0.0695 0.0375 0.54
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Arthropoda (cladocerans or copepods) are unable to
synthesize de novo sterols and have to find them from
their food. For instance, chytrid zoospores are an essen-
tial food complement for Daphnia when grazing on fila-
mentous cyanobacteria [38, 39]. Since the fungicide AZ
strongly inhibited fungi and therefore probably reduced
fungal zoospores (Table 1), it is possible that Daphnia
grazing on cyanobacteria decreases, which would in turn
contribute to decreased Daphnia growth (Table 1) and
increase cyanobacteria growth, thereby protecting cyano-
bacteria from being grazed. Neither the zooplankton
community nor the viral and parasites of cyanobacteria
were likely to control the cyanobacterial bloom. How-
ever, they can add stability to the aquatic system by
modifying the food web structure [40] and can affect the
microbial community as well as potentially contribute to
the cyanobacterial bloom.

Metabolic pathways in eukaryota and bacteria in
response to AZ treatment

Since overall transcriptomic annotation information is
limited in the genus Chlorella and other Chlorophytes
[41], meta-transcriptomic analyses of the entire micro-
bial community were helpful to further understand the
interactions between planktonic organisms and cyano-
bacteria. A summary of the functional annotation is pro-
vided in Additional file 1: Extended Results, and the
detailed functional variation is provided in Additional file 2:
Dataset 3, 4. We distinguished sequences of eukaryota and
bacteria and dissected them at KEGG (Kyoto Encyclopedia
of Genes and Genomes) level 3. Figure 5 shows the 40 most
important pathways based on relative abundance of tran-
scripts (belonging to four metabolic systems mentioned in
the previous section) in eukaryota and bacteria.

Even though the composing proportion of eukaryota
was not heavily affected by AZ (Additional file 1: Figure
S5a), the KEGG level 3 pathways were often appreciably
affected (Additional file 2: Dataset 4). As shown in Fig. 5a,
the most highly over-expressed pathways due to the pres-
ence of AZ in eukaryota were plant hormone signal trans-
duction, MAPK signaling pathway, nitrogen metabolism,
ubiquitin-mediated proteolysis, and glycerophospholipid
metabolism, and the most under-expressed pathways were
porphyrin and chlorophyll metabolism, oxidative phos-
phorylation, and peroxisome, indicating that AZ modu-
lates functional gene expression in eukaryota.

In response to the cyanobacterial bloom, the bacterial
community structure and the relative abundance of
metabolic pathways changed dramatically (Fig. 5b and
Additional file 1: Figure S5b). As shown in Fig. 5b, path-
ways closely related to cyanobacteria were significantly
over-expressed (p <0.05), including carotenoid biosyn-
thesis (+1326% compared with control), photosynthesis-
antenna proteins (+ 1305%) and photosynthesis (+ 758%).
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We also noted that many pathways with a low relative
abundance (< 0.05) related to antibiosis, vitamin metabol-
ism, and polysaccharide synthesis were differentially
expressed in response to AZ (Additional file 2: Dataset 4).
These functions are discussed below.

1. Modulation of oxidative phosphorylation and
photosynthesis by AZ. The relative expression level
of genes related to oxidative phosphorylation in
both eukaryota and prokaryota decreased
dramatically in the AZ-treated microcosms, and the
degree of inhibition in the two kingdoms was
equivalent, i.e., ~42% compared to control. Genes
(atpA, atpB, atpD, and atpF) coding for the enzyme
F-ATPase, in the mitochondrial and chloroplastic
membranes, were significantly under-expressed in
both eukaryota and bacteria (decreased by around

40~80%) (p < 0.05). This decrease in F-ATPase
transcription could be explained by the toxic action
of AZ, which inhibits electron transfer complex
between cytochrome b and cytochrome c1,
decreasing mitochondrial respiration and ATP
production [42, 43]. Regarding photosynthetic
metabolic pathways, the modulation of photosystem
transcripts after the AZ treatment was different
between eukaryota and bacteria (Additional file 1:
Figure S6). In bacteria, genes involved in
phycobilisome (e.g., apcD, apcE, cpeC, cpeZ) were
strongly over-expressed (by around 4-32-fold),
while in eukaryota, the transcription of genes
coding for proteins of the light-harvesting complex
(e.g., LHCB2 and LHCA1) remained mostly
unchanged (Additional file 2: Dataset 5). This is in
line with the rise in cyanobacteria in the AZ-treated
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microcosms. It is worth noting, however, that
bacteria may have AZ detoxification mechanisms to
decrease AZ toxicity by a strong increase (by
around 10-24-fold) of NAD(P)H-quinone
oxidoreductase genes (ndhD, ndhF, ndhH), which
encode an enzyme protecting the cells against
environmental stress [44, 45] that may occur in the
presence of AZ. In addition, prokaryotes may
detoxify reactive oxygen species through an
increased carotenoid biosynthesis (+ 1326%) and
glutathione metabolism (+ 344%) and improve
cellular reparation (genes involved in mismatch
repair, + 211%) [46-48].

2. Polysaccharide synthesis and degradation.
Transcription of several genes related to
polysaccharide biosynthesis in eukaryotes increased
(Additional file 1: Table S3), for instance, genes in
the pathways of lipopolysaccharide biosynthesis
(+353%). A polysaccharide-associated system (ABC
transporter, +162%) was also over-expressed in

both AZ and control group, which has been shown
to export polysaccharides outside of the cells.
Enhanced polysaccharide synthesis in
phytoplankton has been reported in stressful
environments [49, 50]. In contrast, in bacteria, 4
pathways (N-Glycan biosynthesis, various types of
N-glycan biosynthesis, lipopolysaccharide
biosynthesis, and peptidoglycan biosynthesis)
related to glycan synthesis were under-expressed
(by around 63~77%) significantly (p < 0.05), but the
pathway “other glycan degradation” was over-
expressed by ~ 10-fold in the AZ-treated
microcosms compared to the control. Assuming
that the generalized predicted decrease in
polysaccharide synthesis in prokaryote occurred in
cyanobacteria, a putative decrease in polysaccharide
ballast in cyanobacteria could help maintain
cyanobacteria at the lake surface and help exploit
light, which is strongly attenuated with depth
during the bloom. Several cyanobacteria including
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those of the genus Synecocchococus have indeed
been shown to modulate buoyancy through
polysaccharide synthesis [51].

3. Modulation of vitamin biosynthesis and potential
interactions between bacteria and eukaryotes. In
eukaryotes, all pathways related to B vitamin
biosynthesis (e.g., thiamine, riboflavin, niacinamide,
pantothenate, vitamin Bg, biotin, lipoic acid, and
folate) were over-expressed (by 14~243%) in the
AZ-treated microcosms compared to the control
(Additional file 1: Table S4). By contrast, in
bacteria, biochemical pathways related to folate,
nicotinamide, and thiamine biosynthesis were over-
expressed (37~139%) after the AZ exposure in
microcosms, while vitamin biosynthetic pathways in
lower relative abundance (i.e., biotin and lipoic acid,
riboflavin, Bs) were significantly under-expressed
(by 22~68%, p < 0.05) in the AZ-treated
microcosms compared to the control (Additional
file 1: Table S4). Interestingly, in bacteria, the
relative abundance of two genes involved in vitamin
Bi, (cobalamin) transport (i.e., btuB or K16092:
vitamin By, transporter and btuF or K06858:
vitamin By, transport system substrate-binding
protein) decreased by 88% and 57%, respectively, in
the AZ-treated microcosms relative to the control
(see Additional file 2: Dataset 5). Since several
eukaryotic species (including fungi and many
Chlorophytes) cannot synthesize cobalamin de novo
and rely on mutualistic bacteria to acquire this
vitamin [52, 53], our results support the hypothesis
that the rise in cyanobacteria in the presence of AZ
may be, at least in part, explained by a decrease in
vitamin B, mutualistic exchange between bacteria
and eukaryotes.

AZ changed interactions among fungi, eukaryotic algae,
and cyanobacteria

Our results are consistent with allelopathic interactions
between fungi or eukaryotes and prokaryotes with po-
tential implications in cyanobacterial bloom dynamics.
First, our reported decrease in the relative activity of
many fungi, which produces several secondary metabo-
lites promoting cell lysis of cyanobacteria [54], may help
favor cyanobacteria. Second, two eukaryotic pathways of
antibiotic biosynthesis (monobactam biosynthesis (+
1524%) and penicillin and cephalosporin biosynthesis (+
161%), were preferentially expressed by 1.6- to 15-fold
under AZ exposure. This suggests that eukaryotic micro-
organisms could respond to the rise in cyanobacteria by
the production of antibacterial compounds, although it
is unlikely that this prevents cyanobacterial bloom out-
breaks. Third, as shown in Additional file 1: Figure S7,
the relative abundance of cyanobacteria in the bacterial
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community was 39.3% in our sampling site from Lake
Taihu (deriving from 16S rRNA gene sequencing data),
while the RAT of cyanobacteria in the bacteria after 7d-
culture in the control and AZ-treated groups were 7.1%
and 72.1%, respectively. It indicated that the large pro-
portion of green algae (Fig. 3c) could limit the activity of
cyanobacteria, even under eutrophic conditions.

Long-term potential impact of short-term AZ
contamination

As shown in Additional file 1: Figure S8, after 50-day
cultivation, the algae and organic matter settled in the
microcosms, rendering them clear in the control group.
However, the AZ group still showed the typical charac-
teristics of an algal bloom, appearing green and turbid.
This interesting phenomenon illustrated that, although
the concentration of AZ was below the detection limits
after 15 days in microcosms (Fig. 1d), the high variability
at the primary stage still cause lasting influence until 50
days (Additional file 1: Figure S8). The AZ residue was
widely detected in water environment [14], indicating
that these water bodies may have once suffered in a
short-term high-concentration contamination of AZ.
The dissolved AZ decreased rapidly in the microcosms
(Fig. 1d), dropping below detection limit after 15 days of
algal culture, which indicated that dissolved AZ was dis-
sipated quickly in the microcosms. In natural water sys-
tems, AZ can be taken up by plankton, adsorbed onto
organic surfaces and sediments, or be dissipated through
biodegradation and photolysis [55]. Therefore, peak AZ
concentration is expected to be much higher than the
detected dissolved concentrations in lakes, streams, or
groundwater from 0.01 to 29.70 ug L™ [14], suggesting
that fungicide concentrations close to those used in our
experiments may well transiently occur which would
cause long-term negative effects. For instance, the resi-
dues of fungicide Thiram® could be detected in the range
of 0.27-2.52mgL™" from surface water around the ap-
plied plots [56]. Furthermore, various other fungicides
that can interact with AZ exist in aquatic systems (often
adsorbed to sediments) and may be released back into
surface water through sediment remobilization [57-59].
It follows that high AZ concentrations in the environ-
ments (at least sporadically) might induce toxic effects
on aquatic microorganisms, while paradoxically, favoring
cyanobacterial growth.

Fungicide contamination always co-exists with nutri-
ent over-enrichment in waterbodies close to agricultural
regions, where cyanobacterial blooms frequently occur.
We can presume that the eutrophication and AZ con-
taminant would simultaneously occur in a limited water
area near croplands after rainfall, which would cause
dramatic changes of microbial community structure and
promote cyanobacterial blooms. These cyanobacteria
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may be transferred to other water bodies following the
next rainfall. They will then change the community
structure of contaminated waters and contribute to
eutrophication of nearby waters. It is known that the
microbial ecological network has its own balance,
which could be altered by eutrophication. This study
indicates that fungicides may play an important role
in promoting HCBs through complex community net-
work interactions.

Conclusions

Agricultural intensification is unfortunately coupled to
pesticide use and nutrient over-enrichment, which, in
combination with global climate change, is of great
concern for HCBs. In this study, we have explored a
novel pathway of cyanobacterial dominance or bloom
formation in which fungicide can promote cyanobacter-
ial dominance in eutrophic microcosms through prefer-
ential constraints on Chlorophyta growth and inhibition
of fungi and some kinds of viruses, zooplankton, and
heterotrophic bacteria, thus indirectly protecting cyano-
bacteria from being lysed, parasitized or grazed. This
allows cyanobacteria to take advantage under fungicide
contamination. Meta-transcriptomic analyses suggest
that fungicide may increase prokaryotic polysaccharide
consumption, decrease prokaryotic vitamin biosynthesis
and exchange to negatively affect eukaryotic community.
The identification of AZ-responsive genes through
meta-transcriptomic analyses provides new insights into
the interactive effects of a fungicide on microbial com-
munities and cyanobacteria in eutrophic freshwater en-
vironment. Our results have important implications for
understanding of cyanobacterial bloom formation as well
as its mitigation. This calls for a well-managed use of
fungicides as well as implementation of novel sustainable
agricultural practices in order to control and mitigate
HCBs.
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