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Abstract

Background: Ubiquitous in natural and engineered ecosystems, microbial immigration is one of the mechanisms
shaping community assemblage. However, quantifying immigration impact remains challenging especially at individual
population level. The activities of immigrants in the receiving community are often inadequately considered, leading to
potential bias in identifying the relationship between community composition and environmental parameters.

Results: This study quantified microbial immigration from an upstream full-scale anaerobic reactor to downstream
activated sludge reactors. A mass balance was applied to 16S rRNA gene amplicon sequencing data to calculate the
net growth rates of individual populations in the activated sludge reactors. Among the 1178 observed operational
taxonomic units (OTUs), 582 had a positive growth rate, including all the populations with abundance > 0.1%. These
active populations collectively accounted for 99% of the total sequences in activated sludge. The remaining 596 OTUs
with a growth rate ≤ 0 were classified as inactive populations. All the abundant populations in the upstream anaerobic
reactor were inactive in the activated sludge process, indicating a negligible immigration impact. We used a supervised
learning regressor to predict environmental parameters based on community composition and compared the prediction
accuracy based on either the entire community or the active populations. Temperature was the most predictable
parameter, and the prediction accuracy was improved when only active populations were used to train the regressor.

Conclusions: Calculating growth rate of individual microbial populations in the downstream system provides an effective
approach to determine microbial activity and quantify immigration impact. For the studied biological process, a marginal
immigration impact was observed, likely due to the significant differences in the growth environments between the
upstream and downstream processes. Excluding inactive populations as a result of immigration further enhanced the
prediction of key environmental parameters affecting process performance.
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Background
Microbial immigration is a widespread process in natural
and engineered environments and plays important roles
in shaping the downstream microbial community. In
natural lake environments, bacterioplankton assemblage
compositions were influenced by bacteria in the inlet
running water [1], treated or untreated sewage discharge
[2], and even atmospheric deposition [3]. In rivers,
planktonic and sedimentary microbial communities can
be influenced by the immigration between each other
[4]. Microbial immigration in engineered systems has
also been reported in tap water bacterial community
where the composition after stagnation was strongly
affected by microbes in city water and pipe biofilms [5].
In wastewater treatment processes, feed sludge affected
lab-scale anaerobic digester community structure and
functional stability by sustainably introducing specific
taxa [6]. In a lab-scale three-stage moving bed biofilm
reactor, an increase in species richness was observed in
the last stage as the result of immigration from the influ-
ent and first two stages [7]. In full-scale systems, signifi-
cant immigration of ammonia-oxidizing bacteria from
the upstream nitrifying trickling filter to the downstream
activated sludge reactor was observed using NO2

− as a
measurement of transportation [8]. In full-scale anaer-
obic digesters, feed microbial biomass was observed to
account for a significant portion of the digester communi-
ties [9, 10]. Albeit weak, immigration impact was observed
from the influent wastewater to the downstream activated
sludge based on community diversity and composition [11].
While microbial immigration is widely observed, it is

difficult to quantify its impact on the downstream
microbial community assembly with currently available
approaches. The neutral community model fits the
observation frequency of different taxa as a function of
mean relative abundance and calculates an immigration
probability m of the entire community [12]. Although
been applied in various environments [4, 5, 13], the
model does not provide population-level resolution on
how a specific downstream community member is
affected by immigration. Another method, microbial
source tracking, estimates the proportion of taxa in the
downstream community that come from multiple
upstream environments [14–16]. However, this method
assumes that all the observed microbial populations in
the downstream community come from upstream envi-
ronments and ignores the fact that some active microor-
ganisms will undergo rapid reproduction independent
from immigration. Other studies simply count shared
species between upstream and downstream communi-
ties, which is usually visualized with a Venn diagram [11,
17]. This approach could only provide a numerical sum-
mary of potential immigrants and ignores their different
fates in the downstream environment. While acting as a

continuous seed to inoculate active players to the down-
stream environment [8], the upstream immigrants can
also introduce a significant amount of seemingly abun-
dant but inactive organisms [9]. These challenges call for
a better evaluation of the in situ activities of individual
immigrants in the downstream environment during
quantifying microbial immigration impacts.
Differentiating immigrant populations that actively or

inactively occupy the downstream system can better pre-
dict the relationship between the microbial community
and environmental parameters, which is the key mission
in many ecological studies. Various methods have been
applied to identify the key environmental parameters.
Clustering methods such as unweighted pair group
method with arithmetic mean and k-means clustering
were used to group communities based on population
abundance and correlate different clusters with distinct
parameters in anaerobic digester [10] or human intes-
tinal microbiome [18]. Ordination methods such as
principal components analysis, non-metric multidi-
mensional scaling, correspondence analysis, and re-
dundancy analysis treat population abundance as
multiple variables and characterize similar communi-
ties based on shared parameters in anaerobic enrich-
ment cultures [19], fish gut [20], human throat [21],
and bioreactors [22]. Compared to clustering and or-
dination methods, supervised learning methods (in-
cluding classification and regression that can predict
unlabeled samples based on labeled microbial com-
munities) are less widely used. Overall, all those
methods rely on the assumption that abundant popu-
lations are active and contributing to system function.
Such community-environment correlation can be
biased if the system contains inactive populations that
immigrate from the upstream, which can be reduced
by assessing immigration impact with consideration of
microbial activity.
In this study, we attempted to address two key ques-

tions: “can we quantitatively assess the activities of im-
migrants after entering the downstream ecosystem?” and
“can we better predict key environmental parameters
from microbial community composition?” To answer
these questions, we analyzed a full-scale system that
couples an upstream upflow anaerobic sludge blanket
(UASB) reactor and downstream activated sludge reac-
tors to treat wastewater containing purified terephthalic
acid (PTA), an important petrochemical product. We
used a mass balance model with amplicon sequencing
[23] to calculate the in situ activity of each community
member and quantify the intensity of immigration from
the upstream anaerobic reactor to the downstream acti-
vated sludge. A supervised learning regressor [24] was
used to predict important environmental parameters
after considering immigration impact.
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Methods
Sampling the activated sludge system
Sludge samples were taken from a full-scale PTA-waste-
water treatment facility that operated an upstream UASB
reactor and three downstream parallel activated sludge
processes (including aeration tanks and clarifiers) (Add-
itional file 1: Figure S1). Six sampling events were con-
ducted during the spring and summer of 2017. To
profile the microbial community as a continuum, 11
samples were taken along the process at each sampling
event (Additional file 1: Figure S1): one sample from the
middle of the UASB reactor sludge bed, one sample
from the UASB effluent before being split and fed into
the three aeration tanks, two samples from each of the
three parallel aeration tanks (at different locations as
replicates), and one sample from each of the three clari-
fier underflows. After collection, the samples were
shipped to the laboratory at the University of Illinois at
Urbana-Champaign (UIUC) on ice overnight and stored
at − 80 °C prior to further analyses. Operation or physi-
cochemical parameters, including temperature, dissolved
oxygen (DO), ammonia, phosphate, and total organic
carbon (TOC), were monitored and provided by the
facility managers (detailed methods are available in
Additional file 1). Phosphate measurement at one third
of the sampling locations was not available. Terephthalic
acid concentration of the samples was measured in
UIUC lab using a HPLC with Agilent ZORBAX eclipse
XDB-C18 column [25]. Total suspended solids (TSS)
and volatile suspended solids (VSS) of the samples were
measured according to the standard protocol [26].

DNA extraction, PCR, and 16S rRNA gene sequencing
16S rRNA gene amplicon sequencing was performed as
described previously [27]. Briefly, DNA was extracted
using the FastDNA SPIN Kit for Soil, and 16S rRNA gene
was amplified with the Bacteria/Archaea universal primer
sets Univ515F/Univ909R that target V4-V5 region [28].
Purified and pooled PCR amplicons were sequenced on
an Illumina Miseq platform using the v3 chemistry at the
Roy J. Carver Biotechnology Center at UIUC.

Sequence analysis and supervised learning regression
16S rRNA gene sequences were analyzed with the
QIIME 2 platform (v2018.6) [29]. Raw sequences were
first processed using DADA2 [30], including quality fil-
tering, denoising, paired-end sequence merging, and
chimera filtering. DADA2 generated unique amplicon
sequence variants that were equivalent to 100% similar-
ity operational taxonomic units (OTU) in the conven-
tional practice. In this publication, we still use the term
OTU for the purpose of simplicity. Taxonomy was
assigned using q2-feature-classifier [31] customized for
the primer set used in this study with Silva SSU database

release 132 [32]. Multiple sequence alignment and
phylogenetic tree construction were performed using the
QIIME 2 plugin q2-phylogeny. For downstream diversity
analysis, the OTU table was rarefied to 18,578 sequences
per sample determined by the sample with least se-
quences. Alpha and beta diversity analyses were per-
formed using the QIIME 2 plugin q2-diversity.
Supervised regression of operation parameters on com-
munity compositions was performed using the QIIME2
plugin q2-sample-classifier with default settings [24].
Eighty percent of the samples were randomly picked to
train the regressor. The remaining 20% of the samples
were used to validate classification accuracy of the opti-
mized regressor. The neutral model that fit OTU fre-
quency to mean relative abundance [12] was applied to
calculate immigration probability using the nlsLM func-
tion in R package minpack.lm. During calculation, OTU
frequency was counted among all the activated sludge
samples and mean relative abundance was averaged.
Redundancy analysis was performed using R package
vegan, and the significance of constraints was tested with
permutation tests (999 permutations) [33].

Reactor kinetics
The mass balance calculation was performed as described
previously [34]. The control volume was defined as one
aeration tank and its downstream classifier. The change of
mass (cell number) of a given microbial population x in
this control volume was contributed by incoming biomass
from the UASB effluent, outgoing biomass in the wasted
sludge and clarifier effluent, and net growth in the
aeration tank. The mass balance can be described as:

dNx;AS

dt
¼ nx;UASB−nx;waste−nx;eff þ μxNx;AS

where Nx, AS is the cell number of population x in the
aeration tank; nx, UASB is the number of x in the UASB
effluent entering aeration tank per day [d−1]; nx, waste is
the number of x in the wasted sludge leaving the system
per day [d−1]; nx, eff is the number of x in the clarifier
leaving the system per day [d−1]; and μx is net growth
rate constant of x [d−1]. The number of x is obtained by
multiplying the total cell number in the sample, which
was approximated by concentration of volatile sus-
pended solids [34], and the relative abundance of x in
the microbial community, which was calculated based
on 16S rRNA gene sequences. Detailed steps for calcula-
tion are available in Additional file 1. Growth rates of in-
dividual populations were calculated for the three
activated sludge systems on different dates separately
and averaged for further analyses.
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Results
Mass balance identified active populations and indicated
marginal immigration impact
In total, 1178 OTUs were observed and rarefaction curves
indicated that sufficient sequencing depth was achieved
(Additional file 1: Figure S2). To calculate the growth rate
of individual populations, three assumptions were made
and validated based on system performance data. First,
the system was assumed to be operated at steady state at
the time of sampling, which was supported by the stable
TOC concentrations in the aeration tanks (Additional file 1:
Figure S3a–c). The first sampling event in tank A was ex-
cluded for the analysis due to unstable TOC concentra-
tions during the sampling period (Additional file 1: Figure
S3a). Second, the biological activity in the clarifiers was
negligible, and all the growth was assumed to occur in the
aeration tank, which was supported by the similar TOC
concentrations in the aeration tank and clarifier (Add-
itional file 1: Figure S3a–c). Third, the biomass in the
clarifier effluent was negligible, which was supported by
the significantly low TSS concentrations in the clarifier ef-
fluent compared to the TSS of wasted sludge (Add-
itional file 1: Figure S3d).
The growth rate calculation results are presented in

Fig. 1. In total, 586 OTUs had a positive growth rate
in activated sludge and accounted for 99% of the total
sequences. OTUs with abundance higher than 0.1%
all had a positive growth rate (Fig. 1a). This active
subset of the community (i.e., active community)
included the most abundant populations that were
commonly detected in activated sludge taxa such as
Zoogloea, Chitinophagales, Flavobacteriales, and
Burkholderiaceae. The remaining 592 OTUs had a
growth rate ≤ 0. This inactive subset of the commu-
nity included populations that were abundant in the
upstream UASB reactor, such as Syntrophus, Syntro-
phorhabdus, Pelotomaculum, and Methanosaeta,
which were obligate anaerobes (Fig. 1b). They exhib-
ited a significant decrease in abundance in aeration
tanks and collectively contributed to 1% of the total
sequences in activated sludge. Such marginal immi-
gration impact by the upstream UASB community
was supported by the small immigration probability
m (0.028) for the entire activated sludge community
calculated by fitting OTU frequency as a function of
mean relative abundance using the neutral community
model (Additional file 1: Figure S4). This suggested
that local reproduction was the dominant process
during community assemblage with a high probability
at 0.972. A Venn diagram also revealed a similar re-
sult that only 78 OTUs were shared between UASB
and activated sludge community and accounted for
0.4% of total sequences in obtained activated sludge
(Additional file 1: Figure S5).

Active populations better predicted environmental
parameters
We applied a supervised learning regressor to predict en-
vironmental parameters based on microbial community
composition (i.e., OTU abundance). A selected fraction of
the samples was used to train the regressor, and the
remaining samples were used to assess the prediction ac-
curacy by comparing observed and predicted values. Intui-
tively, we used samples from two of the three parallel
aeration tanks for training and used the third tank for test-
ing. However, poor prediction accuracy was observed, sug-
gested by the large discrepancies between observed and
predicted values (Additional file 1: Figure S6). None of the
squared linear least-squares regression coefficients (R)
exceeded 0.7, except for temperature.
Instead of using two thirds of the samples for training

the regressor, we pooled all the samples from the three
tanks and tested the optimal fraction of samples for
training the regressor. Based on the prediction accuracy,
including mean squared error, R squared, and slope (Add-
itional file 1: Table S1), it was shown that using 80% of the
samples for regressor training and 20% samples for accur-
acy testing produced the optimal results. When the entire
microbial community was used to train the regressor,
temperature had higher predictability than other parame-
ters. The fitted line of the predicted value versus observed
value had a R squared of 0.780 and a slope of 0.848
(Fig. 2a). The prediction of phosphate also had high R
squared (0.910) and slope (0.761), but the 95% confidence
interval was comparably large due to missing one third of
the phosphate concentration data (Additional file 1: Figure
S7). Other parameters, i.e., TOC, DO, ammonia, and TA
concentration, had relatively poor predictability with R
squared and slope lower than 0.7.
We further used the active community (i.e., OTUs

with positive growth rates) in the activated sludge re-
actor to train and test the regressor (Additional file 1:
Figure S8). Temperature was still the most predictable
parameter with almost perfect accuracy. The R squared
of 0.955 and slope of 0.980 were very close to the 1:1 ob-
served/predicted line and were both higher than the
values when the entire community was used (Fig. 2b).
An improved confidence interval was also observed
throughout the entire prediction zone. For other param-
eters, the prediction also improved as suggested by lower
mean squared error, higher R squared, and higher slope
in most cases (Table 1).

Redundancy analysis identified active populations
associated with environmental parameters
Redundancy analysis was performed on the active com-
munity to identify which populations were associated
with individual environmental parameters (Fig. 3). Per-
mutation tests indicated statistical significance (p < 0.05)
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of the associations for temperature, NH4
+, TOC, and

TA, but not for DO (p = 0.259). In terms of community
structure, all the three parallel aeration tanks followed
similar evolution trajectory along sampling time from
spring to summer (light to dark symbols on the left
panel). This trend was consistent with the direction of
increasing temperature and agreed with the aforemen-
tioned result that temperature was the most predictable
environmental parameters to describe the community
structure. The impact of temperature was further ob-
served on individual OTUs, where the most dominant
OTUs were distributed in the direction of increasing
temperature (right panel). The only dominant OTU that
was located in the opposite direction of temperature was

related to Cytophagales, which might prefer lower
temperature. The direction of increasing temperature
opposed that of TOC, implying higher temperature was
associated with higher consumptions of organic carbon. TA
concentration was independent from the temperature
effect, and abundant OTUs related to Methyloversati-
lis and Acidobacteria were associated with higher TA
concentration.

Discussion
Microbial immigration constantly contributes to com-
munity assemblage in natural and engineered microbial
ecosystems. However, the intensity of its impact varies.
Abundant populations in the upstream process can play

a

b

Fig. 1 Growth rate of populations observed in the activated sludge reactors. The y-axis in a denotes abundance in aeration tank, and in
b abundance in UASB reactor
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active or inactive roles in the downstream. This could
not be effectively addressed by many previous studies
[4, 5, 11, 13–17]. Coupling a mass balance model
with amplicon sequencing data allows the calculation
of the net growth rate of individual community mem-
bers, enabling the differentiation between actively
growing populations and non-growing ones. This fur-
ther allows to evaluate the impact of microbial immi-
gration on the downstream system by addressing
whether the upstream process can introduce microbial
populations that will remain active in the downstream

system. This strategy was first used to reveal that in-
fluent wastewater introduced populations that could
actively grow in the receiving activated sludge system
as well as non-growing populations [23]. A more sig-
nificant immigration impact was observed in anaer-
obic digesters where 25% of the sequences were
associated with non-growing populations introduced
by the feed microbial biomass [34]. In contrast to the
previous two cases of immigration from raw wastewa-
ter (aerobic) to activated sludge (aerobic) environment
and from activated sludge (aerobic) to anaerobic

a

b

Fig. 2 Prediction of temperature based on a the entire community and b the active community. The x- and y-axis denote observed and
predicted temperature, respectively. The dashed line represents 1:1 ratio of observed and predicted value. The solid line represents the fitted
trend of the observed and predicted value. The gray shadow represents 95% confidence interval with 100 times of estimation
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digester (anaerobic) environment, the present study exam-
ined another distinct immigration case from UASB reactor
(anaerobic) to activated sludge (aerobic) environment.
Non-growing populations only occupied 1% of the acti-
vated sludge community, and abundant populations in the
upstream anaerobic reactor did not grow in activated
sludge due to a significant change in environmental condi-
tion (anaerobic vs. aerobic). The marginal immigration
impact observed could also be reflected by the small mi-
gration probability in the Sloan model and small number
of shared OTUs in Venn diagram (Additional file 1: Figure
S4 and Additional file 1: Figure S5).

The active populations in activated sludge processes,
which are not influenced by upstream immigration, can
be viewed as the key players of important ecological
functions. Methanol was one of the major components
in PTA wastewater [35], and an active population related
to Methyloversatilis that could utilize methanol as car-
bon and energy source [36] was observed. Populations
associated with Cytophaga, Flavobacterium, and Chitino-
phaga have been reported to degrade soluble microbial
products in anaerobic reactor effluent [37]. OTUs re-
lated to these taxa that might scavenge anaerobic
by-products that were present activated sludge given

Fig. 3 Redundancy analysis based on the abundance of active populations in activated sludge. The left panel is a tri-plot of samples, OTUs, and
performance parameters. Stars, hexagons, and diamonds represent samples from the three parallel tanks. Gray scale of the fill color represents
time scale of the sampling from February to June. Small dots in the middle represent OTUs, which are zoomed in on the right panel. Size of the
circle represents relative abundance in activated sludge. The length of an environmental parameter arrow in the resulting ordination indicates the
strength of the relationship of that parameter to community composition

Table 1 Comparison of prediction accuracy between the entire community and active community. MSE stands for mean square
error

Parameter Entire community Active community Active/Entire

MSE R squared p value Slope MSE R squared p value Slope MSE R squared Slope

Temp. 9.375 0.780 0.004 0.848 3.608 0.955 0.000 0.980 0.385 1.225 1.155

TOC 7.203 0.671 0.013 0.425 2.606 0.843 0.001 0.615 0.362 1.255 1.445

DO 1.037 0.378 0.105 0.187 0.464 0.195 0.274 0.537 0.447 0.515 2.877

NH4
+ 0.006 0.659 0.014 0.587 0.006 0.541 0.038 0.726 0.997 0.820 1.238

PO4
3− 0.116 0.910 0.012 0.761 0.059 0.946 0.005 0.720 0.505 1.041 0.946

TA 0.000 0.120 0.400 0.125 0.000 0.531 0.040 0.153 1.750 4.416 1.219
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that TA and BA accounted for only 31–69% of all TOC
(Additional file 1: Table S2).
The inactive populations, although not abundant, were

also detected and accounted for 50.2% of the 1178 OTUs
observed in activated sludge. This suggested that func-
tionally active populations only accounted for half of the
observed species richness, which could not be revealed
by using approaches currently available. Analyzing 16S
rRNA gene sequences alone could only provide evi-
dences of detectable microorganisms but not necessarily
active ones and could be influenced by the rRNA copy
numbers associated with different microorganisms [38].
Meta-omics approaches (e.g., metagenomic and meta-
transcriptomic) could shed lights on metabolic function
at multiple levels, but the information obtained relies on
the availability of reference genomes with high-quality
annotations, which are still scarce [39]. Stable-isotope
probing coupled with molecular biomarker sequencing
can associate microbial identity with function [40], but is
limited by its throughput to monitor all populations.
Also, cross-feeding phenomena can sometimes restrict
its application. Fluorescence in situ hybridization can
provide evidence of presence and activity, especially by
coupling with microautoradiography to visualize uptake
of specific substrates [41]. However, applications of such
target-specific methods are limited to a few pre-deter-
mined microorganisms. Our findings showed that the
mass balance model coupled with amplicon
sequencing provides a novel and high-throughput
approach to effectively characterize microbial activity
compared to the aforementioned methods, and can be
widely applied in environmental and applied
microbiology.
Our study also highlighted that the application of a

supervised learning regressor could identify predictive
and important environmental parameters. When the
regressor was trained on the active subset of the
community instead of the entire community, the pre-
diction accuracy of environmental parameters was
greatly improved. This is reasonable because active
populations are primarily responsible for important
ecological functions. Inactive populations likely did
not contribute to key ecological functions and thus
could be regarded as baseline noise of the commu-
nity. If the immigration impact is strong, for example,
if a large fraction of the community is occupied by
non-growing populations introduced from the up-
stream process, such an approach can be even more
effective. Last, we demonstrated that sufficient sample
numbers and comprehensive environmental parame-
ters monitoring were critical to ensure good perform-
ance of regression, which emphasizes the necessity to
perform holistic sampling and monitoring for engi-
neered processes in future studies.

Additional file

Additional file 1: Supplementary figures and tables. This file contains
supplementary Figures S1–S8. and Tables S1–S2. (PDF 4054 kb)
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