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Abstract

Background: The metabolic syndrome (MetS) epidemic is associated with economic development, lifestyle transition
and dysbiosis of gut microbiota, but these associations are rarely studied at the population scale. Here, we utilised the
Guangdong Gut Microbiome Project (GGMP), the largest Eastern population-based gut microbiome dataset covering
individuals with different economic statuses, to investigate the relationships between the gut microbiome and host
physiology, diet, geography, physical activity and socioeconomic status.

Results: At the population level, 529 OTUs were significantly associated with MetS. OTUs from Proteobacteria and
Firmicutes (other than Ruminococcaceae) were mainly positively associated with MetS, whereas those from Bacteroidetes
and Ruminococcaceae were negatively associated with MetS. Two hundred fourteen OTUs were significantly associated
with host economic status (140 positive and 74 negative associations), and 157 of these OTUs were also MetS associated.
A microbial MetS index was formulated to represent the overall gut dysbiosis of MetS. The values of this index
were significantly higher in MetS subjects regardless of their economic status or geographical location. The index
values did not increase with increasing personal economic status, although the prevalence of MetS was significantly
higher in people of higher economic status. With increased economic status, the study population tended to consume
more fruits and vegetables and fewer grains, whereas meat consumption was unchanged. Sedentary time was
significantly and positively associated with higher economic status. The MetS index showed an additive effect with
sedentary lifestyle, as the prevalence of MetS in individuals with high MetS index values and unhealthy lifestyles was
significantly higher than that in the rest of the population.

Conclusions: The gut microbiome is associated with MetS and economic status. A prolonged sedentary lifestyle, rather
than Westernised dietary patterns, was the most notable lifestyle change in our Eastern population along with economic
development. Moreover, gut dysbiosis and a Western lifestyle had an additive effect on increasing MetS prevalence.
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Background
Dysbiosis in the human gut microbiota causes or aggra-
vates metabolic disorders by affecting host energy bal-
ance, chronic inflammation and feeding behaviour [1–4].
In addition, the gut microbiota of Western populations
harbours higher obesogenic capabilities than the gut
microbiota of populations from under-developed nations
[5]. These findings imply relationships among economic
development, gut microbiota shifts and the metabolic
syndrome (MetS) epidemic. The morbidity of metabolic
diseases is increasing rapidly in Eastern nations, likely
due to the drastic lifestyle transitions that occur during
economic development and urbanisation [6–8]. Due to
the unbalanced economic development across Eastern
nations, these areas provide opportunities to observe the
associations among economic status, gut microbiota and
metabolic diseases.
We recently performed the largest Eastern-nation gut

microbiome epidemiological survey, which included
7009 individuals in South China, using a multi-stage
cluster sampling scheme (Guangdong Gut Microbiome
Project, GGMP) [9]. Our preliminary observations were
that the human gut microbiota exhibits large regional
variations but that it is possible to identify consistent gut
microbial signatures for metabolic syndrome by per-
forming population-level analyses within a large region.
In the present study, we utilised the GGMP dataset to
reveal the gut microbiome signatures of MetS and aimed
to analyse the relationships among gut dysbiosis, host
economic status and the metabolic disease epidemic.

Results
The overall gut microbiome configuration is correlated
with MetS
We previously described the population included in the
GGMP (Guangdong Gut Microbiome Project) [9]. A total
of 6896 individuals were included in the present analysis
according to our inclusion criteria (Additional file 1:
Supplementary Methods, lines 25–27), of which 1404
(20.4%) were diagnosed with MetS (Table 1). High systolic
blood pressure (SBP) was the most common disorder
found in the population, followed by low high-density
lipoprotein (HDL). There was approximately equal repre-
sentation of the two genders in the population. MetS and
related disorders were significantly more prevalent in men
than in women.
Through QIIME analyses [10], a total of 17,083 16S

ribosomal small subunit 97% OTUs were obtained after
the samples were rarefied to 10,000 sequences. To deter-
mine whether our sampling size was adequate to detect
significant correlations between the gut microbiome and
MetS, we examined significance using Adonis analysis
with various subsample sizes and 50 replications per
size. As illustrated by the Adonis p values, larger sample

sizes resulted in lower p values (or higher 1/p, Fig. 1a),
and it was determined that approximately 1800 samples
were required to confidently obtain significant correla-
tions between MetS and the gut microbiome for all 50
replications at this sample size. This finding indicates
that our sample size was sufficient for identifying micro-
bial signatures for metabolic disorders in the population.
As demonstrated by the Shannon and phylogenetic di-
versity (PD) whole tree indices, microbial diversities
were significantly lower in MetS subjects than in the re-
mainder of the population (Fig. 1b, c).
To identify microbiome signatures of MetS, we per-

formed MaAsLin (multivariate association with linear
models) to associate host metadata with gut microbial
species [11, 12]. MaAsLin performs boosted, additive
general linear models between metadata (predictors) and
microbial species’ abundances (response variables), and
reports beta values of modelling (coefficients) and statis-
tical significance after controlling for the false discovery
rate (q value). MaAsLin can detect the effect of one
metadata category while de-confounding the effects of
others. By implementing MaAsLin, we examined the as-
sociations between OTUs and MetS status and between
OTUs and the condition’s diagnostic factors in a stringent
manner (Additional file 1: Supplementary Methods, line
49 to 65). We also discarded OTUs that existed in less
than 10% of our participants from this analysis, with 930
OTUs remaining for further analysis. Five hundred
twenty-nine of the 930 analysed OTUs, constituting ap-
proximately 80% of the total abundance, were significantly
associated with MetS or its related factors (Fig. 1d).
Among the 1243 associations between OTUs and MetS or
its diagnostic factors, 676 were negative associations, and
567 were positive associations. The associations with
OTUs were as follows: waist (184− negative and 175+
positive associations, represented as “184−” and “175+”
hereafter), triglycerides (TG, 149− and 153+), systolic

Table 1 Characteristics of the study participants

Female
(n = 3803)

Male
(n = 3093)

P value

Age (years, mean ± SD) 51.9 ± 14.4 53.7 ± 14.9 < 0.001

Waist ≥ 90 cm (male)
or ≥ 85 cm (female), n (%)

963 (25.3) 678 (21.9) 0.001

BP ≥ 130/85 mmHg, n (%) 1775 (46.7) 1636 (52.9) < 0.001

SBP ≥ 130 mmHg, n (%) 1709 (44.9) 1557 (50.3) < 0.001

DBP ≥ 85 mmHg, n (%) 773 (20.3) 916 (29.6) < 0.001

TG ≥ 1.7 mmol/L, n (%) 728 (19.1) 836 (27.0) < 0.001

HDL < 1.04 mmol/L, n (%) 799 (21.0) 1107 (35.8) < 0.001

FBG ≥ 6.1 mmol/L, n (%) 628 (16.5) 584 (18.9) 0.011

MetS, n (%) 657 (17.3) 747 (24.2) < 0.001

Significant differences were determined by a t test for age and chi-square
tests for the remaining factors
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blood pressure (SBP, 92− and 43+), diastolic blood
pressure (DBP, 72− and 29+), fasting blood glucose
(FBG, 21− and 40+), HDL (34+ and 16−) and MetS
status (124− and 111+). The full list of associations is pro-
vided in Additional file 2: Table S1.

Association patterns between gut species and MetS were
phylogenetically consistent
In our data, Bacteroidetes, Proteobacteria and Firmicutes
contributed 92.3% of the total abundance and the majority
of the associations with MetS. For Bacteroidetes, 129 of its
OTUs were associated with MetS, constituting approxi-
mately 79.2% of the total abundance of Bacteroidetes and
27.9% of the entire community (Fig. 2a, Additional file 1:
Figure S1a). These 129 OTUs contributed to 362 associa-
tions with MetS and its diagnostic factors, and almost all
of these associations were negative (350− and 12+, HDL
was rescored with the opposite valence when added to
other factors here and in the following results). For Pro-
teobacteria, 96 of its 137 OTUs were associated with MetS
or its diagnostic factors and constituted 93.4% of the total

Proteobacteria abundance and 15.3% of the entire com-
munity (Fig. 2b, Additional file 1: Figure S1b). The 137
Proteobacteria OTUs exhibited 251 associations with
MetS and its diagnostic factors, and almost all of these as-
sociations were positive (230+ and 21−).
The roles of the Firmicutes phylum in metabolic dis-

eases are known to be complex, and previous reports
have been inconsistent [13–15]. Such inconsistency was
also captured in our population (Fig. 3, Additional file 1:
Figure S1c), as 272 positive associations and 284 nega-
tive associations were observed between Firmicutes
OTUs and MetS or its diagnostic factors. Within this
phylum, phylogenetic conservativeness was observed at
the family level for the associations between gut species
and MetS. OTUs from Ruminococcaceae (176− and 30
+) and Christensenellaceae (8− and 0+) tended to associ-
ate negatively with MetS, whereas OTUs from other
Firmicutes, including Lachnospiraceae (43− and 120+),
Clostridiaceae (5− and 29+), Veillonellaceae (5− and 14
+), and Peptostreptococcaceae (2− and 25+), tended to
associate positively with MetS. The association patterns
persisted when using other clustering methods or

Fig. 1 The overall gut microbial community is associated with MetS. a Significance, represented by log10 transformed (1/p) value, of ADONIS test
associating gut microbiota variations and MetS at different sample sizes, with 50 replicates at each step. The red line indicates p = 0.05. b Shannon
indices comparing MetS subjects (MetS, N = 1404) with the remainder of the population (non-MetS, N = 5492). c PD whole tree indices comparing
MetS subjects (MetS, N = 1404) with the remainder of the population (non-MetS, N = 5492). Wilcoxon rank-sum test adjusted by the Benjamini and
Hochberg method (b, c). ***P < 0.001, **P < 0.01. d Proportions of OTUs associated with MetS in terms of OTU number and accumulated abundance
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confounders (Additional file 1: Supplementary Results,
line 202 to 261).
In addition to the above dominant phyla, OTUs from

other phyla, including Actinobacteria (0− and 35+),
Fusobacteria (1− and 16+, all with Fusobacterium),
Verrucomicrobia (7− and 0+, all with Akkermansia),
Tenericutes (9− and 0+, all with RF39), Synergistetes
(1− and 0+, all with Synergistes) and Euryarchaeota (3−
and 0+, all with Methanobrevibacter), were also correlated
with MetS or its diagnostic factors (Additional file 1:
Figure S2). The Actinobacteria OTUs were highly diverse,
with associations involving two classes and seven families,
which were all positively associated with MetS or related
factors (Additional file 2: Table S1). Bifidobacterium
OTUs were positively associated with FBG, and these as-
sociations persisted after adjusting for the consumption of
pre-/pro-/sym-biotics (Additional file 2: Table S2). More
detailed descriptions of associations between OTUs and
MetS are provided in Additional file 1: Supplementary
Results, lines 104 to 184.

Associations between gut microbiota, economic status
and metabolic syndrome
According to data from the Statistics Bureau of Guangdong
Province, in 2015, our sampling regions covered both
underdeveloped cities, such as Meizhou and Wuhua
(Gross Domestic Product (GDP) per capita, 22.1 k and
25.3 k CNY, respectively), and developed ones, such as

Shenzhen and Guangzhou (GDP per capita, 149.5 k and
136.1 k CNY, respectively). We collected data on partici-
pant yearly income and spending by questionnaire to rep-
resent participant economic status. The median income
and spending in each sampling area were well correlated
with local GDP per capita, indicating that self-reported in-
come and spending reliably reflected participant economic
status (Additional file 1: Figure S3). Using gender, age and
Bristol stool scale as confounders, we found a total of 214
OTUs, representing 38.3% of the total microbial abun-
dance, that were significantly associated with personal in-
come or spending (Additional file 2: Table S3). Among
these OTUs, 140 were positively correlated with economic
status, comprising 59 Bacteroides OTUs, 6 Parabacteroides
OTUs, 5 Rikenellaceae OTUs, 21 Lachnospiraceae OTUs,
11 Ruminococcaceae OTUs, 12 Veillonellaceae OTUs and
11 beta-Proteobacteria OTUs, whereas 74 OTUs were
negatively associated with individual economic status, com-
prising 14 Prevotella OTUs, 17 Clostridiaceae OTUs, 9
Peptostreptococcaceae OTUs, 11 Ruminococcaceae OTUs
and 4 Enterobacteriaceae OTUs (Fig. 4a). Among these 214
OTUs associated with economic status, 157 were also sig-
nificantly associated with MetS or its diagnostic factors.
However, we did not find a general consistency between
correlations of OTUs with MetS and those of OTUs with
economic status in our sampled population, as OTUs that
were positively correlated with economic status were either
positively or negatively correlated with MetS (Fig. 4b). For

Fig. 2 Associations between MetS and OTUs from Bacteroidetes and Proteobacteria. Network showing significant associations between (a) Bacteroidetes
and (b) Proteobacteria OTUs and MetS. Squares represent metadata, and circles represent OTUs, which are connected with red or blue edges where
significantly positively or negatively associated, respectively. Edges are bundled for clearer visualisation. The actual number of associations is summarised
below the network
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Fig. 3 Associations between MetS and OTUs from Firmicutes. Network showing the significant associations between Firmicutes OTUs and MetS.
The figure structure is similar to that of Fig. 2

Fig. 4 Associations between OTUs and host economic status. a Stacked plot showing the number of OTUs that are positively or negatively associated
with income or spending. Colours correspond to taxonomies in the legend. b Four-quadrant diagram showing the coefficients of OTUs with MetS
(x-axis) and spending (y-axis). OTUs that are significantly associated with MetS and economic status simultaneously were plotted
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example, of the four OTUs that showed the highest positive
correlation coefficients with economic status, two of them,
which were two Bacteroides OTUs, were negatively corre-
lated with MetS, whereas the other two, one Ralstonia
OTU and one Megamonas OTU, were positively correlated
with MetS.
To explore the correlation of MetS-associated gut dys-

biosis with economic status, we formulated a gut micro-
bial MetS index to represent the overall gut dysbiosis
associated with MetS for a given sample (Additional file 1:
Supplementary Methods, lines 77 to 82). This index was
the accumulated abundance of positively and negatively
MetS-associated OTUs weighted by their coefficient and
significance values. To determine whether this index could
reliably reflect gut dysbiosis, we investigated whether the
MetS index was consistently higher in MetS subjects than
in non-MetS subjects in different subpopulations. Our re-
sults showed that regardless of economic status or sam-
pling city, the MetS indices were higher in MetS subjects
than the other subjects, suggesting the applicability of this
index (Fig. 5a, b). Interestingly, rather than observing a
positive correlation between gut microbial MetS index
and host economic status, we observed a slight but signifi-
cant negative correlation between these two parameters in
non-MetS subjects (r = − 0.056, p < 0.001) (Fig. 5c), indi-
cating that, in our population, the gut microbiota of
people of higher economic status did not show more signs
of MetS in their gut microbiome compositions than that
of lower economic status individuals.

Sedentary lifestyle in combination with gut microbiota
dysbiosis showed an additive effect in increasing
metabolic syndrome prevalence
The prevalence of MetS usually increases with economic
development. This was observed in our population. MetS

prevalence was significantly higher in individuals with
higher economic status (26.8%) than in those of with
lower economic status (16.7%) (Fig. 6a). To understand
the reasons behind this phenomenon, we explored the
correlations of personal economic status with diet habits
as well as with lifestyle habits. With increasing economic
status, diet patterns did not become increasingly Wester-
nised in our investigated population. The amount of meat
consumption did not vary with economic status, whereas
vegetable and fruit consumption significantly increased
and grain consumption decreased with increasing eco-
nomic status (Fig. 6b). In addition, we observed that
people of higher economic status in our population had
more awareness of public health knowledge, which might
partially explain the different dietary patterns. Accord-
ingly, smoking was also reduced at higher economic sta-
tus. Nevertheless, sedentary lifestyle significantly increased
with increasing personal spending.
We wondered if MetS-associated gut dysbiosis had an

additive effect with increased sedentary time on MetS
prevalence. To investigate this possibility, we quarterised
our participants according to MetS index and calculated
the MetS prevalence in each quartile. The results
showed that MetS was significantly more prevalent in
the 4th quartile (26.3%) than in the 1st quartile (14.7%)
(Fig. 6c). Furthermore, when we added sedentary time as
a synergistic factor and re-classified our population, the
discrepancy in MetS prevalence among quartiles was
further enlarged, with 30.9% of individuals with both
long-term sedentary lifestyle and high microbial MetS
index suffering from MetS. This percentage was almost
triple the percentage of individuals with MetS within the
1st quartile for both MetS index and sedentary time
(10.6%). The percentages of people with MetS who had a
high MetS index but low sedentary lifestyle (19.6%) or a

Fig. 5 Validating the MetS index and its association with economic status. a, b The MetS index compared between MetS subjects and non-MetS
subjects in individuals with different economic status using boxplots (a) and in individuals from different sampling regions using a radar chart (b).
In (b), the median MetS index values of MetS and non-MetS subjects in each region were plotted along with radar angles, and each angle represents
one sampled region. Wilcoxon rank-sum test adjusted by the Benjamini and Hochberg method (c, d). ***P < 0.001, **P < 0.01, *P < 0.05. c Correlations
between the MetS index and spending in MetS and non-MetS subjects evaluated by Spearman correlation tests
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low MetS index but a high sedentary lifestyle (16.6%,
Fig. 6d and Additional file 2: Table S4) were between the
two. With increasing economic status, we observed a
shift from fairly active (low sedentary time) to sedentary
lifestyles and, consequently, a shift from lower to higher
risk patterns (Fig. 6d). Accordingly, the additive effect of
sedentary time and gut microbiome dysbiosis contrib-
uted to the increased rate of MetS in people of higher
economic status.

Discussion
The present study used a dataset, the Guangdong Gut
Microbiome Project (GGMP), with a stringent protocol
applied for the data collection process [9]. We utilised a
stratified, multi-level sampling scheme, with nearly 7000

subjects included in the final analyses. The identification
of MetS individuals was based on blood tests performed
and measured anthropometric values collected in situ by
three trained faculty members. To adjust the multivari-
able association analysis, age, gender, geographic loca-
tion and the Bristol stool scale were included to account
for confounding effects [16–20], and a stringent false
discovery rate (FDR) threshold was applied to minimise
false discoveries. These processes allowed us to identify
the microbiome signatures associated with metabolic
diseases with high confidence. More than half of the
analysed OTUs, constituting up to 80% of the total
abundance and spanning almost all phyla, were signifi-
cantly associated with metabolic disorders. Although
many studies have reported correlations between gut

Fig. 6 Relationships among host economic status, MetS prevalence and lifestyle. a MetS prevalence in individuals of differing economic status.
Individuals were classified into low-spending (N = 1170), moderate-spending (N = 2394) and high-spending (N = 1099) groups, and the ratios of
MetS subjects of each group were compared by a chi-square test, with adjustment by the Benjamini and Hochberg method; ***P < 0.001, *P < 0.05.
b Bar plot illustrating correlation coefficient values for host spending and lifestyle. A longer bar indicates a higher coefficient, and the R values are
labelled on the x-axis. Correlation coefficients were calculated by Spearman correlation, and the Benjamini and Hochberg method was used to adjust
for multiple comparisons. ***P < 0.001. c Comparison of MetS prevalence between subjects with low MetS index values (N = 1719) and high MetS
index values (N = 1714), with analysis performed via a chi-square test. d MetS prevalence in individuals with different MetS index values. Individuals
were quarterised according to their MetS index values, and the ratio of MetS subjects in each quartile was compared by a chi-square test. The top 16-
grid plot shows the MetS prevalence in different subpopulations. Individuals were divided into 16 groups according to the quarterisation of their MetS
index (x-axis) and sedentary time values (y-axis). The colour gradient of the cell indicates MetS prevalence, which is also indicated in each cell.
The results of the statistical tests between all pair of cells are provided in Additional file 2: Table S4. The three bottom 16-grid plots show population
distributions within each spending level. Individuals were first divided into high-(the second plot), moderate-(the third plot) and low-spending (the fourth
plot) groups, and the proportion of individuals in each cell at their economic level was calculated. The greyscale of the cell indicates the proportion, which
is also indicated in each cell
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microbiota and metabolic diseases [21–24], this high pro-
portion shows that gut microbes are generally correlated
with the metabolic status of the host.
Our results for the large study population show that

similar taxonomic groups generally yield similar results
with respect to their positive or negative correlations with
metabolic disorders. It is possible that OTUs from phyla
with low levels of diversity, e.g. Verrucomicrobia
(dominated by Akkermansia), Fusobacteria (dominated by
Fusobacterium) and Tenericutes (dominated by RF39),
may have similar correlation directions with MetS. Never-
theless, OTUs from major taxa with very high levels of
diversity, such as Bacteroidetes, Proteobacteria, Actinobac-
teria and Ruminococcaceae, showed similar relationships
within each taxon to metabolic disorders. These similar
patterns indicate that, although the phylogenetic classi-
fication of microbes is not necessarily related to their
functions, many phylogenetic groups contain members
with similar traits regarding their relationships with
host metabolism [25].
The relationships between some gut microbial taxa and

host metabolism reported in Western populations were
also recaptured in our population. For example,
Akkermansia was found to be an important metabolism-
regulating bacterium in recent clinical trials [26, 27]. In
our population, an Akkermansia OTU showed the highest
negative coefficient with MetS, indicating that this bacter-
ium is among the most important beneficial bacteria for
host metabolism in our population. The similar gut micro-
bial taxa alterations between Eastern and Western popula-
tions in metabolic disorders also included OTUs from
Firmicutes (e.g. Blautia, Clostridium, Megasphaera,
Roseburia, Faecalibacterium, Christensenellaceae and
Oscillospira) and Proteobacteria [28–32]. Such findings
suggest that, even with large variations in ethnicity, life-
style, dietary habits, socioeconomic status and environ-
mental factors between Western and Eastern populations,
gut microbial dysbiosis patterns for MetS could be similar
between Western and Eastern nations. These findings
provide supporting justification for efforts to identify
universal microbiota targets for metabolic diseases [33],
even if microbiota-based disease models might not be
equally applicable among different locations [9], to facili-
tate the delivery of precise nutrition and medicine in the
future [34].
The present study provides additional novel and inter-

esting insights regarding the relationships between gut
microbes and metabolic diseases. We found that Fuso-
bacterium, an important colonic carcinogenic bacterium
[35], was positively correlated with metabolic disorders,
indicating that this bacterium might participate in both
colon cancer and metabolic diseases. Lactobacillus was
positively associated with metabolic disorders after
adjusting for the consumption of pre-/pro-/sym-biotics,

consistent with previous reports that this bacterium is
enriched in obese patients [36] and in patients with type
2 diabetes [23], MetS [37], stroke [38] and rheumatoid
arthritis [39]. Similarly, we found that Bifidobacterium
OTUs were positively associated with FBG. This finding
seems to conflict with conventional understanding, as
Lactobacillus and Bifidobacterium are two major groups
used in probiotics but are enriched in metabolic disor-
ders. Our cross-sectional study does not allow us to
argue against the reported benefits of these traditional
probiotics, as causality cannot be inferred based on the
data reported here, and the apparent contradiction
might result from strain-level specificity in bacterial
functions. Nevertheless, the roles of these two genera in
host metabolism under nutrient-rich conditions should
be investigated more thoroughly.
The present study provided evidence that gut microbes

are associated with economic status. In our study, more
than 200 OTUs, constituting approximately 38.3% of the
total gut microbial abundance, were correlated with in-
dividual yearly income or spending, indicating general
associations between gut microbes and host economic
status. OTUs from gamma-Proteobacteria were nega-
tively associated with economic status, which agrees
with the observation that this taxon is prevalent in
less-developed areas [17, 33, 40]. Interestingly, in an ana-
lysis of the gut microbiome over a 1-year period of a
subject who travelled to developing nations in Southeast
Asia, a sharp increase in gamma-Proteobacteria was
found [41], supporting the idea that environments in
less-developed areas may produce an enrichment of spe-
cies from gamma-Proteobacteria in the guts of those liv-
ing there. In our study, OTUs from Bacteroides were
positively correlated with host economic status, whereas
those from Prevotella were negatively correlated with
host economic status. It was previously reported that
children from Europe harbour a higher proportion of
gut Bacteroides, whereas those from rural Africa harbour
a higher proportion of gut Prevotella [5]. Our observa-
tions indicate that such a trend might be related to de-
creased grain consumption in individuals of higher
economic status [42].
OTUs that were associated with economic status were

generally also associated with MetS or its diagnostic fac-
tors. Nevertheless, the gut microbiota did not consist-
ently shift to a more dysbiotic status with economic
development. In our population, meat consumption was
not significantly and positively associated with economic
status, whereas vegetable and fruit consumption were.
These findings might be because livestock meat is not a
limited food resource in Guangdong Province, which is
one of the wealthiest regions in China. (The GDP of
Guangdong Province ranked 1st in China according to
data from National Bureau of Statistics of China in
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2015.) Furthermore, individuals of higher economic sta-
tus were more aware than were those of lower economic
status of relevant public health knowledge and were thus
more likely to develop a healthier diet.
The potential addictive effect of gut dysbiosis and life-

style is an interesting finding. Our results only superfi-
cially addressed this relationship, and further studies are
needed to establish causality. Fei et al. isolated a bacter-
ial strain, Enterobacter cloacae B29, from an obese man,
that induced obesity and insulin resistance in germ-free
mice fed a high-fat diet but not in those fed a normal
chow [43], suggesting that diet may have additive effects
with gut dysbiosis as well. The observed additive effect
of gut dysbiosis and lifestyle implies that the risk of
metabolic diseases from gut dysbiosis is high in under-
developed areas if people transition to a Western life-
style. We suggest that the co-occurrence of gut dysbiosis
and lifestyle change in developing areas may play addi-
tive roles in metabolic diseases and that additional stud-
ies on this topic are warranted with additional cofactors,
such as genetics, diet and their interactions.

Conclusion
The present analysis, based on a sample size of nearly
7000 participants in an Eastern nation, revealed gut
microbiota alterations associated with MetS. These alter-
ations were phylogenetically conserved and showed
similarities to those reported in Western populations.
Furthermore, our study indicated a relationship between
the gut microbiome and economic development and
provided preliminary evidence that gut dysbiosis inter-
acts with Western lifestyle habits to affect MetS preva-
lence. We propose that the gut microbiome may provide
potential targets for epidemic metabolic diseases.

Methods
Description of the dataset
We previously described the Guangdong Gut Micro-
biome Project (GGMP) [9]. Briefly, the project was con-
ducted in South China across 14 preselected districts/
counties corresponding to various degrees of economic
development. Three neighbourhoods/townships were
randomly selected in each district/county, and two com-
munities/villages were randomly selected in each neigh-
bourhood/township using probability proportional to
size (PPS) sampling. Approximately 7000 subjects were
investigated, and their gut microbiomes were profiled by
sequencing the V4 region of the 16S rRNA gene.

Bioinformatics and biostatistics
Processing of the raw Illumina sequences was mainly
based on the Greengenes database [44] of QIIME (1.9.1)
software [10] and was identical to that described in our
previous reports [9]. We performed multivariate

association analyses with linear modelling (MaAsLin) as
described by Morgan et al. [12] to examine associations
between prevalent operational taxonomic units (OTUs,
detected in at least 10% of all samples) and each of MetS
status and several diagnostic factors. Age, gender, geo-
graphic location and the Bristol stool scale were used as
confounders, and the false discovery rate was limited to
0.05. R (3.2.2) statistical software was used for data plot-
ting and statistical analyses. The significance of differences
between two groups was determined by the Wilcoxon
rank-sum test. The Spearman’s rank correlation test was
used to analyse the correlation between two variables. The
chi-square test was used to compare the ratios of two
groups. P values less than or equal to 0.05 were consid-
ered significant. The Benjamini and Hochberg method
was used to adjust the P value for multiple hypotheses.
Detailed descriptions can be found in Additional file 1:

Supplementary Methods and Materials.
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Additional file 1: Supplementary Data: contains Supplementary
Methods and Materials, Supplementary Results, Supplementary Figures
and Legends, References for Supplementary Data. (DOCX 3627 kb)

Additional file 2: Supplementary Tables S1-S13. (XLSX 1996 kb)
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