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A pollution gradient contributes to the
taxonomic, functional, and resistome
diversity of microbial communities in
marine sediments
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Abstract

Background: Coastal marine environments are one of the most productive ecosystems on Earth. However,
anthropogenic impacts exert significant pressure on coastal marine biodiversity, contributing to functional shifts in
microbial communities and human health risk factors. However, relatively little is known about the impact of
eutrophication—human-derived nutrient pollution—on the marine microbial biosphere.

Results: Here, we tested the hypothesis that benthic microbial diversity and function varies along a pollution
gradient, with a focus on human pathogens and antibiotic resistance genes. Comprehensive metagenomic analysis
including taxonomic investigation, functional detection, and ARG annotation revealed that zinc, lead, total volatile
solids, and ammonia nitrogen were correlated with microbial diversity and function. We propose several microbes,
including Planctomycetes and sulfate-reducing microbes as candidates to reflect pollution concentration. Annotation
of antibiotic resistance genes showed that the highest abundance of efflux pumps was found at the most polluted
site, corroborating the relationship between pollution and human health risk factors. This result suggests that
sediments at polluted sites harbor microbes with a higher capacity to reduce intracellular levels of antibiotics, heavy
metals, or other environmental contaminants.

Conclusions: Our findings suggest a correlation between pollution and the marine sediment microbiome and
provide insight into the role of high-turnover microbial communities as well as potential pathogenic organisms as
real-time indicators of water quality, with implications for human health and demonstrate the inner functional shifts
contributed by the microcommunities.
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Background
Over the last two centuries, human activities such as
coastal development and nutrient discharge from waste-
water have driven major changes in marine biodiversity
[1, 2]. Nutrient pollution, or eutrophication, detrimentally
affects global marine ecosystems by impacting the diver-
sity and function of a wide range of foundational species

such as seagrass, oysters, corals, and other metazoans, and
microbes including bacteria and viruses [3–5]. Eutrophica-
tion also negatively impacts marine coastal sediments that
harbor microbial communities in high abundance and di-
versity. Not only are marine sediments hot spots for nitro-
gen and carbon cycling [6], they also serve as a long-term
reservoir of terrigenous and aquatic pollutants [7]. There-
fore, understanding the mechanisms by which water
pollution affects the diversity and function of microbial
populations in sediments is paramount.
Until recently, researchers used environmental microbes

and their genetic markers as indicators for pollution [8, 9].
These studies began to reveal that microorganisms living
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inside marine sediments correlated well with pollutants
such as trace metals and persistent organic compounds
[10] and likely impacted sedimentary niche changes [11].
However, this methodology has not shed light on the over-
all genetic profiles of the communities.
Advances in high-throughput sequencing have revolu-

tionized the detection of genes in complex environmen-
tal communities, offering a more promising avenue for
comprehensive genetic profiling [12]. Through shotgun
metagenomic and metabarcoding analyses, studies have
revealed that sediments in urbanized areas with higher
pollution levels may be enriched in human pathogens
[13], such as those that cause ciguatera poisoning, avian
influenza [14], and gastroenteritis [15]. In addition to
changes in taxonomic profiles, changes in gene abun-
dances have also been observed in impacted microbial
communities, including genes associated with metabolic
processes such as denitrification [16] and genes related
to virulence/defense and stress response such as anti-
biotic resistance genes (ARGs) [17]. Although the afore-
mentioned studies demonstrate that eutrophication
alters microbial communities and genetic composition,
very few comprehensive studies combining all taxo-
nomic, functional, and resistance profiles have been per-
formed to examine the influence of a well-constrained
pollution gradient on the metagenomic profiles of
microbial communities and the possible pathogenic risks
for both humans and the environment. Moreover, a
significant knowledge gap remains in understanding the
associated impacts of pollution on influencing micro-
biome communities.
Furthermore, Hong Kong, which is located within the

fastest developing area in southern China (the Greater
Bay Area) has a population of approximately 7.5 million,
and is situated at the mouth of the Pearl River Delta
(PRD) offering one of the greatest opportunities to in-
vestigate the influence of pollution on the marine -
sediment microbiome. The PRD is also regarded as the
Pearl River Estuary (PRE), through which the Pearl River
enters the South China Sea. During the 1980s to the
1990s, Hong Kong was rapidly developed and sub-
jected to land reclamation and population migration.
The pollution footprint increased with a lagging in-
vestment in wastewater treatment. Therefore, eu-
trophication has contributed to losses of foundational
species such as hard corals in many areas [18, 19].
Tolo Harbour [20] is a typical area suffering from eu-
trophication and is an enclosed bay located in north-
east Hong Kong. Tolo Harbour was previously coral-
dominated but the coral was gradually replaced by
other organisms including algae and suspension
feeders due to rapid coastal development inshore.
However, coral communities still exist in some off-
shore regions of Tolo Harbour.

Thus, in our study, we examined four field sites in Tolo
Harbour that have different degrees of eutrophication, in-
cluding Centre Island (dead oyster reef), Che Lei Pai
(sandy bottom with sparse vegetation), Port Island (50%
hard coral cover), and Tung Ping Chau (75% coral cover)
(Fig. 1). These sites were selected based on seven water
quality gradients (Additional file 1: Table S1) and their
coral species richness, which made them ideal regions to
study the impact of pollution. By using a shotgun metage-
nomic approach, we assessed the microbial community
composition, the functional characteristics of the micro-
bial community, the prevalence of pathogenic bacteria,
and the abundance and dissemination potential of ARGs
in marine sediments. Lastly, we evaluated the differences
in microbial communities among sampling sites in con-
nection to representative pollution parameters. Our study
revealed that the antibiotic resistome composition of
marine sediment microbial communities is significantly
different depending on the pollution concentration and,
moreover, the distribution of microbial communities is
highly associated with the pollution parameters.

Results
Sequencing results
The 12 sediment samples subjected to metagenomic
sequencing generated 138.6 Gb of raw data (average of
11.55 Gb per sample). Quality filtering reduced the aver-
age raw data to 6.66 Gb of filtered sequencing data per
sample. On average, 85.3% of the mapped reads were
classified as bacteria per sample, followed by archaea at
12.1% and eukaryotes at 2.6%. The percentage of bacter-
ial reads was significantly higher in samples from Centre
Island than those from Tung Ping Chau (P = 0.0172,
Student’s t test) whereas the percentage of archaeal and
eukaryotic reads were significantly lower (P = 0.0222 and
P = 0.0317, respectively). Moreover, the percentage of
bacterial reads was also significantly higher in samples
from Centre Island compared to those from Port Island
(P = 0.0199).

Pollutant concentration profiles
The normalized concentrations of seven geochemical in-
dicators were used to represent environmental pollution
levels at each sampling site (Additional file 1: Table S1).
Zinc (Zn), lead (Pb), and copper (Cu) are common heavy
metal pollutants of marine environments with arsenic
regarded as highly toxic. Organic pollution was repre-
sented by ammonia nitrogen (NH3-N), chemical oxygen
demand (COD) and total volatile solids (TVS). Centre
Island, the innermost site within Tolo Harbour, had the
highest concentrations of all pollutants with a general
trend of decreasing pollutant concentrations with dis-
tance from the inner harbor (Fig. 1). Port Island and

Chen et al. Microbiome           (2019) 7:104 Page 2 of 12



Tung Ping Chau exhibited similar levels of Zn, Pb, Cu,
arsenic, and NH3-N.

Comparative analysis of microbial communities in a
pollution gradient
We constructed the total prokaryotic profile by extract-
ing all bacterial and archaeal reads among samples at
different taxonomic levels from phylum to genus. The
most abundant prokaryotic phyla were Proteobacteria
(60.3 ± 4.3%, SD), Thaumarchaeota (12.2 ± 5.7%), and
Bacteroidetes (8.46 ± 1.7%) (Fig. 2a). The five most
abundant prokaryotic families were Rhodobacteraceae,
Nitrosopumilaceae, Flavobacteriaceae, Planctomyceta-
ceae, and Desulfobacteraceae, which comprised on aver-
age ~ 42% of the prokaryotic communities (Fig. 2b). At
the genus level, Nitrosopumilus (9.1 ± 3.8%) was the
most abundant across all communities (Fig. 2c). The
comparisons on the relative abundance of prokaryotes
among the four sampling sites at the above described
taxonomic levels (Additional file 2: Table S2 and Add-
itional file 4: Table S4) revealed that Centre Island and
Tung Ping Chau had the most dissimilar microbial com-
munities with the largest number of significantly

different prokaryotes (at every taxonomic level). Notably,
Planctomycetes was the only phylum showing a signifi-
cant difference among the four sampling sites (P = 0.030,
Kruskal-Wallis test), with an increasing abundance from
Centre Island to Tung Ping Chau (Fig. 2d). The abun-
dance of Planctomycetes was significantly different in the
comparisons between Centre Island and Tung Ping
Chau (P = 0.014, Student’s t test), Centre Island and Port
Island (P = 0.043), and Che Lei Pai and Tung Ping Chau
(P = 0.020). Further investigation of its major family
(Planctomycetaceae) and genus (Planctomyces) revealed
the same tendency when comparing Centre Island to
Tung Ping Chau (P = 0.022, Kruskal-Wallis test and P =
0.008, Student’s t test, respectively) (Fig. 2e). At the
phylum level, we further observed that several human-
related prokaryotes had significantly increased abundances
in Centre Island compared to Tung Ping Chau, including
Spirochaetes, a phylum that includes potential pathogens
(P = 0.001, Student’s t test), and Firmicutes, one of the
most abundant phyla in the human gut microbiome (P =
0.044) (Fig. 2f).
To evaluate the community diversity of each site and

the differences in microbial composition among them, we

Fig. 1 Sampling information. A map of Tolo Channel (including Tolo Harbour) and Mirs Bay shows the four sampling sites marked in circles of
different colors: Centre Island, Che Lei Pai, Port Island, and Tung Ping Chau. Samples were collected from the sediments at 6–10-cm depth. The
table shows the information of each sample including sampling site, region, longitude, and latitude
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calculated both the alpha and beta diversity using different
indices. For the alpha diversity, neither the Shannon nor
Simpson diversity indices showed any significant differ-
ence among sampling sites (Additional file 7: Figure S2).
Notably, the principle component analyses (PCA) based
on the most abundant prokaryotes revealed significantly
different communities among the four sites at the phylum
level (P = 0.048, PERMANOVA). Furthermore, we ob-
served clear separations of the microbial communities be-
tween Centre Island and Tung Ping Chau at phylum and
genus level (P = 0.047 and P = 0.049, respectively) (Fig. 3).
Four pollution parameters (zinc, lead, total volatile solid,
and ammonia nitrogen) were significantly correlated with
communities at either phylum or genus levels (P < 0.05,
Additional file 5: Table S5) (Fig. 3). At the phylum level,
the pollution parameters can further serve as potential
negative indicators of the distribution of Thaumarchaeota
and Planctomycetes, which were significantly enriched in
Tung Ping Chau (P = 0.008, Student’s t test). At the genus
level, the distribution of Desulfatitalea, Desulfococcus,

Desulfobacterium, and Desulfovibrio are positively corre-
lated with the representative parameters to different
extents, while four genera of Plactomycetes (Planctomyces,
Blastopirellula, Pirellula, and Rhodopirellula) were
negatively correlated. At the family level, total volatile
solids was the best indicator of the community distribu-
tion, and interestingly, was negatively correlated with
three nitrifying bacteria (Nitrosomonadaceae, Nitrosopu-
milaceae, and Nitrospinaceae).
In addition to the abundance of microbes in the

sediment, we also investigated the replication activity of
different species, which could reflect changes in active
communities. Therefore, we selected the 30 most .abun-
dant species among all samples and applied the iRep
[21] algorithm for evaluating the replication rate. Among
these species, the replication rates of 14 species were es-
timated based on sufficient genome coverage among all
the samples. Ruegeria conchae, which belongs to Rhodo-
bacteraceae, the most abundant family in all samples,
had on average the highest replication rate compared to
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Phylum

Proteobacteria
Thaumarchaeota
Bacteroidetes
Planctomycetes
Cyanobacteria
Spirochaetes
Actinobacteria
Firmicutes
Verrucomicrobia
Acidobacteria

Family

Rhodobacteraceae
Nitrosopumilaceae
Flavobacteriaceae
Planctomycetaceae
Desulfobacteraceae
Spirochaetaceae
Rhodospirillaceae
Alteromonadaceae
Chromatiaceae
Ectothiorhodospiraceae
Vibrionaceae
Pseudomonadaceae
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Phyllobacteriaceae
Xanthomonadaceae
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Spirochaeta
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Rhodopirellula
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Candidatus Nitrosoarchaeum
Pleurocapsa
Vibrio
Pseudomonas
Roseobacter
Thioalkalivibrio
Eudoraea
Planctomyces
Ilumatobacter
Sulfitobacter
Pirellula
Desulfococcus
Haliea
Blastopirellula
Leisingera

 Centre Island      Che Lei Pai        Port Island    Tung Ping Chau
A D

B E

C F

* *

* * *

Fig. 2 Comparative analysis of the prokaryotic communities among the sampling sites. a, b, c Relative abundance of the most abundant
microbes across sites at the phylum, family, and species levels, respectively. d, e, f Relative abundance of the most abundant microbes which
have significantly different abundances among sites. Microbes with asterisk retain strong differentiation after FDR correction (adjust q value < 0.1)
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other species across all sites (P < 10−8, Student’s t test)
(Additional file 8: Figure S3). By comparing the replica-
tion rate among different sampling sites, we observed that
Candidatus Nitrosopumilus sp. NF5 had higher replication
rates in Port Island and Tung Ping Chau than in Centre Is-
land and Che Lei Pai (P = 0.027). Candidatus Nitrosoarch-
aeum koreensis also showed a higher replication rate in
Tung Ping Chau than in Centre Island (P = 0.031).

Functional shifts contributed by microcommunities
We annotated our metagenomics sequencing data using
the KEGG database and constructed the pathway profiles
for the microbial communities of each sampling site.
“Nitrogen metabolism” was the most abundant functional
pathway among all samples (6.1%), followed by “oxidative
phosphorylation” (5.2%) and “aminoacyl-tRNA biosyn-
thesis” (4.8%) (Fig. 4a). We implemented FishTaco [22], a
novel algorithm for integrating taxonomic and functional
comparative analyses to accurately quantify family-level
contributions to functional shifts. We performed the ana-
lyses by using the microbial communities of Centre Island
and Tung Ping Chau, which were the most dissimilar in
terms of pollution concentration and were found to have
the most diverse prokaryotic composition according to
the above analyses.
After comparing the annotated KEGG pathways

between Centre Island and Tung Ping Chau, 17 path-
ways showed significant enrichment at Centre Island
(Additional file 3: Table S3). We further extracted the 25
most abundant families in these two sites that comprised
over 72% of all the microbial communities. The Pearson
correlation coefficient was calculated based on the
pathway profile and the abundant family profile
(Additional file 9: Figure S4). The results showed an
average Pearson correlation coefficient of 0.91, suggest-
ing a tight correlation between taxon and functional

profiles. Desulfobulbaceae was found to be the main
driver of the enrichment of the sulfur metabolism and
benzoate degradation pathways in Centre Island. More-
over, Spirochaetaceae served as the driver of the sulfur
relay system (also known as sulfur transfer system) in
Centre Island. In addition, the trinitrotoluene degrad-
ation pathway was found to be enriched in Centre Island
and was driven by Chromatiaceae and Nitrosopumila-
ceae. (Fig. 4b). To further confirm our findings, Spear-
man correlation between the above pathways and
families among the four sites were showing overall a
relatively good consistency with the Pearson correlation
(except the correlation between Spirochaetaceae and sul-
fur relay system) (Additional file 10: Figure S5).

Putative pathogens and antibiotic resistome
By aligning the taxonomic profiles to a list of potential
human pathogens compiled from three different sources
[23–25], we discovered opportunistic pathogenic species
from 148 genera that comprised 4.92–7.65% of all the
microbial communities, among which Vibrio (1.27 ±
1.18%) was the most abundant (Fig. 5a). Typical
opportunistic pathogenic species of Vibrio including V.
cholera, V. parahaemolyticus, and V. vulnificus were
found at all the sampling sites. The potential opportunis-
tic pathogenic species P. aeruginosa was found to have
the second highest abundance (1.23 ± 0.10%). We further
calculated the alpha diversity of the putative pathogenic
communities among sampling sites using both the
Shannon and Simpson indices (Fig. 5b). Alpha diversity
decreased from Centre Island to Tung Ping Chau signifi-
cantly, with nine putative pathogenic genera that were
significantly more abundant in Centre Island compared
to Tung Ping Chau (P < 0.05, Student’s t test) (Fig. 5c).
Among them, Bacillus (0.14 ± 0.03%) was the most
abundant putative pathogen (P = 0.037). Clostridium,

A B C

Fig. 3 Community dissimilarities among sampling sites with pollutant vectors. a, b, c Principal component analyses for the microbes among sites
at phylum, family, and species levels, respectively. Vector matrices of the significant pollution parameters are shown by individual black lines with
an arrow. The significant microbes are shown in gray
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another putative pathogen, was enriched in Centre Is-
land compared to Tung Ping Chau (P = 0.015), mainly
due to increased levels of the species C. tetani. In
addition, two putative pathogenic species of Treponema
(T. denticola and T. pallidum) were found in signifi-
cantly higher abundances in Centre Island compared to
Tung Ping Chau (P = 0.015).
Subsequently, we investigated the resistome profiles in

the different sampling sites. Among ARG mechanisms,
antibiotic efflux pumps (237.24 ± 47.7 RPM—reads per
million reads) were the predominant resistance mechan-
ism in the sediment communities, followed by target
protection (95.74 ± 29.2 RPM), inactivation (65.29 ±

28.6 RPM) and target alteration (43.52 ± 13.2 RPM)
(Fig. 5d). Annotation using ResFams identified 17 ARG
families. Among the ARG families, five genes that have
activities against specific antibiotics were detected in-
cluding aminoglycoside, beta-lactamase, fluoroquino-
lone, tetracycline, and the chloramphenicol resistance
gene (Fig. 5e), and there were no significant differences
found among the sites. To evaluate the differences in
the ARGs among the sediment samples, we compared
the total abundances of the ARGs. The results showed
that Tung Ping Chau had the lowest abundance of
total ARGs, whereas Centre Island had the highest
(P = 0.0001, Fig. 5). Further comparisons of the ARG
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families showed that three efflux pump genes, RND,
baeR, and ABC, were significantly enriched in Centre
Island compared to the other sites (P = 0.014, 0.047,
and 0.033, respectively).

Discussion
Microbial communities inhabiting marine sediments are
extremely diverse due to the complex physicochemical
gradients therein [26]. Community dynamics are affected
by human activities, particularly those related to water
chemistry and quality [13]. Hong Kong has a diverse dis-
tribution of highly urbanized and relatively undisturbed
coastal environments [27] and provides a perfect oppor-
tunity to assess the relationship between microbial
communities and different levels of perturbation. Earlier
studies have investigated the community of bacteria and
ARGs in marine sediments of Hong Kong using both
clone libraries and metagenomics [7, 28, 29]. However,
they were unable to identify clear patterns in either bacter-
ial communities or ARGs. To fill this gap, we constructed
a comprehensive pipeline for the proof-of-concept analysis
of the microbiome communities, their functional diversity,
and the resistome as affected by human activities and
pollution levels. Throughout our analysis, we provided

evidence of the impact of different pollution levels on the
diversity of microbial communities and their functional-
associated genes as well as the risks of increased levels of
ARGs and pathogens.
Regarding the prokaryotic profile, we observed an enrich-

ment of a number of phyla tightly associated with the hu-
man gut and terrestrial biomes in the most polluted areas.
These phyla include Spirochaetes, a potential pathogenic
phylum causing a wide range of diseases including lepto-
spirosis, Lyme disease, and Alzheimer’s disease [30–32],
and Firmicutes, which make up the largest portion of the
human gut microbiome [33]. While the majority of sewage
generated from the local population is treated and then
redirected for discharge elsewhere (https://www.epd.gov.
hk/epd/wqo_review/en/watQua.htm), the presence of
Firmicutes may indicate that inputs remain and Planctomy-
cetes, a widely distributed phylum found in a variety of
marine environments [34, 35], exhibits a dose-response
sensitivity effect to heavy metals [36] while generally
resistant to high concentrations of inorganic nitrogen
compounds. In our study, Planctomycetes was the fourth
most abundant phylum among the samples, and its
abundance was significantly decreased at Centre Island
compared to Tung Ping Chau. Combined with the pollu-
tion data from the sampling sites, our study suggests that

A B C

D E F

Fig. 5 Comparisons of abundances of potential pathogens and antibiotic resistant genes (ARGs) among samples. a Heat map based on relative
abundances of potential pathogenic genera in different samples. b Comparisons of pathogenic alpha diversity among sampling sites. c
Comparisons of significantly different pathogenic genera between Centre Island and Tung Ping Chau. d Total relative abundance of each ARG
mechanism among the sampling sites. e Total ARG profile of the samples. f Comparisons of total ARG abundances from each site
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Planctomycetes may also serve as an important potential
water quality indicator.
By evaluating the microbial diversity at the community

level, we observed clear differentiation among the sam-
pling sites—especially between Centre Island and Tung
Ping Chau—and coherence with the distribution of rep-
resentative pollutants. Interestingly, at the genus level, the
four sulfate-reducing microbes (SRM) Desulfatitalea,
Desulfococcus, Desulfobacterium, and Desulfovibrio were
found to be positively correlated with pollution levels, sug-
gesting that eutrophication increases the abundance of
SRM. Previous studies in marine sediments of Hong Kong
had also reported the relationship between SRM and pol-
lution levels. For instance, pollutants may influence the
relative abundance of SRMs to total microbes under a
unimodal paradigm while low concentrations of pollutants
will decrease relative abundance of SRMs in total mi-
crobes [7]. Moreover, with the clone library methods,
unique SRM members related to the polluted harbor
environment and estimated SRM richness correlated with
several environment factors [29].
In our study, we also implemented a novel algorithm,

based on sequencing coverage, which was used to calcu-
late an index of replication (iRep) for estimating changes
in the active microbial communities [21]. Ruegeria
conchae had the highest replication rate among all sites,
which is consistent with previous studies [37, 38]. These
studies have shown that Ruegeria is present in a wide
range of marine habitats, from coastal regions to deep-
sea sediments, and constitute up to 25% of the total
bacterial community. Interestingly, the active commu-
nity analysis revealed additional changes in bacterial spp.
replication rates along the water quality gradient. Two
species of Thaumarchaeota—Candidatus Nitrosopumi-
lus sp. NF5 and Candidatus Nitrosoarchaeum koreen-
sis—which are responsible for the major ammonia-
oxidizing process [39, 40] in sediment, replicated faster
in sites with high water quality (i.e., low ammonia;
Additional file 1: Table S1). The concordance of replica-
tion rate with relative abundance not only confirms the
adaptation of Thaumarchaeota to low-ammonia condi-
tions but also reveals the mechanism by which it can
maintain a high abundance.
When investigating pathogenicity among all sites,

we observed that Vibrio, including its three opportun-
istic pathogenic species, V. cholera, V. parahaemolyti-
cus, and V. vulnificus, were the most abundant. These
disease-causing strains of Vibrio are associated with
infectious diarrhea and are commonly carried by mar-
ine animals including crustaceans [41]. Pseudomonas
aeruginosa, the second most abundant potential
pathogenic species in our analysis, is a multidrug re-
sistant pathogen and causes a wide variety of serious
infectious diseases including meningitis, pneumonia,

and septicemia [42–44]. The alpha diversity calculated
from only putative pathogenic microbes decreased
significantly from Centre Island to Tung Ping Chau,
indicating that pollution inputs influence the local
potential pathogen composition. Furthermore, nine
opportunistic pathogenic genera were enriched at the
most polluted site. Considering that coastal waters are
the most impacted by human activities including re-
creation (e.g., swimming) and food supply (e.g., fishing
and aquaculture), surface or water column sampling to
assess public safety may overlook potential pathogen
reservoirs in the sediment.
Based on the evidence above, we observed a connec-

tion between the extent of pollution and the abundance
and diversity of pathogenic organisms in marine sedi-
ments. Pinpointing the drivers of these patterns is com-
plex as feedback loops between both biotic and abiotic
process function across multiple spatial and temporal
scales. For example, healthy and biodiverse marine
ecosystems buffer against the proliferation of bacterial
pathogens [5, 45] but foundational species can be
sensitive to pollutants. The persistence of diverse coral
assemblages at Tung Ping Chau may contribute to in-
creased pathogen resistance while the eutrophication of
Tolo Harbour and disappearance of coral communities
[27] may have reduced this important ecosystem
service. More direct links between human activity and
pollution stress can be inferred from our antibiotic
resistance analysis which shows an increase in the dom-
inant resistance mechanisms and abundance of ARGs.
It is well known that efflux pumps are the predominant
resistance mechanism in sediments [17], and our
results further provide the direct evidence that an
increase in efflux pump-related genes is correlated to
an increase in pollution [46]. These data suggest the in-
creased capability of microbes to reduce intracellular
concentrations of antibiotics, heavy metals, or other
toxins/environmental stresses [17] in polluted sedi-
ments. In other words, the increasing efflux pump
mechanisms in the microbes would greatly contribute
to antibiotic resistance and further presented a growing
threat to antibiotic therapy and a major challenge for
antibiotic development.

Conclusions
Our investigation of the microbiome composition and
functionality in marine sediments revealed that mi-
crobe communities are likely influenced by human
activity and pollution discharge. Through our analysis,
we also identified several microbes within the Plancto-
mycetes phylum that may serve as useful bio-
indicators of water quality. The relationships among
sediment microbial communities and water quality
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presented here set the stage for a valuable reference
database for environmental assessments and public
policy. Therefore, we strive for the continuous sam-
pling of these as well as additional sites in Hong Kong
to provide new insight into the interactions between
humans and coastal marine ecosystems.

Materials and methods
Sampling sites and sample collection
Sampling was conducted in August 2016 from four field
sites (Centre Island (CI), Che Lei Pai (CLP), Port Island
(PI), and Tung Ping Chau (TPC)) in Tolo Harbour. At
each sampling site, 50 g of sediment from the top 10 cm
were collected via scuba using sterile 15-mL falcon tubes
and were further divided into three aliquots as replicates
(Fig. 1). Within minutes after sampling, sediment
samples were flash frozen in liquid nitrogen and stored
at − 80 °C for DNA extraction and metagenomic shotgun
sequencing.

Pollution data collection
Seven geochemical indicators (zinc (Zn), lead (Pb), cop-
per (Cu), chemical oxygen demand (COD), arsenic (As),
total volatile solid (TVS), and ammonia nitrogen (NH3-
N)) were obtained from the Hong Kong Environmental
Protection Department’s extensive periodic water and
sediment monitoring database [47] (Additional file 1:
Table S1) representing the environmental pollution in
the sediment including heavy metals and organic matter.
These data were obtained from the sediment samples
collected in August 2016 at the benthic sediment sam-
pling locations. Pollution data were normalized using
the minimum-maximum normalization procedure for
further analyses (Additional file 6: Figure S1).

DNA extraction and metagenomic sequencing
DNA from the sediment samples was extracted using
the MoBio PowerSoil DNA Isolation Kit (MoBio, Carls-
bad, CA) following the manufacturer’s instructions.
DNA concentrations (2.41 ± 1.25 μg) were verified using
the Qubit Fluorometer and DNA quality was checked
via agarose gel electrophoresis (using Takara λ-Hind III
digest and the Tiangen D2000 marker) prior to library
construction. DNA libraries were constructed using the
Nextera XT kit. Metagenomic shotgun sequencing was
then performed on an Illumina HiSeq 1500 (101 bp PE)
platform. The raw sequence data were uploaded into the
Sequence Read Archive of NCBI (accession numbers
SRR8361706-17).

Taxonomic profiling
The raw sequencing paired-end reads passed standard
quality control after the adapter regions and low-quality
reads were removed, as per Li et al. [48]. The filtered

reads were mapped to the nonredundant database using
DIAMOND [49] and the default settings. The aligned
reads were filtered using an e-value < 1e−10 and a 95%
cutoff. The lowest common ancestor (LCA) algorithm
was implemented with the LCA mapper from mtools of
MEGAN5 [50] for the taxonomic assignment of each
aligned read. The relative abundances of each taxa were
further distilled from the LCA results for each
taxonomic level. Prokaryotic community profiles were
constructed at phylum, family, and genus levels for
further statistical analysis. Additionally, potential patho-
genic species and genera were taxonomically identified
using three publicly available lists of putative pathogens
[23–25] and further summarized to genus level for
statistical comparisons. The organisms appearing on the
list were regarded as opportunistic pathogens and the
species containing at least one opportunistic pathogenic
strain were marked as putative pathogenic species.

Microbial community composition
Alpha diversity indices detailing microbial community
composition within each sample was calculated using
vegan [51] in R. Both the Shannon and Simpson indices
were used for alpha diversity evaluation based on the
relative abundance of each taxonomic level. For estimat-
ing community dissimilarities, both Bray-Curtis and
Euclidean distances were calculated by phyloseq [52]
and vegan [51] based on the relative abundance of each
taxon at different levels.

Estimation of species cellular replication rate
To estimate the replication rate of the 30 most abundant
species, an in-house genome database was constructed
manually by obtaining the draft or complete genomes of
the target species (either contig or scaffold) from the
NCBI Genome database. The high-quality metagenomic
reads were mapped to the in-house genome database by
Bowtie2 [53]. The mapped results of each target species
were further manipulated with SAMtools [54] and were
used for measuring replication rates with iRep [21].

Functional annotation
From each sample’s filtered sequencing data, one million
reads were subsampled randomly and were aligned to
the KEGG Orthology (KO) database [55] built by
KOBAS 2.0 [56] using DIAMOND BLASTX (−e 1e−10,
best hits reserved). The identified KO genes were further
annotated into different pathways based on predefined
collections in the KEGG database and were quantified
by read counts. The prokaryotic taxonomic profiles of
the 25 most abundant families among samples and the
pathway profile were integrated to quantify taxa-specific
contributions to functional shifts using FishTaco [22].
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Antibiotic resistance genes (ARGs)
Subsampled reads were mapped against an in-house
ARG database based on CARD [57], ARDB [58], and
ResFams [59] using BLASTX. Aligned reads were
filtered (best hit from BLASTX, identity > 70% and
coverage > 70%), classified into different ARG mecha-
nisms, and further annotated into ARG families using
ResFams. The abundance of ARG genes was calculated
as RPKM (reads per million mapped reads).

Data analysis
Three replicate samples were analyzed. Statistical com-
parisons of prokaryotic taxonomic profiles, potential
pathogens, and ARGs (including clinically important
ARGs) were performed by using Kruskal-Wallis tests
between the four sampling sites and Student’s t tests be-
tween each pairwise site in R. The Benjamini-Hochberg
FDR correction [60] was applied to adjust the P value
for multiple t test comparisons in R (Additional file 4).
We performed principal component analysis (PCA) on
the relative abundance of taxonomic profiles to evaluate
the community dissimilarities using the vegan and ape
[61] packages in R (Additional file 11). The pollution
parameters were served as fitted vectors in the above
multidimensional scaling for testing the correlation
between community distributions and pollution levels.
Adonis from vegan package in R was used as PERMA-
NOVA test to evaluate the significance of a variable in
determining variation of distances (the number of
permutations were set as 999). The homogeneity of dis-
persions test was calculated using PERMDISP from
vegan package in R. Pearson’s correlation coefficients
were calculated between the taxa-based and KO
function-based profiles using FishTaco. Spearman corre-
lations were further performed between taxonomic
abundance and KO pathways among the four sampling
sites based on the FishTaco results using the correlation
function in R.

Data visualization
Packages including ggplot2 and gplots in R and matplo-
tlib in Python were used for visualization purposes.
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