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The implausible “in vivo” role of hydrogen
peroxide as an antimicrobial factor
produced by vaginal microbiota
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Abstract: In the cervicovaginal environment, the production of hydrogen peroxide (H2O2) by vaginal Lactobacillus
spp. is often mentioned as a critical factor to the in vivo vaginal microbiota antimicrobial properties. We present
several lines of evidence that support the implausibility of H2O2 as an “in vivo” contributor to the cervicovaginal
milieu antimicrobial properties. An alternative explanation is proposed, supported by previous reports ascribing
protective and antimicrobial properties to other factors produced by Lactobacillus spp. capable of generating H2O2.
Under this proposal, lactic acid rather than H2O2 plays an important role in the antimicrobial properties of protective
vaginal Lactobacillus spp. We hope this commentary will help future research focus on more plausible mechanisms by
which vaginal Lactobacillus spp. exert their antimicrobial and beneficial properties, and which have in vivo and
translational relevance.

Main text
In 1892, Albert Doderlein first described the presence of
Gram-positive bacilli in the vagina of healthy
reproductive-age women with low vaginal pH [1]. He con-
sidered the anti-staphylococci activities of the vaginal ba-
cilli and the bactericidal action of the vaginal secretions to
be due to the lactic acid produced by the bacilli [2]. His
findings and those of others led to the proposal that vagi-
nal acidification by lactic acid producing Lactobacillus
spp. is the primary mechanism by which these bacteria
contribute to the protection against reproductive tract
pathogens [1, 2]. In addition to releasing organic acid me-
tabolites (e.g., lactic acid) known to provide antimicrobial
and immunomodulatory properties, Lactobacillus spp. can
outcompete other bacteria at the epithelial mucosa as well
as releasing bacteriocins, surfactants, antimicrobial pro-
teins, or peptides [3–5]. In the 1990s, Lactobacillus spe-
cies that produced H2O2 gained favour as being
antimicrobial and synonymous with the presence of an
optimal protective vaginal microbiota in reproductive-age
women [6]. The protective role ascribed to H2O2 largely

stems from epidemiological studies linking the presence
in the vagina of H2O2-producing Lactobacillus spp. with a
decreased risk for bacterial vaginosis (BV) [6–9], sexually
transmitted infections [10, 11], as well as adverse birth
outcomes [12], compared to women harboring non-
H2O2-producing vaginal Lactobacillus. Unfortunately,
these epidemiological observations were interpreted into
the now widely accepted statement that “in vivo, Lactoba-
cillus spp. exerts its antimicrobial properties through the
production of H2O2”. While we do not dispute these epi-
demiological studies, the notion that in vivo H2O2 produc-
tion by vaginal Lactobacillus spp. is an important factor
contributing to the antimicrobial properties of these spe-
cies is highly unlikely in the context of physiological con-
ditions present in the lower female reproductive tract
(FRT). In this commentary, several lines of evidence are
presented that support the implausibility of “in vivo”
H2O2 as an antimicrobial factor in the cervicovaginal en-
vironment. An alternative explanation is proposed, sup-
ported by previous reports ascribing protective and
antimicrobial properties to other factors produced by
Lactobacillus spp. capable of generating H2O2. Under this
proposal, lactic acid rather than H2O2 plays an important
role in the antimicrobial properties of protective vaginal
Lactobacillus spp.
A fact that is not disputed is that in any microbial sys-

tem, no matter the mechanism (pyruvate oxidase, lactate
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oxidase or NADH oxidase or NADH-dependent flavin
mononucleotide reductase) [13], O2 is required to pro-
duce H2O2, and in large amounts to achieve H2O2 con-
centrations necessary to have antimicrobial activity in
the vaginal environment [14–16]. Thus, a major ques-
tion is how much oxygen is present to support this reac-
tion in the vagina. The cervicovaginal environment is
microaerobic (hypoxic) [17]. The mean cervicovaginal
O2 levels range from 15 to 35 mmHg (2%), which is
much lower than atmospheric levels of 160 mmHg
(21%) [17–19]. Conversely, the cervicovaginal CO2 par-
tial pressure ranges from 35 to 55 mmHg (or 5%), which
is considerably higher than atmospheric levels (i.e.,
5 mmHg, 0.04%) [17–19]. Only transient increases in O2,

that rarely achieve atmospheric levels, have been reported
upon or after tampon or diaphragm insertion, sexual
arousal [17, 18, 20, 21], and probably sexual intercourse.
Vaginal Lactobacillus spp., like most Lactobacillus spp.,
are aerotolerant anaerobes and some do produce H2O2

when propagated under aerobic conditions, such as aer-
ation by flask shaking [14, 15]. Conversely, lactic acid is
predominately produced and at high concentrations under
hypoxic conditions [19, 22]. Consistent with these in vitro
observations and the low vaginal O2 levels measured in
vivo, H2O2-producing vaginal Lactobacillus spp. have been
shown to make little or no H2O2 in the context of the
hypoxic cervicovaginal environment [16, 23].
The reported production of H2O2 by vaginal Lactobacil-

lus spp. is measured using artificial in vitro conditions that
do not recapitulate the hypoxic cervicovaginal environment
[6, 14]. Consistent with this observation, the literature
assigning an antimicrobial role for H2O2 describe experi-
ments where Lactobacillus isolates are cultured under aer-
obic conditions to facilitate production and detection of
H2O2 [6, 13–15, 24–26] (Table 1). Antimicrobial activity of
H2O2 is observed in vitro in protein-free salt solutions, con-
ditions that are not consistent with those in the cervicovagi-
nal environment and an in vivo antimicrobial role for
H2O2. Supporting this conclusion is the finding that H2O2

is inactivated by the reducing capabilities of cervicovaginal
fluid (CVF) and semen [16, 23]. H2O2 measured in fully
aerobic CVF is only 23 ± 5 μM [16]; however, CVF and
semen completely reduce 1 mM and 10 mM added H2O2,
respectively [16]. The addition of as little as 1% CVF super-
natant completely abolishes the pathogen-inactivation by
aerobically grown H2O2-producing Lactobacillus spp. [16]
demonstrated by Klebanoff et al. [6]. In in vitro assays,
physiological concentrations of H2O2 (< 100 μM) found in
vaginal fluids, even when potentiated with myeloperoxidase,
fail to inactivate bacterial vaginosis associated microbes, as
well as bacterial (Neisseria gonorrhoeae) and viral (HSV-2)
pathogens [16, 23]. Supra-physiological levels (10 mM) of
H2O2 inactivate only one of 17 BV-associated bacterial spe-
cies tested while completely inactivating four major vaginal

Lactobacillus spp., L. crispatus, L. gasseri, L. jensenii, and L.
iners [23]. These findings do not support an antimicrobial
role for H2O2 in the cervicovaginal environment; however,
the association between H2O2-producing strains of Lacto-
bacillus spp. and favorable reproductive and urogenital out-
comes may represent an in vitro marker for vaginal strains
with beneficial properties. We put forth that other functions
associated with these isolates capable of producing H2O2 in
vitro must be responsible for their beneficial properties [3,
14, 24, 27]. In support of this proposal are issues with in
vitro measurement of H2O2 production, which can be af-
fected by growth kinetics. As such, a third of non-H2O2-
producing strains were shown to ‘convert’ to H2O2 pro-
ducers when the nutritional medium was reformulated [25]
and in another study, 44% of non-H2O2-producing strains
became producers when the time allowed for H2O2 produc-
tion was increased from 30 to 60 min [12], vividly demon-
strating that the difference is one of rate rather than
absolute ability. Consistent with these findings, and the hy-
pothesis that H2O2 is preferentially produced through
NADH-dependent flavin mono-nucleotide reductase in lac-
tic acid bacteria [13, 28, 29], an analysis of 125 L. iners ge-
nomes assembled from metagenomics datasets, showed
that all genomes carry both genes found responsible for
H2O2 production in L. johnsonii [13] and other members of
the L. acidophilus group (data not shown). These finding
severely weaken the association between production of
H2O2 by vaginal Lactobacillus species and protection
against BV, STI, and other adverse outcomes.
Vaginal Lactobacillus spp. produces lactic acid through

the fermentation of polysaccharides, including glucose,

Table 1 Concentrations of hydrogen peroxide and lactic acid
produced by Lactobacillus spp. under different conditions and
concentrations necessary to inactivate HIV and BV-associated
bacteria

Conditions H2O2 [mM] Lactic acid
[mM]

Culture medium under hypoxic
conditions

Undetectable [46] 160–250 [22,
47]

Aerated culture medium 3.34–4.39 [46] 45 [22]

Lactobacillus-dominated CVF
under hypoxic conditions

Undetectable [16] 110 [23]

Aerated Lactobacillus-dominated
CVF

0.023 [16] 63 [23]

Inactivation of HIV in culture
medium

5 [48] 33 [32]

Inactivation of BV-associated
bacteria in culture medium

10 [23] 55–110 [23]

Inactivation of HIV in the
presence of CVF

Undetermined 33–110 [32]

Inactivation of BV-associated
bacteria in the presence of CVF

> 1000 [23] 55–110 [23]

Inactivation of Lactobacillus in
culture medium

> 1000 [23] > 1000 [23]
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under hypoxic conditions [30, 31]. In women of
reproductive-age, harboring Lactobacillus-dominated vagi-
nal microbiota, measurement of the average concentration
of lactic acid in cervicovaginal fluid (CVF) under hypoxic
conditions is 1.0 ± 0.2% (w/v), a concentration associated
with a low pH between 3.5 and 4.5 [19] (Table 1). The
strong inverse correlation between pH and lactic acid levels
indicates that lactic acid is the main acidifier in the lower
FRT [19]. Lactic acid has been shown to have antimicrobial
activity [32, 33], as well as anti-inflammatory properties on
cervicovaginal epithelial cells, which together support a role
in lowering the risk of sexually transmitted infection acqui-
sition and transmission [34, 35]. In vitro and at physio-
logical concentrations (55–111 mM) and pH (4.5), lactic
acid inactivates 17 different BV-associated bacteria, while
not affecting the viability of four vaginal Lactobacillus spp.
[23]. Under in vitro anaerobic conditions, lactic acid pro-
duced by L. crispatus and L. gasseri, but not H2O2, was
shown to inactivate Neisseria gonorrhoeae [36], Chlamydia
trachomatis [22, 37] as well as Escherichia coli [38]. Lactic
acid produced by L. crispatus inhibits N. gonorrhoeae and
Gardnerella vaginalis as demonstrated in a porcine vaginal
mucosa explant model [39].
Interestingly, Antonio et al. found that 94, 95, and 70%

of L. crispatus, L. jensenii and L. gasseri isolates, respect-
ively, but only 9% of L. iners strains produce H2O2 in vitro
[40]. Notably, the D-isomer of lactic acid is exclusively
produced by L. crispatus, L. jensenii and L. gasseri, and
not L. iners [41, 42], and while not extensively tested, has
been shown to be associated with immobilisation of HIV-
1 in mucus [43], as well as being implicated in preventing
vaginal bacteria traversing the cervix to initiate upper
genital tract infections [41]. Thus, the lack of H2O2-pro-
duction may represent less beneficial strains of Lactobacil-
lus spp. that do not produce high quantities of lactic acid
and thus fail to acidify the vagina to low pH [29, 41] or
lack the ability to produce D-lactic acid, which appears to
be an essential isomer. Further, Tomás et al. [44] found
that strains of vaginal Lactobacillus species producing
H2O2 in vitro also produced significantly more lactic acid
than non-H2O2-producing strains. Lastly, slow growth or
metabolic rates might limit the competitiveness of some
Lactobacillus spp. leading to lack of dominance when
faced with intrinsic (e.g., menses) and extrinsic (e.g., sex)
disturbances, thus frequently transitioning to BV-like
microbiota comprising a wide array of strict and faculta-
tive anaerobes [45] and should also be considered.

Conclusion
The scientific literature does not support an in vivo anti-
microbial role for H2O2 produced by vaginal Lactobacillus
spp. The perpetuation of this concept lacks scientific justi-
fication. Definitive clarification of the lack of in vivo anti-
microbial role for H2O2 is critical to focus on more

plausible mechanisms by which vaginal Lactobacillus spp.
exert their antimicrobial and beneficial properties, includ-
ing that of lactic acid. This goal could be achieved by
examining, but not limited to, the following:

1) In vitro studies examining the antimicrobial role of
Lactobacillus spp. metabolites or other factors could
consider—and ideally recapitulate—the conditions
generally prevailing in vivo, e.g., hypoxia and high
antioxidant capacity among others.

2) The direct antimicrobial activity of any factor,
whether endogenous products of Lactobacillus spp.
or exogenous formulation, could be confirmed in the
presence of CVF.

3) Epidemiological studies associating vaginal
microbiota and reproductive health outcomes could
incorporate quantification of putative antimicrobial
factors or activities of Lactobacillus spp. in ex vivo
CVF samples in prospective study designs.

A shift of focus on mechanisms with translational rele-
vance is key for the evidence-based selection of Lactoba-
cillus spp. or Lactobacillus metabolites, and other factors,
in efforts to develop and test novel biotherapeutics for the
female reproductive tract.
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