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Rhizosphere microbiomes diverge among

Populus trichocarpa plant-host genotypes
and chemotypes, but it depends on soil
origin
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Abstract

Background: Plants have developed defense strategies for phytopathogen and herbivore protection via
coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as
salicylic acid, represent one such mechanism which likely mediates plant – microbe interactions above and below
ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense
compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus
trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in
contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll
content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were
measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq
sequencing of 16S and ITS2 rRNA-genes.

Results: Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with
plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and
bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness:
total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in
compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin
(Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid
derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi,
Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary
metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite
concentration) than positive interactions.

Conclusions: These results indicate microbial communities diverge most among soil origin. However, within a soil
origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere
microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this
experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may
partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.
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Background
Plant microbiomes are a major determinant of plant
health, productivity [1, 2] and have the potential to im-
prove sustainable agricultural practices through en-
hanced growth, nutrient use efficiency, and stress
tolerance. Recent work demonstrates the specificity of
the microbiomes of the root and rhizosphere (soil imme-
diately surrounding the plant root), within plant species
or genotypes [3, 4], and the complex interactions be-
tween plant hosts and soil microbiota. However, envir-
onmental variation spanning large spatial extents, such
as edaphic or climatic conditions [5, 6] to smaller-scale
interactions via plant-microbe cellular processes, such as
plant-mediated chemical signaling [7], may concurrently
impact below ground microbiome development and
maintenance. For example, Lebeis et al. (2015) [7] dem-
onstrated that although soil type is influential for root
microbial community assembly, genetic variation within
plants hosts, in this case Arabidopsis thaliana, is associ-
ated with differential microbial colonization. Further-
more, belowground versus aboveground microbiomes
may display differential shifts in response to plant gen-
etic control. Wagner et al., (2013) [8] indicated plant
hosts, specifically, Boechera stricta, exhibited greater
genetic control in aboveground bacterial communities
relative to belowground suggesting the importance of
environmental heterogeneity in shaping assembly dy-
namics, particularly for belowground tissues. The rela-
tive importance of edaphic conditions versus host
selection processes in determining plant microbiome
composition, particularly in tree species, has been largely
unexplored [9] and may be dependent on the wide range
of physiological or genetic differences among or within
plant species.
Variation in edaphic conditions select for specific mi-

crobial groups. Physico-chemical variables, such as soil
pH [10, 11], nutrients [12, 13], texture [14],
micro-aggregate structure [15, 16], among other factors,
affect either overall composition or functional group
prevalence (i.e., beneficial or pathogenic groups) of bac-
teria and fungi. Soil conditions will not only impact local
rhizosphere microbial community assembly, a subset of
bulk soil capable of plant colonization [6, 17], but also
influence plant health and metabolism (e.g., photosyn-
thate production, below ground carbon allocation).
Thus, the interaction between soil conditions and
plant-mediated selective pressures on neighboring
microbiota is difficult to parse. Regardless of these com-
plex interactions, microbial composition differences have
been detected for specific soil types, plant species, and
more rarely genotypes within species [4–6, 18, 19], per-
haps indicating the importance of multiple habitat filters
for rhizosphere microbial communities surrounding
plant roots. Environmental filtering hierarchies are
commonly recognized as an operative process in commu-
nity assembly [20, 21]. Pinpointing the relative roles of
such filters under the framework of plant-soil-microbe
interactions will be essential in developing a predictive
understanding of the microbiome’s regulation of plant
health and productivity [22].
Salicylic acid (SA) is a common plant phenolic signal-

ing compound which regulates a range of abiotic host
responses, such as responses to drought or salt stress
[23, 24] and host physiology such as plant growth and
development [25, 26]. Additionally, SA is integral in me-
diating systemic acquired resistance against biotrophic
pathogens and has been identified as such in tobacco
[27, 28], Arabidopsis thaliana [7, 29, 30], and rice [23,
31]. Arabidopsis genotypes with a manipulated systemic
expression of SA signaling have been shown to have in-
creased population densities of Pseudomonas spp. [30]
and may regulate colonization of root microbiota by spe-
cific bacterial families (e.g., enriched Streptomycetaceae)
[7]. Although SA is ubiquitous in plants, species vary in
SA production [32]. While SA effects on the microbiome
have been studied in Arabidopsis, less is known about
Populus spp., although Populus spp. produce SA at
vastly greater concentrations than most plant species
[33]. In Populus, and other Salicaceae, SA and phenolic
glycosides act as inducible defense chemicals [34]
expressed in response to pathogen presence and may
vary with plant genotype and the developmental stage of
the tree [35, 36]. Additionally, in other Populus species it
has been shown that variation in condensed tannins in-
fluences litter decomposition [37], fungal endophyte
colonization [38], and based on PLFA profiles, Schweit-
zer et al. (2007 and 2008) [39, 40] showed these may in-
fluence soil microbial composition directly. Thus the
chemistry of plant tissues may represent a host-induced
filter for the microbiome in the plant-soil environment.
Here, we provide empirical data supporting the rela-

tive importance of soil origin (a large-scale environmen-
tal filter) and plant genotype and chemotype (a
fine-scale environmental filter) on the rhizosphere
microbiome (archaea, bacteria, fungi) of an ecologically
and economically important model species [41], Populus
trichocarpa (Black Cottonwood). Soils were collected
from 2 separate locations and had different nutrient con-
centrations and soil texture (Additional file 1: Table S1).
Our study goals were to not only identify the relative
contribution of soil origin and plant genotype in driving
microbiome composition, but also if SA and its second-
ary metabolite derivatives mediate microbial
colonization and assembly in P. trichocarpa rhizospheres
after accounting for soil origin differences. Using twelve
clonal genotypes varying an order of magnitude in
higher-order salicylate production, we hypothesized that
(i) soil origin would be the dominant predictor in
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explaining microbial compositional divergence and (ii)
genotype salicylate production, would be a secondary,
fine-scale filter, helping to explain divergence in micro-
bial community composition within closely related plant
genotypes.

Results
Plant metabolomics and plant trait data
Among genotypes, mean total phenolics ranged from
5548 to 13,269 μg g FW− 1, salicylic acid ranged from 34
to 1515 μg g FW− 1, tremuloidin ranged from 17 to
184 μg g FW− 1, and populin ranged from 0.01 – 9.4 μg g
FW− 1 and varied widely among genotypes (Fig. 1;
Additional file 1: Table S2). All metabolites, except
salicin and total salicylates, varied among tree genotypes
or between soil origins: total phenolics (p = 0.02),
catechin (p < 0.001), a-salicyloylsalicin (p = 0.008), salicortin
(p = 0.007), trichocarpin (p = 0.003), and populin (p < 0.001)
were differentially produced at least within one genotype
versus another (Additional file 1: Table S2). Salicylic acid
Fig. 1 Mean plant metabolites (± standard errors) – total phenolics (Panel
concentrations (μg g−1 fresh weight (FW)) in root tissues among genotypes
concentrations in descending order (BESC-289 > BESC-414). Orange bars de
whereas green bars denote Corvallis soils. Letters denote significant differe
origins. Tremuloidin only differed between soil origins therefore additional
across all genotypes grown in Clatskanie versus Corvallis soils (Panel c). No
had a significant genotype x soil origin interaction; two
genotypes expressed greater salicylic acid concentrations in
Corvallis soils specifically to the majority of the other 10
genotypes within both Corvallis and Clatskanie soils
(Fig. 1). Furthermore, tremuloidin did not vary among
genotypes, but was differentially produced by trees
between soil origins (p < 0.001; Fig. 1c). On average,
plants grown in Clatskanie soils had greater tremuloidin
production within roots compared to Corvallis soils
(Fig. 1c).
Leaf growth (p < 0.01), chlorophyll content (p < 0.01),

and photosynthetic rate (p < 0.01) differed among plant
genotype and between soil origin (Additional file 1:
Table S3). All of these responses were greater in the
nutrient-rich Clatskanie soils versus Corvallis. Genotype
effects for plant measurements were due to one geno-
type displaying a difference between 1 or 2 other geno-
types. BESC-395 expressed greater photosynthetic rate
compared to BESC-414 and BESC-838 (Tukey’s HSD:
p ≤ 0.05). Leaf chlorophyll content was lower for
a), salicylic acid (Panel b), tremuloidin (Panel c), and populin (Panel d)
and soil origin. X-axes are ordered based on rank of salicylate
note secondary metabolites from genotypes grown in Clatskanie soils,
nces calculated from Tukey HSD tests among genotypes and soil
panel is included representing the mean tremuloidin concentrations
te Panel d Y-axis is on a logarithmic scale



Table 1 Two-way ANOVA model summary for responses of
Simpson’s Diversity and Evenness for bacteria/archaeal and
fungal communities and explanatory variables of soil origin,
genotype, and their interaction. Explanatory variables deemed
statistically significant are bolded

Response variable Explanatory Variable DF F-value p-value

Bacterial/Archaeal Diversity Soil Origin 1 16.23 < 0.01

Genotype 11 3.05 < 0.01

Interaction 11 2.22 0.02

Bacterial/Archaeal Evenness Soil Origin 1 50.63 < 0.01

Genotype 11 4.22 < 0.01

Interaction 11 2.34 0.02

Fungal Diversity Soil Origin 1 0.39 0.54

Genotype 11 0.77 0.67

Interaction 11 1.03 0.43

Fungal Evenness Soil Origin 1 22.04 < 0.01

Genotype 11 1.16 0.32

Interaction 11 2.08 0.03
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BESC-838 compared to GW-9830 and KTMC-12-5
(Tukey’s HSD: p < 0.02) whereas BESC-838 had greater
leaf growth compared to these two genotypes (Tukey’s
HSD: p < 0.02). Furthermore, photosynthetic rate (p ≤
0.05) and chlorophyll content (p ≤ 0.02) correlated with
either catechin, tremuloidin, or salicylic acid, but this
relationship depended on soil origin (Additional file 1:
Table S4); leaf growth did not correlate with any
metabolite regardless of soil origin (p ≥ 0.06). Ectomy-
corrhizal colonization rates of poplar root-tips did not
differ between soil origins (p = 0.89) or plant genotype
(p = 0.18) but was negatively correlated with tremuloidin
(T = -2.28, p = 0.03, Full Model: Adj. R2 = 0.07, F1,56 = 5.19,
p = 0.03).

Bulk soil and rhizosphere compositional differences
In bulk soil microbial communities (e.g. no-plant con-
trols), both bacteria/archaea and fungi, differed in their
dominant taxa relative to rhizosphere communities
among genotypes. Notably, on average, Clatskanie bulk
soils were enriched in Crenarchaeota (2.0% relative
abundance in soils versus 0.3% in rhizospheres) and
Nitrospirae (1% in soils, 0.4% in rhizospheres), and de-
pleted in Firmicutes (1.3% soils, 2.2% rhizospheres) and
Acidobacteria (20% soils, 17.6% rhizospheres). Clatskanie
soils were also enriched in Nitrospirae (1.4% versus 0.8%
rhizospheres) and Verrucomicrobia (7.7% soils, 5.4% rhi-
zospheres) and depleted in Firmicutes (1.8% versus 2.5%
rhizospheres) as well as Actinobacteria (14% versus 23%
rhizospheres) and Acidobacteria (15% soil, 12% rhizo-
spheres). For fungi in Clatskanie soils, all phyla exhibited
substantial differences in abundance between bulk soils
and rhizospheres. Chytridiomycota (1.9% soils, 0.7% rhi-
zospheres) and Mortierellomycota (9% soils, 4% rhizo-
spheres) were enriched in soils and Ascomycota (20%
soils, 25% rhizospheres), Basidiomycota (36% soils, 56%
rhizospheres), and Glomeromycota (3% soils, 7% rhizo-
spheres) were depleted in soils relative to rhizospheres.
However, in Corvallis soils, only Glomeromycota showed
substantial turnover between these comparments: 0.4%
on average in soils versus 1.3% in rhizospheres.

Microbial alpha diversity
Bacterial/archaeal Simpson’s Diversity and Evenness dif-
fered among soil origins, plant genotype, and there were
significant interactions between soil origin and plant
genotype (Table 1, Additional file 1: Figure S1). Bacter-
ial/archaeal diversity was 0.02% greater in Corvallis soils,
whereas evenness was ~ 10% greater in Clatskanie soils
(Fig. 2a). Fungal diversity did not differ between soil ori-
gins (p > 0.50). Fungal evenness did not differ among ge-
notypes, but contrary to bacterial/archaeal evenness, it
was ~ 54% greater in Corvallis soils compared to
Clatskanie and had a significant soil origin x genotype
interaction (Table 1, Fig. 2d, Additional file 1: Figure S1).
Bacterial/archaeal diversity and evenness both correlated
with specific metabolites in the nutrient-poor Corvallis
soils: diversity and evenness increased with populin con-
centrations (respectively: T = 2.76, Full Model Adj R2 =
0.11, p = 0.01; T = 3.52, Full Model Adj. R2 = 0.21, p < 0.01;
Fig. 2e,f ) whereas evenness also increased with total
phenolics (T = 2.40, p = 0.02) and declined with increasing
tremuloidin production (T = − 2.24, p= 0.03).

Microbial beta-diversity
In congruence with our hypotheses, soil origin accounts
for a large proportion of variation in OTU-level com-
position for both bacteria/archaea (R2 = 0.47) and fungi
(R2 = 0.33; Table 3, Fig. 3), with genotype secondarily
influential and accounting for ~ 10-12% of variation in
bacteria/archaea and fungi communities respectively
(Table 3, Fig. 3). For both bacteria/archaea and fungal
community composition, the interaction between soil
origin and genotype was significant (Table 3) and ex-
plained an additional 8-9% of compositional variation
(Table 3, Fig. 3). Specifically, for both bacteria/archaea
(p = 0.08) and fungal communities (p = 0.15), genotype
GW-11032 did not exhibit significant shifts in compos-
ition between soil origins; for bacterial/archaeal commu-
nities only, genotype HARA-26-2 also did not exhibit a
significant shift in composition between soil origins (p =
0.11). All other genotypes exhibited significant differ-
ences in composition for bacteria/archaea and fungi be-
tween Clatskanie and Corvallis soils (FDR-correction: p
< 0.01; Fig. 3). Bulk soils also differed in composition for
bacteria/archaea and fungi (Fig. 3). Lastly, both bacter-
ial/archaeal and fungal communities were influenced by



Fig. 2 Bacterial/archaeal and fungal diversity (Simpson’s Diversity: 1-D; Panel a, c) and Simpsons’s Evenness ( Panel b, d) in Clatskanie and
Corvallis soil origins. Orange boxplots and points denote Clatskanie and green denotes Corvallis soils. Bacterial/archeal diversity and evenness was
correlated with populin concentration in Corvallis soils (Panel e, f). Type-1 error rates given were generated by stepwise regression
model analyses
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one SA-secondary derivative in Clatskanie soil (CAP
model: p < 0.05) but were not affected by these in Cor-
vallis soils (CAP model: p > 0.20). Specifically, Clatskanie
bacteria/archaea community composition was influenced
by tremuloidin (F1,39 = 3.17, p = 0.003) and salicortin
concentrations (F1,39 = 1.88, p = 0.03) within roots. Fun-
gal community composition in Clatskanie soils was in-
fluenced by salicylic acid (F1,43 = 2.13, p = 0.006).

Dominant microbial taxa shifts
Out of twelve dominant (> 1.0% relative abundance) bac-
terial phyla, all differed between soil origins and among
plant genotypes, except Alphaproteobacteria which did
not vary among genotypes (Fig. 4c, Additional file 1:
Table S5). Out of 5 dominant fungal phyla, all except As-
comycota differed between soil origin, and all except Ba-
sidiomycota differed among genotypes (Fig. 5c,
Additional file 1: Table S6). Clatskanie soils had signifi-
cantly lower abundances of Actinobacteria, but greater
abundances of Acidobacteria (Fig. 4). Furthermore,
Clatskanie soils had significantly greater Basidiomycota
and lower abundances of other dominant fungal phyla
(Ascomycota, Mortierellomycota, Chytridiomycota, and
Glomeromycota; Fig. 5). All seventeen dominant bacter-
ial families differed in abundance between soil origins
(Fig. 3b) and among genotypes except Geobacteraceae
(Fig. 4d, Additional file 1: Table S5). Nine out of 12
dominant fungal families differed between soil origins
whereas ten differed among plant genotypes (Fig. 4,
Additional file 1: Table S6).
All bacterial phyla either correlated with a secondary

metabolite or between soil origin (Table 2). Betaproteo-
bacteria, Acidobacteria, Verrucomicrobia, Chloroflexi,
and Gemmatimonadetes correlated with salicylic acid
and/or populin (Table 2). Generally, these phyla declined
in abundance with increasing SA concentrations, but in-
creased with populin concentrations (Table 2), except
Chloroflexi exhibited a positive correlation with SA. In
addition, Actinobacteria and Firmicutes positively corre-
lated with tremuloidin; Firmicutes also correlated with
catechin and both Firmicutes and Deltaproteobacteria
negatively correlated with total phenolics (Table 2). Sev-
eral bacterial families also correlated with salicylic acid or
populin (Bacteroidetes Chitinophagaceae, Acidobacterial
Koribacteraceae and Solibacteraceae, Deltaproteobacterial
Geobacteraceae, Verrucomicrobial Ellin515, and



Fig. 3 Non-metric dimensional scaling ordination for bacteria/
archaea (a) and fungi (b) among twelve genotypes and between
Clatskanie and Corvallis soil origins. Points represent mean
ordination scores (i.e., the centroid, ± standard errors) with colors
denoting genotype and shape denoting soil origin. Circles represent
microbial communities grown in Clatskanie soils and triangles
represent Corvallis soils. Soil origin and genotype explained a large
proportion of variation in community composition for both bacteria/
archaea (~ 59%) and fungi (~ 45%; Table 3). Stress scores were ~ 0.06
for both bacteria/archaea and fungal community ordinations
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Betaproteobacterial Rhodocyclaceae; Additional file 1:
Table S7). One fungal phylum varied with secondary me-
tabolites: Mortierellomycota correlated with 2 metabolites:
negative correlation with tremuloidin and a positive cor-
relation with populin (Table 2). Four out of 12 fungal fam-
ilies correlated with specific secondary metabolites
(Additional file 1: Table S7). The basidiomycete Hymeno-
gastraceae and likely saprobic Mortierellaceae correlated
with SA, although Hymenogastraceae increased in abun-
dance with SA, whereas Mortierellaceae declined in abun-
dance with SA. The basidiomycete family
Piskurozymaceae positively correlated with populin, and
ascomycete family Nectriaceae negatively correlated with
tremuloidin (Additional file 1: Table S7).

Discussion
In this study, we provide evidence that (1) soil origin
representative of either abiotic differences and/or overall
divergence in regional species pools causes plant associ-
ated microbial compositional differences; (2) after
accounting for soil effects, plant genotype and to some
degree, chemotype, acts as a selective pressure in struc-
turing belowground microbial communities, particularly
bacterial taxa. Although plant genotypes varied substan-
tially in overall SA and SA-derivative production (Fig. 1),
an established gradient of root metabolites was observed
and selected for specific microbial groups in the rhizo-
sphere, but these responses varied by soil origin. Fur-
thermore, secondary metabolite production did exhibit
plasticity. Several compounds had an interaction with
soil origin (salicylic acid, tremuloidin; Fig. 1c) indicative
of the impact of environmental selection on host physi-
ology. Regardless of soil effects on metabolite produc-
tion, archaeal and bacterial taxa and to a lesser degree
fungal taxa, did vary not only based on soil origin and
host-genotype, but also by specific metabolites, such as
SA and populin (Fig. 2) and tremuloidin (Fig. 3). Fungal
community composition had more unexplained variance
relative to SA profiles, not only in terms of
alpha-diversity, but also for tax on abundances: as sev-
eral phyla did not differentially change in response to
metabolites. These data indicate that bacterial communi-
ties are relatively more responsive to salicylic acid and
its derivatives in belowground Populus-associated micro-
bial communities. These outlined responses may point
towards two potential mechanisms: (i) soil nutrient
status or other physico-chemical variables which vary
between soil type drive how microbial communities
respond to host-secondary metabolome in roots; or (ii)
the microbial taxa comprising regional species pools
may differ taxonomically and also in functional trait
expression, and therefore respond differentially to plant
chemical signaling in the rhizosphere.
Compared to plant genotype and chemotype, soil

origin was the primary habitat filter which resulted in
microbial community divergence belowground (~ 47%
explained community variation for bacteria/archaea,
~ 33% for fungi; Table 3, Fig. 3). This is a consistent find-
ing with other studies in the Populus root-rhizosphere
microbiome [4, 42] and other plant species [7, 8, 43, 44],
indicating larger-scale edaphic conditions primarily
regulate overall soil microbiomes and those available for
rhizosphere colonization, under most certain contexts.
Our greenhouse growth conditions maintained the same
rate of water supply and similar environmental conditions;



Fig. 4 The relative abundance of dominant bacterial phyla (class for Proteobacteria) and families within soil origins (Panel a, b) and among
genotypes (Panel c, d). Asterisks denote significant differences in abundance between soil origins or genotype generated by two-way ANOVA
models and with an FDR-statistical correction applied. Raw counts were centered log-ratio transformed prior to ANOVA models. Due to a large
portion of reads belonging to non-dominant families (> 50% all reads), an “Other” category is used for clarity
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thus, plant growth and microbial community differences
were due to soil-specific factors. For example, Colin et al.,
2017 [44] indicate that across a toposequence which varies
in soil nutrient status, beech trees selectively recruit
microbial taxa near roots dependent on soil conditions.
This effect is due to environmental conditions regulating
plant host metabolism, and therefore will result in strong
plant-microbe interactions. In this study, genotypes grown
in Clatskanie soils had greater aboveground leaf growth,
chlorophyll content, and net photosynthetic rates
(Additional file 1: Table S3) likely due to greater nutrient
content [45] although other variables related to soil quality
may have also cause increased plant growth. For example,
Corvallis soils have a finer soil texture and lower nitrogen
content, whereas Clatskanie soils were primarily com-
posed of clay-sized particles (Additional file 1: Table S1).
These initial differences in nutrient status may have been
further impacted by water retention and possible nutrient
leaching over the course of the 4month greenhouse
experiment [46]. In addition to these physico-chemical
differences in soils, bulk soils (incubated without plants
during this study) exhibit large differences in microbial
communities among soil origin and differed in microbial
composition relative to most genotype rhizospheres
(Fig. 3). This effect was particularly heightened for
fungal communities in the nutrient-rich Clatskanie soils.
Notably, the ratio of basidiomycetes to ascomycetes is
quite striking between soil origin: Clatskanie soils have
much higher proportions of basidiomycetes, and ectomy-
corrhizal basidiomycetous families, such as Hydnangia-
ceae, and general mycorrhizal or endophytic families,
such as Serendipitaceae. Clatskanie soils also have much
lower abundances of Actinobacteria, and notably the
novel family of Gaiellaceae, which have been suggested
to be associated with plants [47]. Furthermore, Clatskanie
bulk soils had a greater proportion of Acidobacteria than
Corvallis bulk soils (Fig. 4) and likewise, rhizosphere
communities in Clatskanie incubations had enrichment
of Acidobacteria compared to Corvallis. Such results
suggest that species pools were substantially different
among soil origins, which likely had a strong impact on
functionality of the microbiome. However, for fungal
communities, some groups, such as Chytridiomycota and
Glomeromycota had similar proportions between soil
origins, but plants grown in these soils had differential
recruitment of these groups. Chytridiomycota was 1.9%
on average in Clatskanie and Corvallis bulk soils yet, Cor-
vallis soils had a greater recruitment of this group (1.2%



Fig. 5 The relative abundance of dominant fungal phyla and families within soil origins (Panel a, b) and among genotypes (Panel c, d). Asterisks
denote significant differences in abundance between soil origins or genotype generated by two-way ANOVA models and with an FDR-statistical
correction applied. Raw counts were centered log-ratio transformed prior to ANOVA models. Due to a large portion of reads belonging to non-
dominant families an “Other” category is used for clarity
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rhizospheres) relative to Clatskanie (0.7% rhizospheres).
Such results indicate that not only are regional species
pool differences impactful in colonization and assembly
of microbes, but also highlights the importance of plant
selective processes in structuring the rhizosphere micro-
bial community. Therefore, differences in environmental
conditions, regional pools of microbial communities
specific to a soil-type, and plant selection may ultimately
regulate plant-host microbiome composition and subse-
quently host health.
Although soil type was the main driver of microbiome

composition, specific SA-derivatives regulated microbial
colonization and assembly and the specific derivatives
that had effects that were different between soil origins
and for bacteria/archaea versus fungi under certain con-
texts. Bacterial alpha and beta diversity correlated with
populin (Fig. 2) whereas fungal evenness correlated total
with phenolics and tremuloidin. However, the majority
of dominant taxa correlated with SA, populin (Betapro-
teobacteria, Acidobacteria,Verrucomicrobia, Mortierello-
mycota, etc.) or tremuloidin (Firmicutes,
Mortierellomycota)– this was demonstrated for both
bacteria and fungi. Lebeis et al., 2015 [7] demonstrated
that isogenic A. thaliana mutants lacking SA signaling
caused significant changes to root endophyte bacterial
communities, notably depletion of Firmicutes, and spe-
cific classes of Proteobacteria (Alpha-, Beta-), which was
mirrored at higher taxonomic resolutions (family and
OTU-level). This study differs compared to Lebeis et al.,
(2015) [7] in that SA is constitutively produced among
all genotypes of study representing a chemical gradient
(low to high concentrations) rather than presence/ab-
sence of the smaller hormonal levels of SA in Arabidop-
sis [7]. Similar to other studies, we found that specific
bacterial phyla and fungal families (Figs. 4, 5) respond to
SA-derivatives, but most effects occurred in response to
only specific derivatives and were multi-directional
(positive or negative interactions as indicated by regres-
sion model beta coefficients). SA signaling pathways are
regulated partially for systemic-acquired resistance to
phytopathogens and are typically studied in light of
pathogen infection [48], yet we see that diverse microbial
community’s representative of natural settings may
respond differentially to SA. These variable responses in
the rhizosphere suggest that not only does SA produc-
tion strongly select for specific microbiota, but microor-
ganisms have ecological strategies to tolerate (neutral
interaction) or even metabolize specific compounds



Table 2 Multiple stepwise regression model results for dominant bacterial and fungal phyla (and classes for Proteobacteria) that
significantly correlated with a secondary metabolites. Soil origin was also included as an explanatory variable to discern metabolite
versus soil effects. Raw abundances were centered log-ratio transformed prior to analysis. Type-1 error rates given are FDR-corrected

Full model statistics

Microbial Phylum Explanatory variable T p-value F-statistic Adj. R2 p-value

Bacteria

Betaproteobacteria Intercept 67.3 < 0.01 13.07 0.19 < 0.01

Soil(Corvallis) −2.84 < 0.01

salicylic acid −2.67 < 0.01

Deltaproteobacteria Intercept 17.99 < 0.01 21.99 0.38 < 0.01

Soil(Corvallis) −7.33 < 0.01

catechin 1.74 0.09

phenolics −2.17 0.03

Acidobacteria Intercept 70.39 < 0.01 51.94 0.6 < 0.01

Soil(Corvallis) −10.26 < 0.01

saliyclic acid −1.49 0.14

populin 2.66 < 0.01

Actinobacteria Intercept 45.92 < 0.01 25.79 0.42 < 0.01

Soil(Corvallis) 8.48 < 0.01

tremuloidin 2.25 0.03

populin −1.85 0.07

Verrucomicrobia Intercept 62.91 < 0.01 22.79 0.39 < 0.01

Soil(Corvallis) −5.68 < 0.01

salicylic acid −2.56 0.01

populin 2.29 0.02

Bacteroidetes Intercept 36.34 < 0.01 10.82 0.22 < 0.01

Soil(Corvallis) −3.49 < 0.01

salicylic acid −1.82 0.07

populin 2.51 0.01

Chloroflexi Intercept 48.68 < 0.01 41.9 0.45 < 0.01

Soil(Corvallis) −8.98 < 0.01

salicylic acid 2.15 0.03

Gemmatimonadetes Intercept 45.06 < 0.01 7.65 0.12 < 0.01

salicylic acid −2.79 < 0.01

populin 2.75 < 0.01

Firmicutes Intercept 7.93 < 0.01 3 0.08 0.02

tremuloidin 2.93 < 0.01

catechin 2.24 0.03

populin −1.53 0.13

phenolics −2.11 0.04

Fungi

Mortierellomycota Intercept 24.9 < 0.01 5.96 0.09 < 0.01

tremuloidin −2.42 0.02

populin 2.41 0.02

Explanatory variables deemed statistically significant are bold
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Table 3 Permutational Multivariate ANOVA results using
Euclidean distance matrices for bacterial/archaeal and fungal
communities and soil origin (Corvallis, Clatskanie soil), genotype,
and their interaction. Raw OTU counts were centered log-ratio
transformed prior to Euclidean distance calculations. 999
permutations were used to calculate significance values

Community Source of variation R2 Pseudo-F p-value

Bacteria/Archaea Soil Origin 0.47 113.56 0.001

Genotype 0.12 2.69 0.001

SxG Interaction 0.08 1.66 0.006

Residuals 0.33

Fungi Soil Origin 0.33 59.73 0.001

Genotype 0.12 1.95 0.001

SxG Interaction 0.09 1.57 0.007

Residuals 0.46

Explanatory variables deemed statistically significant are bold
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(positive interaction) [7, 49]. For example, bacterial com-
munities in gypsy moth midguts metabolize phenolic
glycosides and reduce plant defense chemicals [50].
Zhalnina et al., 2018 [41] demonstrated that rhizosphere
bacteria exhibit nutritive preferences for specific plant
exudate organic acids, such as salicylic acid, therefore it
is plausible that such secondary metabolites are benefi-
cially regulating rhizosphere microbiome composition.
This is further evidenced by several microbial groups
exhibiting positive interactions with SA and other deriv-
atives, such as Chloroflexi and the basidiomycete family
Hymenogastraceae, increasing in abundance with SA.
However, further evidence is required to validate such
an assertion as turnover in microbial taxa may also be
impacted by competitive interactions among groups.
Many bacterial taxa responded to genotype and che-

motype (SA-derivatives) with varying interactions spe-
cific to different taxonomic groups, whereas less fungal
taxa responded to host genotype and chemotype al-
though Mortierellaceae and Hymenogastraceae did
correlate with variation in metabolites among genotypes.
Ectomycorrhizal colonization rates were not impacted
by soil origin, plant genotype, or the majority of second-
ary metabolites (although did correlate with tremuloidin
to some degree) demonstrating the relative differences
in microbial response magnitudes of bacteria versus
fungi to our experimental manipulation. High SA levels
have been linked to either a delayed AM fungal
colonization [51] or even the inability for specific AMF
species to colonize [52, 53], indicating that SA signaling
impacts not only pathogenic infection, but also may in-
hibit mutualistic interactions specifically with AMF. Our
data suggest that such patterns do not extend to all
mycorrhizal species as we did not see any differences in
ECM colonization and there were actually increases in
the Hymenogastraceae with SA concentrations in our
amplicon-based analyses. Pfabel et al., 2012 [54] found
that although SA production was greater in poplars in-
fected with the fungal rust, Melampsora larici-populina,
there was no interaction between ECM colonization and
SA. However, it is plausible that microbial feedbacks
with plant hosts, such as mycorrhization, can directly
reduce plant host disease resistance responses via SA
production [47], but we cannot discern in this study the
effective mechanism for plant SA levels and whether
microbiome types may regulate its production.
Conclusions
Plant – soil – microbe interactions and the role of plant
secondary metabolism via SA are largely unexplored in
relation to diverse, exogenous microbiomes. This study
confirms the importance of large-scale conditions and
environmental heterogeneity on driving soil microbiome
assembly, but additionally validates the contribution of
plant host genotype and chemotype in acting as a select-
ive pressure in the surrounding rhizosphere soil. Specif-
ically, levels of SA and its derivatives appear to result in
shifts of key bacterial/archaeal and fungal groups in the
rhizosphere within differing soil origins. Initiatives using
Populus as a bioenergy stock may need to consider not
only the interplay between genotype and the below-
ground microbiome, but also the host chemotype which
can vary substantially among and within genotypes.
These results should be a key consideration for future
plant – microbial interactions research attempting to
integrate plant metabolomes and microbiomes.
Methods
We propagated cuttings in climate-controlled green-
house settings to detect differences in rhizosphere mi-
crobial communities among genotypes and between soil
origin under otherwise identical conditions. The cuttings
originated from 2 to 3 clonal replicates of each tree
genotype from a field-grown common garden Populus
trichocarpa population that has been maintained since
2009 in Corvallis, Oregon. The common garden spans
120 × 150 m with three replicate blocks so three repli-
cates all are subjected to roughly equivalent soil and cli-
mate conditions. Out of these ~ 1100 genotypes in the
population, 851 genotypes’ leaf tissues were previously
analyzed for salicylic acid and higher-order SA conjugate
profiles, including salicortin (see methods below). From
these data, twelve genotypes that varied by orders of
magnitude of in overall SA production and the concen-
tration of various SA derivatives, including salicin and
salicortin, were selected for greenhouse experiments.
Our preliminary data on a subset of approximately 30
genotypes showed leaf salicortin concentrations were
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highly correlated with root concentrations in these popu-
lations (regression R2 = 0.93; unpublished data).

Plant and soil collections
In January of 2016, 15-20 dormant cuttings were col-
lected from each of 12 clonal genotypes (approximately
200 cuttings in total) of Populus trichocarpa at a com-
mon garden near Corvallis, Oregon. Cuttings were kept
on ice, shipped overnight, and maintained at 4 °C until
rooting took place in February. Field soils (top 10 cm)
were used as a primary microbial inoculum at time of
planting (after rooting took place) in greenhouse settings
and were collected from two sites in Oregon – a com-
mon garden location adjacent to the Willamette River
(referred to as Corvallis soils) and a replicate common
garden from a nutrient-rich floodplain approximately
175 km north adjacent to the Columbia River (referred
to as Clatskanie). Samples from each site were made
from six mini-pits dug in areas adjacent to and between
rows of the Populus plantation at each site. Soils were
shipped on ice overnight and maintained at 4 °C until
plants were transplanted after taking root in March
2016. Soils from each site were composited, homoge-
nized, and allowed to air dry for 3 days to a similar water
contents prior to the experiment. The soils at these sites
had been previously characterized for %OM, %C, %N
and soil texture in 2012 (Additional file 1: Table S1) at
the University of Georgia Agricultural and Environmen-
tal Services Laboratories (http://aesl.ces.uga.edu/).

Greenhouse experimental design and plant
measurements
Each soil (Clatskanie and Corvallis) was mixed with
sterile sand in a 2:1 (soil: sand) mixture, to allow for
adequate drainage during the greenhouse experiment.
Cuttings were rinsed with DI water and a 1% Zerotol 2.0
solution for surface sterilization and placed in sterile
sand with rooting powder (0.1% indole-3-butyric acid) at
the cutting base to elicit root growth. Once significant
root growth was evident among genotypes (~ 6 weeks),
10 replicate cuttings per genotype (120 plants) were
transplanted to 3-L pots and the soil:sand mixture
described above. Half of these were transplanted in Cor-
vallis soils, the other half transplanted in Clatskanie soils
for a total of 5 replicates per genotype within each soil
origin. In addition, bulk soils controls of each soil:sand
mixture were potted with no plants, were included and
treated the same as the pots with experimental plants
throughout the growth period in the greenhouse. A drip
irrigation system connected to a DI water source was set
up to irrigate both planted pots and bulk soil controls
every 12 h for 10 min to prevent drought stress. Plants
were allowed to grow for ~ 4months. Approximately 2
weeks prior to harvest, plants were measured for leaf
chlorophyll content via a SPAD-502 Meter (Spectrum
Technologies, Inc., Aurora, IL, USA), leaf growth (num-
ber of leaves emerged since transplant), and leaf net
photosynthetic rate via the CO2 exchange system
LI-6400XT Portable Photosynthesis System (LI-COR,
Nebraska, USA). For SPAD measurements, three leaves
per plant were measured and the mean SPAD content
was calculated per plant. For gas exchange measure-
ments, three of five replicate plants per genotype within
each soil origin were measured between 10 am-2 pm
over a 2-day period to control for large diel differences
in photosynthetic ally active radiation (PAR).
Individual plants were destructively harvested at 4

months after transplant. Likewise, bulk soil controls
were destructively sampled. Each plant’s rooting system
was subsampled for assessment of multiple response
variables: root metabolomics for salicylate metabolite ana-
lysis, ectomycorrhizal root-tip colonization, and rhizo-
sphere soils for 16S and ITS2 rRNA amplicon-based
sequencing. Only fine-roots (< 2mm diameter) were se-
lected for these responses. For metabolomics, roots were
quickly rinsed in DI water and frozen in liquid nitrogen
immediately. For ectomycorrhizal colonization, a subset of
roots was placed at 4 °C until analyzed (all samples were
analyzed in ~ 1month). Additional roots with attached
rhizosphere soil and bulk soils were frozen at − 80 °C until
processed for DNA extractions.
Root metabolomic profiling and ectomycorrhizal
colonization
Root tissues were analyzed using gas chromatography-mass
spectrometry (GC-MS). Approximately 200mg of fine
roots were extracted in 2.5ml of 80% ethanol twice. An
aliquot of 1 ml of the combined extract was then
dried in a nitrogen stream. Sorbitol was added to this
mixture and used as an internal standard for relative
metabolite quantification. The dried aliquot was dis-
solved in acetonitrile, followed by trimethylsilylation
(TMS) for 2 days and then analyzed on GC-MS as
described previously [55]. Metabolites were identified
using the Wiley Registry 10th Edition with NIST 2014
mass spectral database and a large user-created data-
base (~ 2400 TMS signatures). We explicitly chose
genotypes based on higher-order salicylate profiles and
thus targeted these specific metabolites for statistical
analyses.
Additional roots for ectomycorrhizal colonization de-

tection were rinsed in DI water, cut to 10 mm length,
and randomly subsampled and viewed under a dissecting
microscope. For each plant root sample, 100 root-tips
were observed, and presence/absence of ECM scored to
obtain the percentage of ECM root-tip colonization
among each individual plant.

http://aesl.ces.uga.edu/
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DNA extractions and Illumina MiSeq sequencing
preparation
All rhizosphere soils were washed from roots in 200ml
of sterile DI water and centrifuged at 10,000 rcf for 10
min and supernatant removed. Subsequently, genomic
DNA was extracted from 250mg of pelleted rhizosphere
soil material using the MoBio PowerSoil DNA Isolation
Kit (MoBio Laboratories, Inc., Carlsbad, CA) according
to standard procedures except that extractions were
lysed using a Precellys bead mill homogenizer (Life Sci-
ence Products, Frederick, CO) at 5500 rpm for 3 cycles
of 30 s bead-beat, 30 s rest. All extractions were quanti-
fied on a NanoDrop 1000 spectrophotometer (Nano-
Drop Products, Wilmington, DE) and quantities
confirmed using the Qubit dsDNA Broad-Range assay
(Thermo Scientific, USA) prior to PCRs.
A two-step PCR approach using frameshifting nucleo-

tide primers was used for sequencing [56, 57] with bar-
code tagged reverse primers. Primers for bacterial PCRs
included 8 forward and 6 reverse 515F/806R primers for
the V4 region and 11 forward and 6 reverse primers for
fungal ITS2 at equal molar concentrations (0.5 μM) [56].
Thermal cycler conditions for primary PCRs consisted
of 5 cycles at 95 °C for 1 min, 50 °C for 2 min, and 72 °C
for 1 min. Secondary PCRs consisted of denaturation at
95 °C for 45 s followed by 32 cycles of 95 °C for 15 s,
60 °C for 30 s, 72 °C for 30 s, and final extension at
72 °C for 30 s. Experimental units were pooled based
on gel band intensity and then purified using Agencourt
AMPure XP beads system (0.7:1 ratio; Beckman Coulter
Inc., Pasadena, CA). Subsequently, Illumina MiSeq se-
quencing (v. 2; 2 × 250 cycles) were carried out using a
9pM amplicon concentration with a 15% PhiX spike.

Bioinformatics processing
Before sequence processing, frameshift primers were re-
moved using the cutadapt program in paired end legacy
mode [58]. Next, paired-end sequences (.fastq) were
processed using QIIME 1 [59]. Specifically, sequences
were joined and demultiplexed using QIIME default set-
tings, except using a Phred quality threshold of Q20.
After demultiplexing, chimeras were screened using the
QIIME-implemented UCHIME algorithm [60]. Detected
chimeras were removed from .fasta files and then
Operational Taxonomic Units (OTUs) were clustered at
97% similarity using the open reference workflow imple-
menting UCLUST [61]. Only PyNAST-aligned OTU ta-
bles, without singletons, were used for bacterial
community analyses. Bacterial OTUs were classified
using RDP with the greengenes database (version 13.8)
[62, 63] and fungal OTUs were classified using BLAST
with the UNITE reference [64, 65]. Potential contamin-
ant or artifact sequences (defined as unclassified at do-
main (archaea/bacteria) or kingdom (fungi) level,
mitochondria, chloroplasts, plants or protista) were fil-
tered from the dataset. OTUs with an abundance of < 10
sequences were also filtered and removed. For
alpha-diversity estimates, the dataset was then rarefied
at 13,000 sequences for bacteria and 3000 for fungi
resulting in 21,019 OTUs and 1,690,000 sequences for
archaea/bacteria, and 3534 OTUs and 411,000 sequences
for fungi. For taxon abundances, raw counts were
retained and normalized appropriately for statistical tests
(as noted below) to deal with the compositional nature
of sequence data [66]. Observed OTU richness, inverse
of Simpsons Diversity (1-D), and Simpsons Evenness (E)
were iteratively calculated in QIIME 1.

Statistical analyses
A two-way ANOVA model was performed for each plant
secondary metabolite (salicin, salicortin, α-salicyloylsalicin,
salicylic acid, tremuloidin, trichocarpin, populin, catechin,
total phenolics, total salicylates), trait measurement
(photosynthetic rate, leaf chlorophyll content, leaf growth)
and ectomycorrhizal root-tip colonization rates with soil
origin and genotype as explanatory variables. If genotype
was deemed a statistically significant predictor, a Tukey
HSD post-hoc pairwise comparison test was performed.
In addition, a multiple regression model with a stepwise
selection and Akaike’s Information Criterion (AIC)
minimization approach was performed to determine if
plant responses and ectomycorrhizal root-tip colonization
correlated with root secondary metabolite profiles. We
also calculated variation inflation factors for regression
models (vif function in package car in R) [67] and
found that several metabolites exhibited multicollinearity
(vif > 10; salicortin, α-salicyloylsalicin, total salicylates,
and trichocarpin), and thus were not included in these
final regression models. All plant responses were sig-
nificantly greater in Clatskanie compared to Corvallis
soils (Additional file 1: Table S3), therefore this mul-
tiple regression approach was performed for soil origin
data separately. The majority of secondary metabolites
were highly skewed thus were log10-transformed prior
to regression analyses.
Microbial alpha-diversity and evenness also had a

two-way ANOVA model performed with soil origin and
genotype as explanatory variables. Further, a multiple
regression model with stepwise selection and AIC
minimization was also performed with secondary metab-
olites as explanatory variables. Soil origin was also
included in these regression models to account for its
overall large influence on microbial diversity estimates.
For community composition, OTU-data was normalized
using the centered log-ratio (clr) transformation
(chemometrics package in R) [68] after a pseudocount of
1 was added to the data matrix to account for inter-
dependence among samples and the “compositional”
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nature of sequence data [66]. Euclidean distances were
calculated and implemented in a non-metric multidi-
mensional scaling plot (NMDS) to visualize both ar-
chaeal/bacterial and fungal community compositional
differences between genotypes and soil origin. A perMA-
NOVA model (adonis in vegan package) [69] was also
implemented to discern the amount of variation attrib-
uted to genotype, soil origin, and their interaction (with
999 permutations). In these analyses, soil origin was a
stronger driver of compositional differences (Fig. 3), thus
additional multivariate analyses were used with commu-
nities from Clatskanie and Corvallis soil origin separ-
ately. A constrained analysis of principal coordinates
([CAP], capscale function in vegan package) [69] was
calculated for bacteria/archaea and fungi in Clatskanie
and Corvallis soils with plant metabolites included as
predictor variables. The CAP analysis had an additive
constant added to correct for non-negative eigenvalues
resulting from non-metric dissimilarities (add = T) [69].
Similar to NMDS analyses, Euclidean distances were cal-
culated for CAP ordinations after a clr-transformation
was applied to OTU counts. An ANOVA-like permuta-
tion test (999 permutations) was then used to determine
if CAP models were deemed statistically significant and
by which fixed effect terms (metabolites).
For microbial taxon abundances, raw counts of both

bacterial/archaeal and fungal phyla and families were
normalized by clr transformations [68]. Two-way ANO-
VAs were used to discern how soil origin, genotype, and
their interactions influenced taxon abundances. If geno-
type was deemed a statistically significant predictor, a
Tukey HSD post-hoc pairwise comparison test was
performed to detect which specific genotypes differed.
All Type 1 error rates had a Benjamini-Hochberg (FDR)
p-value correction performed for running multiple
ANOVA models at each taxonomic resolution (phyla,
family models). Lastly, similar to plant trait variables, a
stepwise regression model was used to understand how
metabolites correlated with taxon abundances. Due to
soil origin being a repeatedly strong predictor of taxa
abundances, soil origin was also a predictor variable as well
as metabolites for these models. All regression models
within a taxonomic resolution had the Benjamini-Hochberg
correction applied.
Additional file

Additional file 1: Table S1. Soil characteristics for the two soil origins
where soils were collected for the greenhouse study. Table S2. The
mean (± 1 standard deviation) concentration of plant secondary
metabolites (μg g-1 FW) across the 12 Populus trichocarpa genotypes
grown in this study. GW-11032 had 3 samples grown in Corvallis soils
that were destroyed and no data collected therefore only 2 replicates for
this genotype in that soil origin are present across datasets. Table S3.
Two-way ANOVA model summary for responses of plant measurements:
photosynthetic rate (μmol m-2 s-1), leaf chlorophyll content, and leaf
growth (no. since transplant) and explanatory variables of soil origin,
genotype, and their interaction. Explanatory variables deemed statistically
significant are bolded. Table S4. Stepwise regression model summary for
responses of plant measurements: photosynthetic rate (μmol CO2 m-2 s-
1), leaf chlorophyll content, and leaf growth (no. since transplant) and ex-
planatory variables of salicylic acid and secondary metabolites. Only me-
tabolites retained after AIC minimization for final model statistics are
shown. Table S5. Two-way ANOVA results for dominant bacterial phyla
(and class for Proteobacteria) and families with soil origin, genotype, and
their interaction as explanatory variables. Taxon abundances were clr-
transformed prior to ANOVAs. All Type-1 error rates were FDR-corrected.
Table S6. Two-way ANOVA results for dominant fungal phyla and fam-
ilies with soil origin, genotype, and their interaction as explanatory vari-
ables. Taxon abundances were clr-transformed prior to ANOVAs. All Type-
1 error rates were FDR-corrected. Figure S1. Bacterial and fungal diversity
and evenness across genotypes and soil origins. Bacterial diversity and
evenness and fungal evenness had a significant interaction among geno-
types and soil origin (GxS) whereas fungal diversity did not differ among
genotypes or soil origin. Figure S2. Constrained analysis of principal
coordinates (CAP) plot visualizing rhizosphere bacterial/archaeal (Panel A,
C) and fungal communities (Panel B, D) at the OTU-level across the 12
genotypes of study and within two differing soil origins (Clatskanie and
Corvallis). Color denotes communities within different genotypes
whereas circles denote Clatskanie soils and triangles denote Corvallis soils.
(DOCX 703 kb)
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