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Abstract

Background: Cigarette smoking is a known risk factor in a number of gastrointestinal (GI) diseases in which the
microbiota is implicated, including duodenal ulcer and Crohn’s disease. Smoking has the potential to alter the
microbiota; however, to date, the impact of smoking on the mucosa-associated microbiota (MAM), and particularly that
of the upper GI tract, remains very poorly characterised. Thus, we investigated the impact of smoking on the
upper small intestinal MAM. A total of 102 patients undergoing upper GI endoscopy for the assessment of GI
symptoms, iron deficiency, or Crohn’s disease, but without identifiable lesions in the duodenum, were recruited.
Smoking status was determined during clinical assessment and patients classified as current (n = 21), previous
smokers (n = 40), or having never smoked (n = 41). The duodenal (D2) MAM was profiled via 16S rRNA gene
amplicon sequencing.

Results: Smoking, both current and previous, is associated with significantly reduced bacterial diversity in the
upper small intestinal mucosa, as compared to patients who had never smoked. This was accompanied by
higher relative abundance of Firmicutes, specifically Streptococcus and Veillonella spp. The relative abundance
of the genus Rothia was also observed to be greater in current smokers; while in contrast, levels of Prevotella
and Neisseria were lower. The MAM profiles and diversity of previous smokers were observed to be intermediate
between current and never smokers. Smoking did not impact the total density of bacteria present on the mucosa.

Conclusions: These data indicate the duodenal MAM of current smokers is characterised by reduced bacterial diversity,
which is partially but not completely restored in previous smokers. While the precise mechanisms remain to
be elucidated, these microbiota changes may in some part explain the adverse effects of smoking on mucosa-
associated diseases of the GI tract. Smoking status requires consideration when interpreting MAM data.
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Background
Cigarette smoking can modulate both the risk and clin-
ical course of a number of gastrointestinal (GI) disorders
including inflammatory bowel disease [1], irritable bowel
syndrome [2], peptic ulcer disease [3], and GI cancer [4,
5]. Overall, smoking is now considered the most import-
ant environmental factor affecting the recurrence of

Crohn’s disease (CD) [6]. Cigarette smoking also alters
the risks associated with GI infections, most notably
Helicobacter pylori infection [7].
Many of these disorders are also associated with alter-

ations to the mucosal microbiota [8–10]. The microbes
colonising the GI mucosa aid in promoting gut health
and immune homeostasis, and changes to the commu-
nity composition and/or density of these microbes are
implicated in a variety of disease states. Cigarette smok-
ing is an environmental factor which may influence the
composition of the microbiota [11–13]. Cigarette smoke
is a source of multiple toxicants and has the potential to
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influence the microbiota via changes to immune homeo-
stasis [14], mucin production [15], oxygen tension [16],
or through direct antimicrobial effects [17]. It can also
alter GI physiology through altering duodenal pH [18],
reducing pancreatic bicarbonate secretions [19], and al-
tering gastric emptying time [20].
Recent evidence implicates the small intestinal micro-

biota, and particularly the mucosa-associated microbiota
(MAM), as an important modulator of GI health [21].
Changes to the small intestinal microbiota have been ob-
served in coeliac disease [22, 23], diabetes mellitus [24],
chronic liver disease [25], irritable bowel syndrome [26],
and functional dyspepsia [27]. Given the potential for
cigarette smoking to exert influence over both the gut
environment and the microbiota itself, cigarette smoking
is likely to have important implications regarding the
host-microbe interactions, and various gut disorders, as-
sociated with the small intestine. Thus, smoking may
represent an important confounding factor in under-
standing the MAM. However, the impact of cigarette
smoking on the small intestinal MAM has not been
well-studied and remains very poorly understood.
With this background, we hypothesised that cigarette

smoking is associated with alterations to the MAM in
the small intestine. We aimed to compare the bacterial
community composition and diversity in the upper small
intestinal MAM in patients undergoing routine endos-
copy, who were current cigarette smokers, had never
smoked, or who had discontinued smoking.

Methods
Patient recruitment and sample collection
Ethics approval was obtained by the responsible institu-
tional review board (Metro South Health) and patients
recruited at the outpatients clinic of the Department of
Gastroenterology and Hepatology at the Princess Alex-
andra Hospital, Brisbane, Australia. We included pa-
tients presenting with documented iron deficiency (ID,
with and without anaemia), functional dyspepsia (FD) or
FD with additional irritable bowel syndrome-like symp-
toms based on Rome IV [28] (Additional file 1: Table
S1), or Crohn’s disease (CD, Additional file 1: Table S2).
Patients with antibiotic use up to 2 months prior to en-
doscopy were excluded. One hundred and two patients,
all of whom did not show any evidence of gastric/duo-
denal mucosal abnormalities, lesions, or structural
changes (based upon endoscopic and clinical histology
findings), were included. Intestinal biopsies were taken
from the 2nd part of the duodenum utilising the Bris-
bane Aseptic Biopsy device (MTW, Germany) [29],
which enables specific sampling of the MAM, through
collection of mucosal samples with exclusion of contam-
ination from luminal contents or other regions of the GI
tract. Biopsy samples were immediately placed under

aseptic conditions into a sterile tube containing RNAla-
ter (Qiagen). Samples were allowed to incubate at room
temperature for 30 min then frozen and stored at − 80 °C.

DNA extraction
Samples were lysed using a protocol optimised for ex-
traction of microbial DNA for community analyses [30].
Frozen samples were thawed on ice, and individual tis-
sue biopsy samples (approx. 1–2 mm3) were removed
from the RNAlater and the tissue utilised for gDNA ex-
traction. Each sample was placed in a screw-cap tube
containing 300 μL lysis buffer (NaCl 0.5 M, Tris-HCl
50 mM,pH 8.0, EDTA 50 mM, and SDS 4% w/v) and
0.4 g sterile zirconia beads (1:1, 0.1 mm, and 1 mm;
Daintree Scientific). Homogenisation was undertaken in
a tissue homogeniser (Precellys) for 3 min followed by
incubation at 70 °C for 10 min. The lysate was collected
and the homogenisation procedure repeated with the
addition of further lysis buffer, providing 500 μL of
pooled lysate for each sample to be used for DNA ex-
traction. The DNA was extracted using an automated
system (Maxwell® 16) with the Maxwell® 16 Tissue DNA
Purification Kit (Promega), following the manufacturer’s
instructions. Extracted gDNA was quantified (Nano-
drop) and stored at − 80 °C.
Recent studies have demonstrated that samples with

relatively small amounts of microbial biomass can pro-
duce spurious results, due in part to DNA contamin-
ation of the reagents used [31]. To assess the possible
impact of this on our results, we also prepared a set of
reagent controls, to which no additional tissue or DNA
was added. These reagent only mixtures were processed
in an identical manner to the tissue samples, commen-
cing at the lysis step.

Assessment of bacterial load
Bacterial load in samples was assessed through quan-
titative PCR (qPCR). As the gDNA extracted from the
biopsy samples consists of a mixture of human and
bacterial DNA, both the human β-actin gene and bac-
terial 16S rRNA gene were assessed. The following
optimised primer sets were utilised: β-actin (forward:
TCCGCAAAGACCTGTACGC; reverse: CAGTGAGG
ACCCTGGATGTG) and bacterial domain specific
16S rRNA (1114-forward: CGGCAACGAGCGCA
ACCC; 1221-reverse: CCATTGTAGCACGTGTGTA
GCC). Standards of known copy number were con-
structed using serial dilutions of the pUC19 plasmid
with the human β-actin or Streptococcus spp. 16S
rRNA PCR product inserted. The Power SYBR Green
Master Mix (Life Technologies) was used and samples
analysed on a ViiA 7 Real-Time PCR system. Both
the reagent controls (described above) and template-
free samples were used as negative controls. The
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number of β-actin- and bacterial 16S rRNA-encoding
gene copies in each sample were quantified with re-
spect to their standard curves, and bacterial load was
calculated from the ratio between 16S rRNA genes:-
β-actin genes. Statistical analysis of results was per-
formed in Prism, with differences assessed via
Mann-Whitney, Kruskal-Wallis, or Spearman correl-
ation as appropriate.

Library preparation and sequencing
The small intestinal and control samples were profiled
by high-throughput amplicon sequencing with dual-
index barcoding using the Illumina MiSeq platform.
The V6-V8 region of the gene encoding 16S ribosomal
RNA was amplified using the primers 917-forward
(GAATTGRCGGGGRCC; bacterial domain specific)
and 1392-reverse (ACGGGCGGTGWGTRC; univer-
sal), which also contained Illumina adapter sequences.
Amplification was undertaken using the Q5 DNA poly-
merase (NEB) as per the manufacturer’s instructions.
PCR products were purified using AMPure XP beads
(Beckman Coulter). The PCR libraries were then bar-
coded using the Illumina dual-index system (Nextera
XT v2 Index Kit). Following a second round of purifi-
cation (AMPure XP beads), libraries were quantified
(Quantus) and pooled to 4 nM. The libraries were se-
quenced on an Illumina MiSeq using the MiSeq Re-
agent Kit v3 (2 × 300 bp), using facilities provided by
the Australian Centre for Ecogenomics.

Bioinformatics
Sequence data was processed using the Quantitative In-
sights Into Microbial Ecology (QIIME) pipeline (version
1.9.1) [32]. Further details of the workflow utilised are
provided in the Additional file 2. Briefly, the split_librar-
ies_fastq.py command was applied using a Phred quality
threshold of Q20. Operational taxonomic units (OTUs)
were assigned using the pick_open_reference_otus.py
command [33]. The Greengenes database (version 13.8)
was used as the reference database and a sequence simi-
larity of 97% applied [34]. The resulting OTU table was
chimera-checked using ChimeraSlayer [35] and subse-
quently filtered to remove sequences with a relative
abundance of less than 0.1%. The reagent control sam-
ples were concurrently processed to generate a list of
specific “contaminant” OTUs (Additional file 2). These
specific OTUs were then filtered from the small intes-
tinal samples to generate an OTU table which repre-
sented contamination-free small intestinal sequences. All
samples with a final read count of less than 1000 se-
quence reads were also excluded from the OTU table
(Additional file 3: Table S3).

Statistical analyses
To assess bacterial diversity (alpha-diversity), rarefaction
curves were generated on the raw OTU table and a read
depth of 1000 reads was selected for analysis of diversity.
The OTU table was randomly sub-sampled 100 times
and diversity assessed using the Chao1 [36] and Faith’s
phylogenetic diversity (whole tree) [37] metrics, as im-
plemented with the alpha_rarefaction.py workflow script
in QIIME. Significance was tested using Kruskal-Wallis.
Multivariate analysis (linear regression model) was per-
formed via ANOVA.
To assess relative abundance of bacterial taxa, the

OTU table was normalised via total sum scaling,
followed by centred-log ratio transformation. Average
relative abundances were calculated and significant dif-
ferences assessed using Kruskal-Wallis (KW) with false
discovery rate (FDR) correction for multiple compari-
sons. A p value of < 0.05 and FDR q value of < 0.05 was
considered significant. In order to confirm differences in
OTU relative abundance and further avoid potential is-
sues with compositional data [38, 39], the ALDEx2 func-
tion [40], implemented in the microbiome analysis tool
Calypso [41], was utilised on non-normalised data.
Multivariate analysis (linear regression model) was per-
formed via ANOVA.
To assess beta-diversity and the relationship between

smoking status and the overall bacterial community,
weighted and unweighted UniFrac, along with Bray-Cur-
tis, distance matrices were constructed. The OTU table
was normalised via random sub-sampling 100 times to a
depth of 1000 sequence reads [42]. The distance matrix
was then generated using the beta_diversity_through_-
plots.py script as implemented in QIIME. Principal co-
ordinate plots were generated from the distance matrix
using the first two coordinates and coded based on
smoking status and patient diagnosis. To test differences
in overall community composition based on smoking
status, the ADONIS [43] permutational MANOVA, as
implemented in Calypso [41], was used, adjusting for
sex, age, body mass index (BMI), proton pump inhibitor
(PPI) use, and patient diagnosis.
Linear discriminant analysis effect size (LEfSe) [44]

was used to identify taxa associated with smoking status.
This was performed on the OTU table normalised by
total sum scaling and centred-log ratio transformation,
as implemented in Calypso [41].
To generate a constrained multivariate model and to

differentiate current smokers from those individuals who
had never smoked, the sparse partial least squares dis-
criminant analysis method (MixMC [45]) was utilised.
The OTU table was filtered to include only samples
from patients with FD or ID, only current and never
smokers, and normalised by total sum scaling followed
by centred-log ratio transformation [45]. This data was
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used as the training set to generate the model. The
model was validated using the leave-one-out validation
method. The model was then tested on a “test” data set
consisting of the CD patients (OTU table normalised as
above). A plot was also generated based on the first two
components of the model, following prediction of smok-
ing status, on both the training and test sets.

Results
Study cohort
A total of 102 patients were recruited into the study.
Smoking status was determined during clinical assessment
of patients and subjects grouped as current smokers (n =
21), previous smokers (n = 40), and persons who had
never smoked (n = 41) (Table 1). There was no significant
difference in smoking status when patients were grouped
according to diagnosis (FD, ID, or CD); however, there
were no current smokers in the iron deficiency screening
cohort. Additionally, there were no significant differences
in the sex distribution, PPI use, or BMI across smoking
status; however, former smokers were significantly older
than current or never smokers (Table 1).

Smoking does not alter small intestinal bacterial load
The density of bacteria adherent to the small intestinal
mucosa was assessed via qPCR. There was no significant
difference in bacterial load observed between current,
previous, and never smokers (Fig. 1, Additional file 1:
Figure S1).

Small intestinal bacterial diversity is lower in smokers
The composition of the upper small intestinal MAM
was established via 16S rRNA gene amplicon sequen-
cing. Overall, the alpha (within sample) diversity of the

MAM was significantly reduced in current smokers
compared to those individuals who have never smoked
(Fig. 2a, b). In addition, previous smokers were found to
have significantly reduced MAM diversity compared to
never smokers. This was observed in both the Chao1
index, as well as using Faith’s phylogenetic diversity
which accounts for the phylogenetic relationships be-
tween the organisms observed. Patient age, sex, BMI,
PPI use, and diagnosis did not significantly impact

Table 1 Patient cohort characteristics

Current Previous Never p valuea Overall cohort

Functional dyspepsia/iron deficiency

Female, n (%) 7 (50) 20 (60.6) 15 (42.9) 0.34b 42 (51.2)

Age, median (range) 49.1 (28.3–65.5) 62 (20.1–78.6) 45.8 (17.2–77.5) 0.02c,d 54.7 (17.2–78.6)

BMI, mean (SD) 28.6 (7.6) 27.1 (5.5) 27.1 (6.2) 0.8e 27.3 (6.2)

Patient—Functional/iron deficiency, n (%) 14 (100)/0 (0) 27 (81.8)/6 (18.2) 26 (74.3)/9 (25.7) 0.11b 67 (81.7)/15 (18.3)

Current PPI use, n (%) 8 (57.1) 19 (57.6) 19 (54.3) 0.84b 46 (56.1)

Country of birth—Australia/others, n (%) 9 (64.3)/5 (35.7) 19 (57.6)/14 (42.4) 20 (57.1)/15 (42.9) 0.89b 48 (58.5)/34 (41.5)

Crohn’s disease

Female, n (%) 5 (71.4) 4 (57.1) 5 (83) 0.59b 14 (70)

Age, median (range) 36.4 (22.2–57.9) 50.2 (37.5–59.0) 47.5 (22.2–61.9) 0.34c 45.6 (22.2–61.9)

BMI, mean (SD) 30.2 (7.3) 32.2 (6.9) 26.7 (5.4) 0.46e 30.0 (7.0)

Current PPI use, n (%) 0 (0) 0 (0) 3 (50) 0.07f 3 (15)

Country of birth—Australia/others, n (%) 7 (100)/0 (0) 6 (85.7)/1 (14.3) 3 (50)/3 (50) 0.07b 16 (80)/4 (20)
a Between smoking status. b p values based on chi-squared test. c p values based on Kruskal-Wallis test. d On Dunn’s multiple comparison test, only Previous vs
Never was significantly different (p = 0.03). e p values based on ANOVA. f p values based on Fisher’s exact test. BMI—body mass index. PPI—proton pump inhibitor

Fig. 1 Bacterial load on the small intestinal mucosa in all patients.
Load was assessed by qPCR and expressed as the ratio between
copies of the bacterial 16S rRNA gene and copies of the human
beta-actin gene. Significance testing was undertaken using
Kruskal-Wallis; in addition, a multivariate analysis was undertaken in
which patient diagnosis, age, sex, BMI and PPI use were included. In
both cases, no significant differences in bacterial load were observed
based on smoking status
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diversity, and the significantly lower diversity in current
smokers was still observed when controlling for these
factors (Additional file 1: Figure S2).
Current smokers were also observed to have signifi-

cantly lower diversity when the analysis was limited to
the FD/ID cohort (Fig. 2c, d). However, this was not
the case for CD (Fig. 2e, f ). While factors including
time since diagnosis and previous surgery in the CD co-
hort did not impact diversity, patients treated with
monoclonal antibody therapies (anti-TNF or anti-integ-
rin) had greater MAM diversity (Additional file 1:
Figure S3). Controlling for monoclonal antibody
therapy in the CD cohort did not alter the findings

regarding diversity and smoking status (Additional file 1:
Figure S3).

Small intestinal MAM composition is altered in smokers
At the phylum level, the relative abundance of Firmi-
cutes was significantly greater in current smokers
compared to never smokers, while Bacteroidetes and
Actinobacteria were significantly lower in current
smokers (KW p < 0.005, FDR q < 0.01) (Additional file 1:
Table S4). At the genus level, the relative abundances of
Streptococcus, Rothia, and Veillonella were greater in
current smokers compared to those who had never
smoked (KW p < 0.005, FDR q < 0.05), whereas the

Fig. 2 Bacterial diversity within the mucosa-associated microbiota from duodenal (2nd part) biopsies. Patients were grouped based on smoking
status (current smokers, previous smokers, and having never smoked). The a, c, and e Chao1 index and b, d, and f Faith’s phylogenetic diversity
(PD) index of diversity within samples was then calculated for a, b all patients, c, d FD/ID and e, f CD patients. Mean and standard deviation are
shown. ns—not significant, # p = 0.05, * p < 0.05, ** p < 0.01 Kruskal-Wallis. CD—Crohn’s disease; FD—functional dyspepsia; ID—iron deficiency
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relative abundance of Prevotella was significantly lower in
current smokers (KW p < 0.0005, FDR q < 0.05) (Fig. 3,
Additional file 1: Table S5). Using parallel analyses on raw
read data using ALDEx2 (for analysis of compositional
data; Additional file 1: S4 and S5), the significant differ-
ences in the phyla Firmicutes and Actinobacteria, along
with the genus Rothia, between current and never
smokers were confirmed. In addition, a significant differ-
ence in the genus Neisseria was identified, with this taxon
being lower in relative abundance in current smokers.
A multivariate analysis was performed to account for

patient age, sex, BMI, PPI use, and diagnosis (FD/ID/CD).
None of these factors resulted in differences in any phyla
or genera in the model (Additional file 1: Tables S6 and
S7). In addition, this model confirmed the results in re-
gard to smoking status, for Firmicutes, Bacteroidetes, and
Actinobacteria at the phylum level (Additional file 1: Table
S6), and Streptococcus, Veillonella, and Prevotella at the
genus level (Additional file 1: Table S7).
At the OTU level, four OTUs affiliated with the genus

Streptococcus, along with a single Rothia sp. and a single
Veillonella sp., were identified as being significantly dif-
ferent in relative abundance in current smokers com-
pared to never smokers (KW p < 0.005, FDR q < 0.05)
(Additional file 1: Table S8). The differences in three of
the Streptococcus OTUs were confirmed on multivariate
analysis controlling for other patient factors; none of the
OTUs were significantly different in abundance using
ALDEx2 (Additional file 1: Table S8).
Interestingly, when comparing current to previous

smokers, or previous to never smokers, no significant

differences at the phylum or genus level of classifica-
tion were observed (Additional file 1: Tables S4 and
S5). At the OTU level, no significant differences be-
tween current and previous smokers were observed;
however, several Streptococcus-, Veillonella-, and Pre-
votella-affiliated OTUs showed significantly different
relative abundances between previous and never
smokers (Additional file 1: Table S8). There were no
remarkable effects on these results when CD patients
were excluded from the analysis, and no significant
differences were observed in the CD group alone
(Additional file 1: Table S9).

Differentiation of smokers based on MAM profiles
Principal coordinates analysis of overall MAM profiles
suggested some clustering by smoking status (un-
weighted UniFrac and Bray-Curtis distance matrices),
after controlling for sex, age, BMI, PPI use, and diagno-
sis, although this was not observed in the case of the
weighted UniFrac matrix (Fig. 4a–c). No clustering by
patient diagnosis (FD/ID/CD) was observed (ADONIS
R2 < 0.04, p > 0.3).
Specific taxa contributing to small intestinal MAM

profiles, based on smoking status, were revealed by lin-
ear discriminant analysis effect size (LEfSe, Fig. 4d).
OTUs affiliated with the genera Veillonella were dis-
criminatory for current smokers. Particular members of
the genus Prevotella were also discriminatory for previ-
ous smokers and persons never having smoked. To
further delineate these differences between bacterial pro-
files of current and never smokers, a constrained

Fig. 3 Relative abundances of bacterial genera present in the duodenal (2nd part) mucosa-associated microbiota of all patients. Patients
were grouped based on smoking status. Data was normalised via total sum scaling and is expressed as relative abundance. The 15 most
abundant genera are displayed. Error bars represent standard deviation. * p < 0.005, FDR q < 0.05, Kruskal-Wallis with false discovery rate
(FDR); # p < 0.05 ALDEx2 Wilcoxon rank test with Benjamini-Hochberg (BH) correction. o—order
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multivariate model was established, using the MAM data
from the FD/ID cohort. Taxa affiliated with the Neis-
seria, Streptococcus, Prevotella, and Veillonella genera
were identified as the key contributing factors that dif-
ferentiate current smokers from those who have never
smoked (Table 2). The model was validated using the
leave-one-out method and was able to correctly classify
all never smokers and 13 of 14 current smokers (Table 3,
Fig. 5). When the model was applied to the CD patients,
however, the performance was not as robust (Table 3).
In summation, there are hallmark upper small intes-

tinal MAM profiles that differentiate between active
smokers and persons who have never smoked. For those
persons categorised as previous smokers, there is a par-
tial but perhaps not complete restoration of the MAM.

Discussion
This is the first study that has assessed the effects of
cigarette smoking on the small intestinal MAM and high-
lights the importance of considering smoking as a factor
in clinical studies of the microbiota. Our data reveal that

cigarette smoking, both current and previous, alters the
bacterial community and reduces diversity, both, to the
best of our knowledge, novel observations regarding the
upper small intestinal MAM. These changes likely trans-
late into functional differences at the host-microbe inter-
face, which may be relevant to the risk and clinical course
of inflammatory conditions affecting the intestine. This is
of particular relevance given the large body of work that
indicates smoking is a risk factor for important GI dis-
eases, including inflammatory bowel disease, irritable
bowel syndrome, Clostridium difficile infection, and duo-
denal ulcer [1–3, 46], many of which have also been asso-
ciated with alterations of the microbiota.
For individuals who had never smoked, small intestinal

MAM diversity was significantly greater than for current
smokers. A number of hypotheses relating to this find-
ing, along with the observed alterations to the compos-
ition of the bacterial community, could be suggested
based on the known effects of smoking, including alter-
ations to the immune system, direct antimicrobial activ-
ity [17], and changes to oxygen tension [16]. Overall, a

Fig. 4 Multivariate analyses to identify bacterial groups that differentiate current smokers from those patients who have never smoked, based on
duodenal (2nd part) mucosa-associated microbiota profiles. a–c Principal coordinates analysis performed on a weighted UniFrac (a), unweighted
UniFrac (b) and Bray-Curtis (c) distance matrices. Each point represents an individual patient, colour coded by smoking status. An assessment of
the variation between or “clustering” of samples based on smoking status was assessed via ADONIS, controlling for patient age, sex, BMI, PPI use
and diagnosis. Data normalised by random subsampling to even depth. d Linear discriminant analysis effect size (LEfSe) method to identify bacterial
OTUs that are associated with smoking status. The bar chart represents the strength of contribution of a particular OTU between current, previous and
never smokers. Data was normalised via total sum scaling and centred-log ratio transformation. CD—Crohn’s disease; FD—functional dyspepsia;
ID—iron deficiency
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diverse microbiota is generally associated with health, and
alterations to immune homeostasis, along with a reduc-
tion in diversity induced through smoking, could be sug-
gested to contribute to the adverse impact of smoking on
the disease states in which microbiota-immune interac-
tions are considered important. Further studies specifically
investigating these interactions are warranted.
We included previous smokers in our analyses, and

trends indicated that the previous smokers group may
represent an intermediate between smokers and those
who have never smoked. In particular, previous smokers
had a reduced diversity of the MAM compared to indi-
viduals who had never smoked. It has been suggested
that quitting may induce a relatively rapid return to a
“healthy” microbiota in the stool [13] and oral cavity
[12]. However, given patients can tend to under-report

their smoking habits [47], it may be speculated that
some patients in the previous smokers cohort may rep-
resent current smokers under-reporting their status.
Time since ceasing smoking, as well as other factors
such as environmental tobacco exposure (passive smok-
ing), may also influence the results, and thus, further in-
vestigation of these factors would provide more specific
insight into the beneficial effects of quitting smoking on
the microbiota and associated disease risks.
Smoking did not alter the total density of bacteria

present on the small intestinal mucosa. This suggests
that the reduced diversity observed in current smokers
is not the result of overgrowth of certain members of
the microbiota, which would result in higher load and
lower diversity, nor it is a result of an overall decrease in
bacteria adherent to the mucosa. Rather, our results

Table 2 Operational taxonomic units (OTUs) contributing to the model discriminating patients based on smoking status

Contributing OTU Average relative abundancea

Phylum OTUb Current smokers Never smokers

Firmicutes Veillonella dispar (937248) 6.61 6.00

Bacteroidetes Prevotella sp. (2222) 0.33 1.58

Firmicutes Streptococcus sp. (1098340) 30.57 23.02

Firmicutes Streptococcus sp. (1088134) 4.25 3.43

Firmicutes Streptococcus sp. (1092300) 0.43 0.35

Firmicutes Streptococcus sp. (1097208) 0.37 0.28

Proteobacteria Neisseria sp. (1060621) 0.19 0.6

Proteobacteria Aggregatibacter sp. (963216) 0.16 0.15

Bacteroidetes Prevotella intermedia (72112) 0.48 0.29

Proteobacteria Neisseria sp. (1092944) 1.72 2.96

Bacteroidetes Prevotella sp. (851822) 0.72 1.00

Firmicutes Veillonella sp. (511378) 0.76 0.33

Proteobacteria Neisseria cinerea (1070334) 0.088 1.27

Firmicutes Veillonella dispar (NRO_21206) 0.11 0.18

Firmicutes Veillonella dispar (1019878) 0.63 0.61

Fusobacteria Fusobacterium sp. (809380) 0.2 0.27

Proteobacteria Haemophilus parainfluenzae (832223) 0.47 0.33

Proteobacteria Haemophilus parainfluenzae (920105) 0.77 0.71

Bacteroidetes Prevotella tannerae (38227) 0.71 0.23

Firmicutes Oribacterium sp. (527630) 0.19 0.52
aThe average relative abundance (%) for each OTU is shown (for the FD-ID training set; data is not transformed). b The number in brackets refers to the
Greengenes OTU reference number; NRO—new reference OTU)

Table 3 Classification efficiency of the MixOmics model

Training set (leave-one-out validation) FD and ID cohort Test set CD cohort

Correctly classified (%) Incorrectly classified (%) Correctly classified (%) Incorrectly classified (%)

Current smoker 93 7 Current smoker 43 57

Never smoker 100 0 Never smoker 83 17

Efficiency of the mixOmics model (sparse partial least squares discriminant analysis) in differentiating patients based on smoking status (current or never) with
respect to bacterial profiles. A “training set” which consisted of the FD and ID cohort was used to develop a discriminating model, which was validated using the
‘leave-one-out’ method. The model was then tested on the CD data set
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indicate a shift in composition within the existing micro-
bial community. A particular impact on the small intes-
tinal MAM from smoking is the reduction of the relative
abundance Prevotella and Neisseria spp. and an increased
relative abundance of Firmicutes, principally Streptococcus
spp., and Veillonella spp., along with the genus Rothia
(Actinobacteria), in current smokers, compared to those
persons who have never smoked. These differentiating
taxa were identified by both models used in our study.
Interestingly, a number of these taxa have been identi-

fied in studies investigating the effects of smoking on the
oral cavity, both culture-based studies [48], and more re-
cently, microbiota profiling studies, which reported in-
creased relative abundances of Streptococcus spp. and
decreased relative abundances of Neisseria spp. among
others [12]. There is a clear overlap between the taxa ob-
served in the oral cavity and the small intestine, particu-
larly at broader taxonomic levels, and the oral microbiota
has been suggested as a driver of the composition of the
gastric microbiota [49]. It would be informative to con-
sider the impact of oral health on the small intestinal
microbiota, both generally and in the context of smoking,
for example, using matched saliva and biopsy samples,
particularly given the negative impact smoking has on oral
health and the risk of caries [50].
A variety of mechanisms may be relevant regarding

the influence of smoking on particular members of the
microbiota. Oxygen tension has been suggested as an

important driver of changes, with microaerophilic and
fermentative (anaerobic) bacteria able to predominate
due to lower oxygenation [11, 51]. The differences we
observe in Neisseria, Streptococcus, and Rothia spp. in
current smokers indicate that changes in oxygen ten-
sion in the small intestine may be a strong selective
pressure on the MAM, but there are also likely to be
other physicochemical factors in play. For instance, the
relative abundance of select Prevotella- and Veillonel-
la-affiliated OTUs were discriminatory of persons
based on smoking status. These bacteria are strict an-
aerobes and likely to be sensitive to the oxygen radicals
produced as a consequence of smoking [52, 53]. Fur-
thermore, alterations in duodenal bicarbonate secretion
[19] and lower duodenal pH [18] in smokers also pro-
vide selective pressure, with particular impact on the
growth of Neisseria that is much more sensitive to acid
conditions [54], whereas Streptococcus and Rothia spp.
are acidogenic and acid tolerant.
A number of studies have recently associated alter-

ations in the small intestinal MAM with various disease
states. A particular focus has been Coeliac disease, with
alterations to the microbiota, including lower diversity,
observed in adult patients with untreated disease or
those with disease refractory to treatment [22, 23].
Interestingly, in a cohort of patients with type 1 dia-
betes, a reduction in relative abundance of Proteobac-
teria present in the small intestinal MAM was
observed, although this study did not differentiate be-
tween children and adults [24]. In chronic liver disease,
again, changes in the relative abundance of taxa affili-
ated with the Proteobacteria and Firmicutes phyla were
observed [25]. However, none of these studies con-
trolled for, or indeed reported, smoking status. Our
study indicates smoking as a relevant confounding fac-
tor that may preclude or confound identification of
disease-specific microbial changes if not considered.
A major strength of our study was the collection of in-

testinal biopsy samples using biopsy forceps designed to
sample the MAM and preclude contamination from the
lumen or other regions of the GI tract/oral cavity during
sampling (Brisbane Aseptic Biopsy Device) [29]. Thus,
the data generated here can be considered to specifically
reflect the upper small intestinal MAM and the smoking
related changes particular to this site. As our own data
highlights, in addition to sampling methodology, envir-
onmental factors also have an important impact on the
microbiota, and thus, we have considered a variety of
factors including age, sex, BMI, and PPI use. One limita-
tion is that the impact of diet on the small intestinal
MAM is very poorly characterised, and we did not have
access to dietary history for this patient cohort. However,
endoscopic procedures, during which biopsy samples
were obtained, were undertaken following overnight

Fig. 5 Constrained multivariate analysis using MixMC method
(sparse partial least squares discriminant analysis) to differentiate
patients based on smoking status (current or never) with respect
to duodenal (2nd part) mucosa-associated microbiota profiles.
Each point represents an individual patient, colour coded by smoking
status. A “training set” which consisted of the FD and ID cohort was
used to develop a discriminating model, which was then tested on the
CD data set. The figure displays the resulting predicted classification of
each sample, with closed circles representing the FD-ID cohort, and
open triangles representing the CD cohort. Confidence ellipses (95%)
are shown. Samples misclassified by the model are circled in red
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fasting for all patients. It is also possible that unique medi-
cation combinations that individual patients are exposed
to, depending on their medical history, may influence the
microbiota and increase variation between individuals.
Our study included a modest number of Crohn’s dis-

ease patients (n = 20). While there were no substantial
differences in the duodenal MAM between the FD/ID
cohort and the CD cohort, the observed impacts of
smoking were not as pronounced when CD patients
were considered alone. This may be related to the clin-
ical history of patients or their immune status; however,
even though treatment with monoclonal antibody ther-
apy (anti-TNF/anti-integrin) resulted in higher MAM di-
versity, this did not explain the differing impact of
smoking on CD patients compared to the rest of the co-
hort (FD/ID). The results may also be partly driven by
the small sample size for CD patients. It would be in-
formative to undertake these analyses on a larger group
of CD patients, with the addition of biopsies from sites
relevant to specific inflammation/lesion patterns in indi-
viduals, given the well-documented risk associated with
smoking in this disorder.

Conclusions
In summary, this study provides important new insights
into the impact of cigarette smoking on the MAM. The
reduction in diversity, along with particular bacterial
taxa, may have implications for GI disorders in which
the microbiota is also implicated. Studies investigating
the MAM, particularly in the small intestine, must con-
sider smoking status of participants, as this represents a
potentially significant confounding variable.
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