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Abstract

Background: Despite the relevance of viral populations, our knowledge of (bacterio) phage populations, i.e., the
phageome, suffers from the absence of a “gold standard” protocol for viral DNA extraction with associated in silico
sequence processing analyses. To overcome this apparent hiatus, we present here a comprehensive performance
evaluation of various protocols and propose an optimized pipeline that covers DNA extraction, sequencing, and
bioinformatic analysis of phageome data.

Results: Five widely used protocols for viral DNA extraction from fecal samples were tested for their performance in
removal of non-viral DNA. Moreover, we developed a novel bioinformatic platform, METAnnotatorX, for metagenomic
dataset analysis. This in silico tool facilitates a range of read- and assembly-based analyses, including taxonomic
profiling using an iterative multi-database pipeline, classification of contigs at genus and species level, as well as
functional characterizations of reads and assembled data. Performances of METAnnotatorX were assessed through
investigation of seven mother-newborn pairs, leading to the identification of shared phage genotypes, of which two
were genomically decoded and characterized.
METAnnotatorX was furthermore employed to evaluate a protocol for the identification of contaminant non-viral DNA
in sequenced datasets and was exploited to determine the amount of metagenomic data needed for robust
evaluation of human adult-derived (fecal) phageomes.

Conclusions: Results obtained in this study demonstrate that a comprehensive pipeline for analysis of phageomes will
be pivotal for future explorations of the ecology of phages in the gut environment as well as for understanding their
impact on the physiology and bacterial community kinetics as players of dysbiosis and homeostasis in the gut
microbiota.
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Background
The establishment of Next Generation Sequencing (NGS)
technologies has facilitated explorations into the ecology
and functionality of microorganisms living in complex
communities [1]. Notably, a substantial portion of these
research efforts has focused on the characterization of pro-
karyotes colonizing humans, being microbiota members
that reside in various body sites, investigations that have
clearly revealed the existence of an intimate relationship
between these microbial populations and their host [2]. In
this context, bacteria colonizing the gastro-intestinal tract
have been described as a “forgotten organ” based on their
understudied, yet key roles in a wide range of aspects of
animal physiology, including the development, metabol-
ism, and functionality of the immune system [3, 4].
Despite the scientific interest in the bacterial component

of the gut microbiota, current knowledge on the associ-
ated (bacterio) phage populations, i.e., the phageome, is
very limited. These bacterial viruses are believed to play an
important role in influencing the ecology of prokaryotes,
e.g., by modulating population dynamics and catalyzing
horizontal gene transfer events [5], although knowledge
on their prevalence, diversity, and specific functionalities is
still in its infancy. In this context, only a limited number
of studies have evaluated the functional role of phages in
the gastrointestinal tract (GIT), the majority of which pro-
vide a descriptive profiling of the viral population in saliva
or fecal samples [6–12]. This rather naïve view of phage
ecology in the GIT reflects the very limited exploration of
the role, if any, of phages in the development and evolu-
tion of common gut diseases, with studies focusing mainly
on inflammatory bowel diseases (IBD), such as Crohn’s
disease (CD) and ulcerative colitis (UC) [13, 14]. This
knowledge gap can primarily be attributed to the lack of a
comprehensive experimental pipeline for metagenomic
analyses of viral populations that ideally should include an
efficient and reliable protocol for viral DNA extraction
and purification, as well as bioinformatic tools for pha-
geome data management, processing and associated ana-
lysis. In fact, while a range of optimized protocols for
extraction of phage DNA have been published [15, 16],
their efficiency has not yet been comparatively assessed,
primarily because the tools that are currently available for
the analysis of phage metagenomic datasets rely on simple
homology searches against a single viral database [17, 18].
Thus, the absence of data regarding other components of
the metagenomic dataset, i.e., archaea, bacteria, and eukary-
otes, does not permit an accurate evaluation of the viral
DNA retrieved from an environmental sample. Moreover,
the lack of available tools for efficient phageome assembly
and subsequent functional interrogation and taxonomic
classification of generated contigs prevents identification
and reconstruction of the complete genome of free phage
particles. Altogether, these limitations underline the need

for a thorough assessment of available methodologies for
phageome analysis, with particular focus on the identifica-
tion of the viral DNA extraction protocol providing the
lowest relative abundance of exogenous DNA, as well as
definition of a comprehensive bioinformatic pipeline for
phylogenetic and genomic characterization of the viral
population.
For these reasons, the objective of the current report was

to develop a start-to-finish protocol to cover phageome
analysis from DNA extraction of fecal samples all the way
to sequence data processing and database interrogations.
We therefore performed a comparative analysis of the five
most widely employed protocols for viral DNA extraction
and purification from fecal samples, coupled with an
in-depth evaluation of the generated sequences by means
of a novel viral metagenomics analysis platform, which we
called METAnnotatorX. This bioinformatics analysis plat-
form supports a wide range of read- and assembly-based
analyses using a multi-database, homology-based search
approach to explore the viral, archaeal, bacterial, and
eukaryotic biodiversity within a generated sequence dataset
from a given sample.
In order to provide an example of the functionality of-

fered by analysis of phageomes, the optimal identified
protocol for viral DNA extraction and METAnnotatorX
was employed so as to profile phageomes of fecal samples
collected from seven mothers and their corresponding in-
fants. Results allowed the detection of mother-to-infant
vertical transmission of phages, two of which were also
genomically decoded and annotated.

Methods
Ethical statement and sample collection
The study protocol was approved by the National Mater-
nity Hospital Dublin ethics committee, and informed
written consent for fecal sample collection and associ-
ated microbiological analyses was obtained from all par-
ticipants or their legal guardians.

Virus-like particle (VLP) isolation and DNA extraction
Extraction protocols 1A, 1B, and 1C
0.5 g of fecal material was suspended in 45 ml of sterile
SMG (sodium chloride magnesium sulphate) buffer
(200 mM NaCl, 10 mM MgSO4, 50 mM Tris-HCl
(pH 7.5), 0.01% gelatin) and homogenized in filter bags
for 2 min at medium speed. The resultant solution was
then incubated on ice for 1 h for virus-like particle
(VLP) desorption. Samples were then centrifuged at
5000×g for 45 min at 4 °C. Supernatants were recovered
and large particulates were removed using Whatman
glass microfibre filters (Sigma-Aldrich, St. Louis, MO,
USA). A second centrifugation step of 5000×g for
45 min at 4 °C was performed; the supernatant was then
collected and, in the case of protocol 1A, used for VLP
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precipitation through supplementation with 10% PEG
6000 (Sigma-Aldrich, St. Louis, MO, U.S.A.) at 4 °C
overnight. In contrast, in the case of protocol 1B, the
supernatant was first subjected to 0.45-μm filtration (all
filters obtained from Sarstedt, Numbrecht, Germany),
while for protocol 1C, the supernatant was subjected to
0.45-μm filtration, followed by a 0.2-μm filtration, before
precipitation of VLPs. PEG-precipitated VLPs were col-
lected by centrifugation at 25000×g for 45 min at 4 °C. The
resulting VLP-containing pellets where then re-suspended
in 400 μl SMG buffer at 4 °C. The sample was DNase
treated with 10 U ml−1 DNase I (Roche, Basel, Switzerland)
for 1 h at room temperature with subsequent inactivation
performed by heat treatment at 75 °C for 10 min. Viral
DNA was then extracted using the Norgen Phage DNA
isolation kit (Norgen Biotek Corp., Ontario, CA) according
to the manufacturer’s instructions.

Extraction protocols FD and DTT
0.5 g of fecal material was suspended in 1.2 mL of SMG
buffer by vortexing for 2 min. The resultant solution was
then incubated on ice for 1 h. Following incubation, a
centrifugation step of 2500×g for 5 min at 4 °C was per-
formed. The supernatant was then centrifuged again at
5000×g for 15 min at 4 °C. The supernatant was
retained, and dithiothreitol (DTT) (Promega, Madison,
WI, USA) was added to a final concentration of 6.5 mM
and incubated for 1 h at 37 °C. In the FD protocol, this
DTT treatment was absent. The resultant solution was
then filtered employing a 0.45-μm filter. The sample was
DNase treated with 10 U ml−1 DNase I (Roche) for 1 h
at room temperature with subsequent inactivation per-
formed by heat treatment at 75 °C for 10 min. Viral
DNA was then extracted using the Norgen Phage DNA
isolation kit according to the manufacturer’s instruc-
tions. DNA concentrations were quantified using the
Qubit Fluorometer and Qubit dsDNA HS Assay Kit (Life
Technologies, Bleiswijk, Netherlands).

Shotgun metagenomics sequencing and analysis
DNA was fragmented to 550–650 bp using a BioRuptor
machine (Diagenode, Belgium). Samples were prepared
following the TruSeq Nano DNA Sample Preparation
Guide (Part#15041110Rev.D). Sequencing was performed
using an Illumina NextSeq 500 sequencer with NextSeq
Mid Output v2 Kit chemicals (Illumina Inc., San Diego,
CA 92122, USA). Read- and assembly-based analyses were
performed using the METAnnotatorX bioinformatic plat-
form described below in this manuscript. Mapping of
reads on nucleotide sequences was performed using the
software BowTie2 [19] and retrieval of mapping or
non-mapping reads was performed using the Sequence
Alignment/Map tools (SAMtools) 43 [20].

METAnnotatorX
The METAnnotatorX bioinformatics platform described
in this manuscript performs a range of in silico taxo-
nomic and functional analyses of both reads and contigs
assembled from shotgun metagenomics datasets. Details
are reported in the “Results and Discussion” section
while the default METAnnotatorX settings, used for
all analyses reported in this manuscript, are listed in
Additional file 1: Table S1.

Results and discussion
Comparative evaluation of various protocols for viral DNA
extraction and purification
Virome protocol analyses commonly consist of the isola-
tion of virus-like particles (VLPs) from a fecal sample
followed by extraction of the genetic material from these
VLPs, prior to further analysis of the obtained genetic
material by means of shotgun sequencing approaches
[21–23]. Published protocols for VLP isolation from
fecal samples all involve homogenization of fecal sam-
ples in a buffer, followed by centrifugation steps to re-
move bacteria and large particles, with a subsequent
filtration step. Total nucleic acid can then be isolated
from the resulting filtrate following a DNase treatment
to remove bacterial DNA contamination [21–24].
Despite several attempts to optimize protocols for

fecal VLP extraction (5, 6), a “gold standard” protocol
has yet to be developed and to be accepted by the scientific
community. A trial of an optimized PEG-precipitation
method (Route 5 from [15] termed protocol 1A here) was
undertaken with some modifications. Following sample
homogenization, an incubation step on ice was included to
encourage VLP desorption [25]. The other key modifica-
tion of the protocol represents the omission of a CsCl
density gradient centrifugation step as this has been shown
to have a detrimental effect on phage infectivity [15] and
can influence retrieved information on community com-
position by introducing a bias against certain phages [16].
Omission of the CsCl step is believed to lead to a more
faithful representation of community composition, yet
at the expense of a reduced efficiency of bacterial DNA
removal [16]. To counteract this, we tested dead-end
filtration steps, where protocol 1A lacked such a filtra-
tion step, protocol 1B included a 0.45-μm filtration
step, whereas samples processed using protocol 1C
were subjected to 0.45 μm followed by a 0.2-μm filtra-
tion, (in all protocols) prior to PEG precipitation. Fur-
thermore, it was determined through a phage spiking
experiment that PEG removal by buffer exchange was
inefficient and in fact caused loss of phages during sub-
sequent centrifugation (data not shown); therefore,
DNA extraction was directly performed on the resus-
pended PEG-precipitated VLPs.
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In addition to these protocols, two further methods from
literature, namely the FD (termed here as 1D) and DTT
(termed here as 1E) methods described by Kleiner et al. [16],
were assessed. These PEG precipitation-based protocols re-
quire simple homogenization of the sample followed by fil-
tration, DNase treatment, and DNA extraction, with the
only difference between the two being a dithiotreitol treat-
ment to degrade fecal mucus in the 1E protocol. In the
current study, we modified these two protocols by the inclu-
sion of a VLP desorption step and adjustment of the initial
sample size. DNA yields were comparable when applying
these five protocols on the same fecal sample, except in the
case of protocol 1A, which yielded approximately four times
more DNA compared to the other assessed protocols
(Table 1). This was presumably due to the presence of
host-derived DNA contaminating the viral DNA due to the
lack of filtration and/or a density gradient centrifugation
step. In terms of practical and experimental advantages, the
1D and 1E methods are vastly preferable to the 1A, 1B, and
1C methods in terms of execution time, with protocol com-
pletion achievable within 1 day as compared to 2 days, while
also offering the advantage of a considerably shorter “hand-
s-on” procedure (Table 1).

Development of a comprehensive bioinformatic pipeline
for analysis of shotgun metagenomic datasets
A large proportion of the current, publicly available
tools for analysis of (bacterio) phage populations, i.e.,
the phageome, relies on alignment against a single
viral database to obtain taxonomic assignment of reads or
pre-assembled contigs [17, 18]. This approach is very limit-
ing since shotgun metagenomics datasets are mainly
employed for taxonomic surveys, though such datasets may
be able to generate novel information regarding genomic
structure, functionality and host-specificity of identified
phages. To fill these gaps, we developed a comprehensive
bioinformatic platform, referred to here as METAnnota-
torX, which performs a variety of analytical steps applied to
a given shotgun metagenomic dataset. METAnnotatorX
not only performs taxonomic and functional profiling of
the reads, but also allows assembly and phage genome re-
construction, open reading frame identification, and anno-
tation (Fig. 1). Moreover, the developed pipeline is able to
analyze the read pools corresponding to archaea, bacteria,

and eukaryotes through iterative classification steps that ex-
ploit specific databases for viruses, bacteria, archaea, and
eukaryotes. Notably, viruses are classified at the family and
species level, while bacteria, archaea, and eukaryotes are
classified at the genus and species level. Thus, the pipeline
can be exploited not only to perform a comprehen-
sive analysis of viromes, but also of shotgun metage-
nomic datasets that include bacterial, archaeal, and
eukaryotic data (Fig. 1). METAnnotatorX is provided
pre-installed in a virtual machine running Ubuntu
16.04.3 (http://probiogenomics.unipr.it/pbi/index.html).
A graphic installation interface guides the user through a
small number of steps for third party software installation
and database downloading, which are necessary to install
METAnnotatorX.
The main graphic interface of the METAnnotatorX

software allows selection of input dataset (s), output
folder, and analysis steps (Fig. 1 and Additional file 1:
Figure S1). Moreover, a configuration file provides the
user with an option to modify a range of associated
analysis parameters, such as the number of computing
cores or databases to be used and specific cut-offs
(Additional file 1: Figure S1). Outputs are provided as
tabular files ready to be imported in spreadsheet soft-
ware or as GenBank files in the case of assembled and
annotated sequences (Additional file 1: Figure. S1).
METAnnotatorX provides an innovative approach

for taxonomic profiling of reads that relies on four
consecutive read annotation steps querying four NCBI
databases, including the Viral RefSeq, Archaeal
RefSeq, bacterial RefSeq, and the whole RefSeq for
eukaryote classification (Fig. 1). Notably, hits against
the viral RefSeq are in default mode given the max-
imum priority, followed by archaeal RefSeq, bacterial
RefSeq, and the whole RefSeq, so as to guarantee
high sensitivity towards viral and archaeal profiling
and to avoid annotation of viral reads as archaeal or
bacterial in case of prophages that constitute part of
prokaryotic genomes. In this regard, it is noteworthy that
read-based metagenomic approaches cannot distin-
guish between reads corresponding to free viral parti-
cles and reads belonging to prophage genomes. Thus,
efficient removal of non-viral DNA during DNA ex-
traction is fundamental to minimize misclassification
of prophages as free viral particles when analyzing
phageomes. RefSeq databases are non-redundant data-
sets built from the sequence data available in the
archival database GenBank, and each RefSeq record
represents a synthesis of information obtained from
GenBank records with identical sequences [26, 27].
It is also worth mentioning that the viral RefSeq

database was selected as the default database for viral
taxonomic classification since all its entries are genes
predicted from manually revised and validated viral

Table 1 Overview of viral DNA extraction protocols

Protocol 1A 1B 1C 1D 1E

Total DNA yield (ng) 58.3 8.2 10.2 15 10.2

Sample throughput
(no. of samples processed
simultaneously)

15–20 15–20 15–20 15–20 15–20

Protocol duration (days) 2 2 2 1 1

Hands-on time (hours) 10 10 10 6 7
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genomes. Although the viral RefSeq database is con-
tinually expanded and updated (at the time of writing
of this manuscript), it encompasses 7485 genomes,
whereas the GenBank viral database includes 5530
additional non-revised genomic sequences, thus total-
ing 13,015 genomes. METAnnotatorX was therefore
developed to offer the possibility to interrogate the
GenBank viral database as an alternative to the Viral
RefSeq database if the user wants to maximize the
sensitivity of the analysis while reducing specificity.
Moreover, the user can request interrogation of alter-
native databases in the setting file. Notably, the
header of fasta entries must be formatted as those in-
cluded in the NCBI RefSeq database. In this context,
external databases such as the recently published Vir-
Sorter [28] and IMG/VR databases [29] may represent
useful alternatives. Nevertheless, due to the exponen-
tial increase of metagenomic data, such databases re-
quire constant updating as performed by NCBI for
RefSeq databases.
The user can also choose to perform functional

classification analyses of the reads using custom

databases for METAnnotatorX that can be down-
loaded and updated using a script available in the vir-
tual machine. These analyses permit retrieval of (i)
COG functional category profiles as based on the
EggNog nomenclature [30]; (ii) carbohydrate-active
enzymes, i.e., the glycobiome, based on CAZy data-
base nomenclature [31]; and (iii) metabolic pathways
based on the MetaCyc classification [32] (Fig. 1).
Furthermore, shotgun metagenomic datasets can

also be employed for metagenomic assembly using
SPADES software [33] (Fig. 1). Notably, contigs > 5000
nucleotides are taxonomically classified by means of a
novel in silico protocol, which taxonomically catego-
rizes encoded ORFs following a multi-step approach,
as described above for reads. The contigs are then
classified with the most frequent taxonomy observed
among genes encoded by each contig. Subsequently,
the user can request the generation of GenBank files
with annotated ORFs comprised of all contigs that
share the same taxonomy at bacterial genus/viral fam-
ily or species level (Fig. 1). ORFs are annotated based
on the MEGAnnotator pipeline for accurate functional

Fig. 1 Schematic representation of the automated analyses performed by METAnnotatorX. Raw reads obtained from NGS sequencing can be
directly used as input data for a range of read- and assembly-based analyses
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assignment [34]. Furthermore, each contig pool which
corresponds to a taxonomic rank can be functionally
profiled as indicated above.
Additional analyses offered by METAnnotatorX en-

compass host prediction based on the CRISPRdb [35], as
well as evaluation of the relative abundance and taxo-
nomic profile of genes collected in user-provided data-
bases, and identification of putative (pro) phage
genomes without homologs in the NCBI Viral RefSeq
database through screening of bacterial contigs for those
encoding ORFs typically found in genomic modules of
phages (Fig. 1).
A comprehensive manual details the pipeline followed

by each analysis offered by METAnnotatorX, includ-
ing software and default cut-off values used (http://
probiogenomics.unipr.it/pbi/index.html).
At the time of writing, we could not compare

METAnnotatorX with the two available online tools
for phageome analysis, i.e., VIROME [17] and MetaVir
2 [18] using a test dataset of known viral compos-
ition, due to limitations regarding input data or satur-
ation of storage and computing capacities (details can be
found in the Additional file 1). Nevertheless, we per-
formed re-analysis of a dataset already processed with
MetaVir2 that can be downloaded from the MetaVir2
website (Additional file 1: Table S2). In this context, com-
parison of the results retrieved through analysis of these
datasets using MetaVir2 and METAnnotatorX revealed
that METAnnotatorX is able to detect and classify a
higher number of viral taxa (Additional file 1: Table S2).
Notably, differences may be attributable to the more up-
dated database and improved pipeline exploited by
METAnnotatorX.

In silico comparative analysis of shotgun metagenomics
data obtained from the five tested protocols for viral
DNA extraction and purification
In order to reconstruct a detailed overview of the per-
formance of the five tested protocols for double-stranded
viral DNA purification, i.e. 1A, 1B, 1C, 1D and 1E, the
same infant fecal sample was processed using these five
distinct DNA isolation procedures. The obtained DNA
was then subjected to Illumina paired-end sequencing.
Subsequently, METAnnotatorX was employed for analysis
of a sub-sample that consisted of 500,000 randomly se-
lected reads of the total read pool obtained for each viral
DNA purification protocol.
Remarkably, read-based taxonomic profiling of the

normalized datasets revealed that protocol 1E pro-
vides the best performance in terms of removal of
non-viral DNA, i.e. the total relative abundance of
reads not profiled as viral, in comparison to the other
tested protocols (Fig. 2). Moreover, we evaluated the
efficiency of recovered viral DNA obtained from the

five most abundant viral taxa profiled across all the
five datasets (Fig. 2), encompassing both Siphoviridae
and Podoviridae viral families. This was performed
through mapping of reads obtained for each sample
on the assembled contigs classified as the viral taxa
listed in Fig. 2. Notably, evaluation of the number of
mapped reads confirmed the superior performance of
protocol 1E for all five viral taxa analyzed and dem-
onstrated the absence of a species-specific bias in
phage DNA enrichment.
To confirm the observed performances in non-viral

DNA removal, the five protocols were used to perform
duplicate extractions from an additional human fecal
sample. Notably, the obtained results confirmed the su-
perior performance of protocol 1E and did not reveal
any biases in the duplicates (Additional file 1: Figure S2).
Overall, the 1E protocol yielded the best results both in

terms of execution time (Table 1) and removal of
non-viral DNA. Thus, this protocol to isolate and analyze
double-stranded viral DNA was employed for processing
of subsequent phageomes sequenced in this study. It
should be noted that, since we did not include a
multiple-displacement amplification (MDA) step in our
pipeline, ssDNA viruses were not assessed (yet this can
easily be remedied by the inclusion of such an MDA step).

Evaluation of the sensitivity and specificity of phage
classification as performed by METAnnotatorX
An artificial sample of 500,000 reads was constructed
using random reads corresponding to the virome of
a human adult fecal sample with the addition of de-
creasing percentages of reads obtained from shotgun
sequencing of C2 and 936 Lactococcus phages, as
outlined in Additional file 1: Table S3. Notably, our
findings showed that METAnnotatorX is able to ac-
curately reconstruct the composition of the artifi-
cially composed sample, with limited discrepancies
(Additional file 1: Table S3).

Identification of contaminants
The amount of viral DNA extracted from environmental
samples may be of very low abundance, in particular
when performing viral DNA extraction from samples
with very limited bacterial colonization, e.g., meconium
samples from newborns. This not only represents an
issue for library preparation and sequencing yields but
may also cause biases induced by environmental con-
tamination. In fact, if the amount of viral DNA retrieved
from a sample is limited, even the presence of a very low
quantity of contaminating DNA is expected to result in
the presence of a high relative contaminant level of se-
quencing reads in a given dataset.
In order to identify and remove contaminant DNA in

the phageome datasets used in this study, the genome
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align tool MAUVE [36] was exploited to perform
cross-alignment of contigs obtained from the metage-
nomic datasets using METAnnotatorX. Interestingly, we
observed that the five infant samples, which represent the
first stool samples of these neonates following birth (i.e.
the meconium), used for evaluation of mother-infant ver-
tical transmission of phages (discussed below) share iden-
tical contigs (Additional file 1: Figure S3). ORF prediction
and functional annotation of these contigs led to the

reconstruction of the complete genome of phages
extensively studied in our laboratory [37, 38]. Thus, we
proceeded to map all datasets included in this study (see
above and below for details) to these apparently contamin-
ating contigs using a 99% identity cut-off in order to
remove the reads corresponding to these putative contam-
inants. This cut-off was chosen to allow mapping of reads
identical to the backbone, while permitting the 1% error
rate that affects Illumina sequencing [39]. Moreover, the

Fig. 2 Evaluation of non-viral DNA removal performances through analysis of viral DNA extracted from the same fecal sample using five different
protocols. a The percentage of viral DNA detected through taxonomic classification of reads corresponding to coding regions. b The number of
reads retrieved for the five most abundant viral taxa using the five different protocols
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DNA extraction kit was identified as the primary source
of contaminants and measures were taken to minimize
such contamination, including the use of dedicated kits
for fecal virome studies [40] and performing DNA isola-
tion in laminar flow hoods [41]. However, in samples with
low DNA abundance, the potential for DNA contamin-
ation remains significant, and it is therefore strongly rec-
ommended to perform routine sequencing of sham
controls so as to monitor and identify DNA contaminants
originating from the lab environment [42]. In this context,
a newly acquired DNA extraction kit was used to process
a sham sample, resulting in 46,269 quality-filtered reads,
representing 4.6% of the target sequencing depth of
1,000,000 reads. Moreover, assembly of these data did not
produce any contigs, thus indicating that the retrieved
reads represent the sequencing background, i.e., sequen-
cing and demultiplexing errors performed by the Illumina
sequencer [39]. It is worth mentioning that while the latter
approach is effective in the removal of contaminants that
can be assembled into contigs, it is not possible to effi-
ciently detect non-viral DNA present at low abundance
using a read-based approach. Thus, prevention of DNA
contamination should be considered critical in virome
studies, particularly when analyzing samples with a low
viral load.
Notably, the presence of contaminant DNA from

the lab environment seems to be a common issue in
published phageome studies, as evidenced by MAUVE
genomic alignment of contigs assembled from data-
sets sequenced in one of the largest infant phageome
studies [22] and available in the NCBI SRA database
(https://www.ncbi.nlm.nih.gov/sra). Interestingly, gen-
ome alignment of contigs assembled using METAnno-
tatorX from 12 random datasets revealed the
presence of sequences taxonomically related to the
Pseudomonas genus that are shared and show identity
> 99% by most of the phageomes (Additional file 1:
Figure S4). Notably, if a cross check of sequences as-
sembled from unrelated samples processed in the
same lab reveals contigs with high identity, they may
represent contaminants from the environment. Thus,
these contigs should be carefully evaluated and, if
they are shown to represent contaminating sequences,
be removed from such datasets.

Evaluation of mother-infant transmission of phages
To demonstrate the potential for a comprehensive
pipeline for in depth analysis of phageomes, the 1E
extraction protocol and METAnnotatorX platform
were employed in combination for the analysis of
fecal samples collected from seven mothers and their
corresponding newborn infants. In total, 14 fecal sam-
ples were collected, corresponding to seven mothers
sampled at 34 weeks of gestation and meconium

samples of their corresponding offspring. Viral DNA
was extracted by means of the 1E protocol and se-
quenced with Illumina technology, aimed at achieving
an output of 10 million reads for the meconium sam-
ples and 25 million reads for fecal samples of
mothers. Shotgun sequencing produced a total of
148,797,588 reads, ranging from 238,288 to
34,105,775 reads (Additional file 1: Table S4). Notably,
a high variability of sequencing yield was expected
despite normalization of DNA used for library prepar-
ation, with those samples that encompass a very low
virus load (i.e. meconium). The obtained datasets
were processed with METAnnotatorX in order to
classify the viral, archaeal, bacterial, and eukaryotic
reads (Additional file 1: Figure S5). A complete profile
of the archaeal and bacterial viral population is re-
ported in Additional file 2. The obtained read-based
taxonomic profiles revealed the presence of common
viral taxa in each mother-infant pair (Table 2). To
evaluate if the latter observation is due to sharing of
the same phage genotypes, METAnnotatorX was
employed for taxonomic assignment of contigs recon-
structed from the infant datasets. Subsequently, the
retrieved phage contigs were used as backbones for
mapping of the reads constituting the dataset of the
corresponding mother (Fig. 3). To avoid false posi-
tives, mappings were performed using a stringent
identity cut-off of 99%. As reported above, a 99%
cut-off was chosen to allow mapping of reads that are
identical to the backbone while permitting the 1% error
rate, which is imputable to Illumina sequencing [39].
Notably, for each mother-infant pair, reads of the
mother’s phageome were mapped on multiple phage
contigs reconstructed from the corresponding infant,
thus suggesting a vertical route for phageome transmis-
sion from the maternal gut virome to her offspring.
(Fig. 3). In contrast, cross-alignment of each mother
dataset to phage contigs assembled from unrelated in-
fants did not produce any common reads, thus indicat-
ing the absence of environmental contamination and
supporting the notion of vertical transmission.

Genome decoding and functional characterization of
vertically transmitted phage genomes
METAnnotatorX was employed for the reconstruction
and functional characterization of complete viral ge-
nomes predicted to be transmitted from mother to new-
born. This analysis resulted in the deduction of two
phage genomes shared by Infant_7 and its corresponding
mother’s phageome, named Infant_7_Myoviridae_36549
and Infant_7_Siphoviridae_29493, with genome sizes of
90,522 and 45,589 bp, respectively (Fig. 4). ORF predic-
tion and functional annotation based on PHAST data-
base [43] revealed that Infant_7_Myoviridae_36549
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Table 2 List of viral taxa with abundance > 0.01% identified in the fecal samples of both mother and corresponding newborn

Viral taxonomy Mother-
infant 1

Mother-
infant 2

Mother-
infant 3

Mother-
infant 4

Mother-
infant 5

Mother-
infant 6

Mother-
infant 7

Unclassified__Bacillus virus 1 Shared

Unclassified__Clostridium phage phiCT453A Shared

Unclassified__Geobacillus phage GBSV1 Shared

Unclassified__Geobacillus virus E2 Shared Shared

Myoviridae Abouovirus__Brevibacillus virus Abouo Shared

Myoviridae Felixo1virus__Escherichia virus AYO145A Shared Shared Shared Shared Shared Shared

Myoviridae Felixo1virus__Escherichia virus EC6 Shared Shared

Myoviridae Felixo1virus__Escherichia virus HY02 Shared

Myoviridae Felixo1virus__Escherichia virus JH2 Shared

Myoviridae Felixo1virus__Escherichia virus VpaE1 Shared

Myoviridae Felixo1virus__Salmonella virus FelixO1 Shared

Myoviridae Felixo1virus__Salmonella virus HB2014 Shared

Myoviridae Felixo1virus__Salmonella virus UAB87 Shared

Myoviridae Mooglevirus__Citrobacter
phage Michonne

Shared

Myoviridae Myoviridae_Unclassified__Bacillus
phage 0305phi8-36

Shared

Myoviridae Myoviridae_Unclassified__Bacillus
phage AR9

Shared

Myoviridae Myoviridae_Unclassified__Bacillus
phage BCD7

Shared Shared

Myoviridae Myoviridae_Unclassified__Bacillus
phage BM5

Shared

Myoviridae Myoviridae_Unclassified__Bacillus
phage G

Shared Shared Shared Shared Shared Shared

Myoviridae Myoviridae_Unclassified__Bacillus
phage SP-15

Shared Shared Shared

Myoviridae Myoviridae_Unclassified__Brochothrix
phage A9

Shared

Myoviridae Myoviridae_Unclassified__Clostridium
phage c-st

Shared Shared

Myoviridae Myoviridae_Unclassified__Clostridium
phage phiCD211

Shared Shared Shared

Myoviridae Myoviridae_Unclassified__Cronobacter
phage vB_CsaM_GAP32

Shared Shared Shared Shared Shared

Myoviridae Myoviridae_Unclassified__Enterobacteria
phage phi92

Shared Shared Shared

Myoviridae Myoviridae_Unclassified__Escherichia
phage vB_EcoM_Alf5

Shared

Myoviridae Myoviridae_Unclassified__Staphylococcus
phage SA1

Shared

Unclassified__Paenibacillus phage phiIBB_Pl23 Shared

Podoviridae Cba41virus__Cellulophaga virus Cba172 Shared

Podoviridae Cp1virus__Streptococcus virus Cp1 Shared

Podoviridae Phi29virus__Bacillus virus B103 Shared

Podoviridae Phi29virus__Bacillus virus GA1 Shared Shared

Podoviridae Phi29virus__Bacillus virus phi29 Shared Shared

Podoviridae Podoviridae_Unclassified__Actinomyces
phage Av-1

Shared Shared
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Table 2 List of viral taxa with abundance > 0.01% identified in the fecal samples of both mother and corresponding newborn
(Continued)

Viral taxonomy Mother-
infant 1

Mother-
infant 2

Mother-
infant 3

Mother-
infant 4

Mother-
infant 5

Mother-
infant 6

Mother-
infant 7

Podoviridae Podoviridae_Unclassified__Bacillus
phage Aurora

Shared

Podoviridae Podoviridae_Unclassified__Bacillus
phage MG-B1

Shared

Podoviridae Podoviridae_Unclassified__Bacillus
phage VMY22

Shared

Podoviridae Podoviridae_Unclassified__Cellulophaga
phage phi18:3

Shared

Podoviridae Podoviridae_Unclassified__Planktothrix
phage PaV-LD

Shared Shared Shared

Podoviridae Podoviridae_Unclassified__Streptococcus
phage Str-PAP-1

Shared

Unclassified__Pseudomonas phage O4 Shared

Siphoviridae C5virus__Lactobacillus virus c5 Shared

Siphoviridae Cba181virus__Cellulophaga
virus Cba181

Shared

Siphoviridae Cecivirus__Bacillus virus 250 Shared

Siphoviridae Ff47virus__Mycobacterium virus Ff47 Shared

Siphoviridae Mudcatvirus__Arthrobacter virus Mudcat Shared Shared

Siphoviridae Omegavirus__Mycobacterium
phage Courthouse

Shared Shared

Siphoviridae Pepy6virus__Rhodococcus virus Pepy6 Shared Shared Shared

Siphoviridae Pepy6virus__Rhodococcus virus Poco6 Shared

Siphoviridae Phietavirus__Staphylococcus phage EW Shared Shared

Siphoviridae Sfi21dt1virus__Streptococcus
phage 7201

Shared

Siphoviridae Sfi21dt1virus__Streptococcus
phage Abc2

Shared

Siphoviridae Sfi21dt1virus__Streptococcus
phage DT1

Shared

Siphoviridae_Unclassified__Bacillus phage BCJA1c Shared

Siphoviridae_Unclassified__Bacillus phage BtCS33 Shared

Siphoviridae_Unclassified__Bacillus phage phi4J1 Shared Shared Shared

Siphoviridae_Unclassified__Bacteriophage Lily Shared

Siphoviridae_Unclassified__Bacteroides
phage B124-14

Shared

Siphoviridae_Unclassified__Brevibacillus
phage Sundance

Shared Shared

Siphoviridae_Unclassified__Cellulophaga
phage phi46:1

Shared

Siphoviridae_Unclassified__Clostridium
phage 39-O

Shared

Siphoviridae_Unclassified__Clostridium
phage phi8074-B1

Shared

Siphoviridae_Unclassified__Clostridium
phage phiCT453B

Shared

Siphoviridae_Unclassified__Croceibacter
phage P2559Y

Shared

Siphoviridae_Unclassified__Enterococcus Shared
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encodes 118 genes, 89 of which were shown to encode
hypothetical proteins, while Infant_7_Siphoviridae_29493
encodes a total of 62 genes, representing 41 hypothetical
proteins (Fig. 4). Interestingly, evaluation of the taxonomy
of homologous genes identified in the PHAST database
showed that 63% of the ORFs encoded by Infant_7_Myo-
viridae_36549 and 32% of the ORFs encoded by
Infant_7_Siphoviridae_29493 share distant homology with

genes encoded by Bacillus phage BCD7 and Bacteroides
phage B124-14, respectively. This finding suggests that the
hosts of Infant_7_Myoviridae_36549 and Infant_7_Sipho-
viridae_29493 are members of the Firmicutes and Bacter-
oidetes phyla.
Analysis of phage modules revealed that Infant_7_

Myoviridae_36549 and Infant_7_ Siphoviridae_29493
possess four modules typical of Myoviridae and

Table 2 List of viral taxa with abundance > 0.01% identified in the fecal samples of both mother and corresponding newborn
(Continued)

Viral taxonomy Mother-
infant 1

Mother-
infant 2

Mother-
infant 3

Mother-
infant 4

Mother-
infant 5

Mother-
infant 6

Mother-
infant 7

phage EFC-1

Siphoviridae_Unclassified__Geobacillus virus E3 Shared Shared Shared

Siphoviridae_Unclassified__Helicobacter
phage phiHP33

Shared

Siphoviridae_Unclassified__Lactobacillus
phage Ldl1

Shared

Siphoviridae_Unclassified__Lactococcus
phage 1706

Shared

Siphoviridae_Unclassified__Lactococcus
phage 50,101

Shared

Siphoviridae_Unclassified__Lactococcus
phage bIL285

Shared Shared

Siphoviridae_Unclassified__Lactococcus
phage Tuc2009

Shared

Siphoviridae_Unclassified__Mycobacterium
phage BTCU-1

Shared

Siphoviridae_Unclassified__Pseudomonas
phage YMC11/07/P54_PAE_BP

Shared

Siphoviridae_Unclassified__Riemerella
phage RAP44

Shared

Siphoviridae_Unclassified__Staphylococcus
phage StB20

Shared

Siphoviridae_Unclassified__Streptococcus
phage Dp-1

Shared Shared

Siphoviridae_Unclassified__Streptococcus
phage MM1

Shared Shared

Siphoviridae_Unclassified__Streptococcus
phage PH15

Shared

Siphoviridae_Unclassified__Streptococcus
phage phiNJ2

Shared

Siphoviridae_Unclassified__Streptococcus
phage SM1

Shared Shared

Siphoviridae_Unclassified__Synechococcus
phage S-CBS3

Shared

Siphoviridae_Unclassified__Vibrio phage SIO-2 Shared

Siphoviridae Spbetavirus__Bacillus
virus SPbeta

Shared Shared

Unclassified__Streptococcus
phage 20617

Shared Shared Shared Shared Shared

Unclassified__Streptococcus
phage phiARI0131-2

Shared

Unclassified__Uncultured phage crAssphage Shared Shared
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Siphoviridae phages, i.e., DNA replication, DNA pack-
aging, and tail and lysis module (Fig. 4). Both phages
lack a clear lysogeny module, with no genes encoding
integrases found within the genomes (Fig. 4). Notably,
Infant_7_Myoviridae_36549 possesses a large region en-
coding genes of unknown function interspersed with
genes with putative functions such as a putative type III
restriction protein and two queuosine (Que) biosynthesis
genes. The latter compound is a modified nucleoside
that is present in certain tRNAs [44, 45], and genes for
its synthesis have been identified in other Myoviridae
phages [46].

Evaluation of the minimum amount of shotgun
metagenomics data needed for robust phage biodiversity
assessment
The choice of the target sequencing depth is a critical
step in resource management when planning pha-
geome studies using shotgun metagenomics sequen-
cing. To define the number of sequence reads needed
to obtain a reliable and comprehensive coverage of
the biodiversity from read- and contig-based analyses,
the five datasets of mothers with > 20 M reads (Add-
itional file 1: Table S4) were subjected to iterative
analysis of subsamples to construct rarefaction curves
reporting the number of phage species identified in
sub-samplings from 0.5 M up to 20 M reads. Notably,
for each of the five samples analyzed, the number of
phage taxa detected increased exponentially until a

read pool size of about 7 M reads, beyond which a
plateauing was observed (Additional file 1: Figure S6).
Moreover, the average curve obtained by integration
of the five datasets revealed that 7.5 M reads are
enough to cover 70% of the total biodiversity identi-
fied in the total pool of 20 M reads. This indicates
that 7 M reads are the target sequencing depth
needed to obtain a comprehensive read-based over-
view of the phage population harbored by a given
fecal sample obtained from a healthy adult (Fig. 5).
Focusing on the assembly and analysis of phage ge-

nomes, we constructed a rarefaction curve reporting the
number of viral taxa for which we obtained at least one
assembled contig > 5000 bp at increasing subsampling
points from 0.5 M up to 25 M reads. Interestingly, the ob-
tained graphs revealed that the curve rapidly increased up
to the point of 7.5 M reads and then tends to plateau
(Additional file 1: Figure S6). Furthermore, evaluation of
the average curve revealed that 7.5 M reads are enough to
obtain contigs for 70% of the total number of phage taxa
assembled 25 M reads.
Notably, evaluation of the logarithmic trendline for both

the read- and contig-based rarefaction curves revealed
that doubling the amount of shotgun metagenomic reads
would only provide a limited increase of 14.4 and 16% in
viral taxa identified through read profiling and contig clas-
sification, respectively (Additional file 1: Figure S7).
Altogether, these results indicate that the minimum se-

quencing depth needed for robust read-based profiling and

Fig. 3 Identification of vertical transmission events of phages. For each of the seven enrolled infants, the assembled viral contigs > 5000 bp were
used as backbone for stringent mapping of sequencing reads obtained from their mothers. In case mapping reads were observed, the contig
was either colored in yellow or in black
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assembly of gut phageomes of healthy adults is approxi-
mately 7.5 M reads. In fact, additional sequencing outputs
do not provide additional valuable information about the
biodiversity of phages in these complex ecosystems (Fig. 5).
Nevertheless, re-evaluation and adjustment of the target se-
quencing depth is necessary in case of analysis of samples
with remarkably lower or higher bacterial and viral biodiver-
sity, e.g., infant gut or soil samples. In this context, we
exploited the dataset of Infant 7 to reconstruct rarefaction
curves of viral taxa observed trough taxonomic classification
of reads and assembled contigs > 5000 bp (Additional file 1:
Figure S8). Notably, these data confirmed 7 M reads as an
optimal sequencing depth also for comprehensive analysis
of infant phageomes (Additional file 1: Figure S8).

Conclusions
Despite environmental and host-associated microbiomes
being the subject of an increasing number of studies, the
phageome associated with these complex bacterial com-
munities remains poorly understood. This is primarily
due to the current lack of a gold standard procedure for
viral DNA extraction and data analysis. Instead, there
are a variety of different procedures associated with pub-
lications, which makes it near impossible to compare re-
sults between different studies.

To address this issue, we performed a comparative
assessment of various DNA extraction methods for
virome analysis and developed a novel bioinformatic
tool, METAnnotatorX, which enables an integrated
and comprehensive processing of viral and prokary-
otic metagenomic datasets. Notably, this software can
perform a wide range of read- and assembly-based
analyses and represents, to date, the most complete bio-
informatics platform for the study of viromes. METAnno-
tatorX was employed to perform an in-depth comparison
of five protocols for viral DNA extraction and enrichment,
leading to the identification of protocol 1E as the one that
performs best in terms of removal of non-viral DNA,
unbiased representation of the viral population and execu-
tion time. Moreover, we also analyzed five deep-sequenced
viromes retrieved from feces of human adults. The gener-
ated results demonstrated that 7.5 M reads represent a
sufficient sequencing depth needed for both read- and
assembly-based investigation of gut phageomes of heathy
human adults.
The proposed comprehensive pipeline for phageome

analysis was then used to shed light on the vertical
acquisition of phages by infants. Analysis of fecal
samples collected from seven mothers and their new-
borns revealed that they share identical phage

Fig. 4 Genomic characterization of two vertically transmitted phages. a, b The genome map of the phages Infant_7_Myoviridae_36549 and
Infant_7_Siphoviridae_29493, respectively. Genes are colored based on their predicted function
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genotypes, thus indicating the existence of a putative
vertical route for transmission of phages from the
mother to the infant. Moreover, METAnnotatorX also
allowed, for the first time, the reconstruction and
characterization of the genome of two genotypes pre-
dicted to be vertically transmitted.
Notably, these results demonstrate that the use of a

comprehensive pipeline for analysis of phageomes will
be pivotal for future explorations of the dark matter of
phageomes, such as phage ecology in the gut environ-
ment, the role of phages in modulating the bacterial
population and their impact on the physiology as well as

bacterial community kinetics as players of dysbiosis and
homeostasis in the gut microbiota.
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Additional file 1: Supplementary text, tables and figures. (DOCX 5306 kb)

Additional file 2: Archaeal and bacterial viruses profiled in the analyzed
samples. (XLSX 152 kb)
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