
RESEARCH Open Access

Identifying predictive features of
Clostridium difficile infection recurrence
before, during, and after primary antibiotic
treatment
Sepideh Pakpour1,2,3, Amit Bhanvadia4,6, Roger Zhu5,6, Abhimanyu Amarnani6, Sean M. Gibbons1,2,3,
Thomas Gurry1,2,3, Eric J. Alm1,2,3* and Laura A. Martello6*

Abstract

Background: Colonization by the pathogen Clostridium difficile often occurs in the background of a disrupted
microbial community. Identifying specific organisms conferring resistance to invasion by C. difficile is desirable
because diagnostic and therapeutic strategies based on the human microbiota have the potential to provide more
precision to the management and treatment of Clostridium difficile infection (CDI) and its recurrence.

Methods: We conducted a longitudinal study of adult patients diagnosed with their first CDI. We investigated the
dynamics of the gut microbiota during antibiotic treatment, and we used microbial or demographic features at the
time of diagnosis, or after treatment, to predict CDI recurrence. To check the validity of the predictions, a meta-
analysis using a previously published dataset was performed.

Results: We observed that patients’ microbiota “before” antibiotic treatment was predictive of disease relapse, but
surprisingly, post-antibiotic microbial community is indistinguishable between patients that recur or not. At the
individual OTU level, we identified Veillonella dispar as a candidate organism for preventing CDI recurrence;
however, we did not detect a corresponding signal in the conducted meta-analysis.

Conclusion: Although in our patient population, a candidate organism was identified for negatively predicting CDI
recurrence, results suggest the need for larger cohort studies that include patients with diverse demographic
characteristics to generalize species that robustly confer colonization resistance against C. difficile and accurately
predict disease relapse.

Background
Clostridium difficile infection (CDI) is an urgent public
health priority worldwide [1–5], and despite progress in in-
fection control and innovative options for treatment of CDI,
until recently, there has been a steady and considerable ele-
vation in its incidence, as well as its reported severity of ill-
ness [2, 6–9]. Known factors associated with CDI include
hospitalization, advanced age, antibiotic prescription, and
gastrointestinal surgery, in addition to those less agreed
upon such as proton pump inhibitor therapy [6, 9–14].

Standard management of CDI involves the administration
of antibiotic therapy, such as metronidazole and vanco-
mycin [15], but 22.4 and 14.2% of patients have been ob-
served to have no response to metronidazole and
vancomycin, respectively [16]. Of the remaining patients
with positive responses to antibiotic therapy, 30% have
shown CDI relapses [7, 15, 17]. CDI relapses add a layer of
complexity to CDI management, and currently available
clinical models have limited power to predict the risk of
recurrence, either before or after discontinuation of C.
difficile treatment.
For patients with multiple failures of antibiotic treat-

ment for recurrent infection, fecal microbiota transplant-
ation (FMT) has become an effective treatment strategy
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(with 92% success rate [18]). FMT, which was performed
as early as the fourth century [19], aims to restore nor-
mal microbiota [20], highlighting the crucially important
role of the gut microbiome in providing C. difficile
colonization resistance. Studies have shown that gut dys-
biosis leads to reduced colonization resistance against C.
difficile and ultimately increases susceptibility to CDI
[21, 22]. More specifically, 16S rRNA gene sequence
analyses have demonstrated that the bacterial diversity
of patients with initial and recurrent CDI is noticeably
lower than that of healthy subjects [23, 24]. Further-
more, higher relative abundances of Proteobacteria and
Firmicutes phyla, along with a lower relative abundance
of Bacteroidetes, have been reported in CDI patients
[25]. Researchers have begun investigating which specific
bacterial signatures may be associated with CDI recur-
rence after treatment. For example, studies have associ-
ated elevated abundance of Enterobacteriaceae with
increased susceptibility to recurrence [25–27]. More re-
cently, positive associations between Veillonella, Strepto-
coccus, Parabacteroides, and Lachnospiraceae and CDI
recurrence have been suggested [22, 28].
Although the role of the gut microbiome in CDI suscepti-

bility has been well established, the particular species con-
tributing to recurrence likelihood remain unclear. Also,
despite significant progress in our understanding of CDI
and its recurrence, most studies have focused on static (sin-
gle time point) features of the microbiome. The dynamics
of the gut microbiome during treatment, and the associ-
ation of these dynamic features with clinical/demographic
factors, CDI severity, and recurrence, have not yet been
scrutinized. Here, to fulfill the above gaps, we conducted
the first prospective study along with a meta-analysis to un-
cover microbial signatures to predict recurrent CDI. Spe-
cific questions included: (1) are there any associations
between severity of CDI, microbial or demographic fea-
tures, and CDI recurrence and (2) can we use microbial or
demographic features at the time of diagnosis, or after
treatment, to predict CDI recurrence? The meta-analysis
was done between our dataset and a recently published
dataset [22] with similar sample collection, DNA extraction,
primer selection, and sequencing methods. By applying
standardized bioinformatics and statistical methods to these
two independent studies, we aim to identify consistent bio-
logical signatures of CDI recurrence. These signatures may
be useful targets for clinical diagnostics, helping to direct
more effective treatments (e.g., FMT) to patients with a
higher risk for CDI recurrence.

Methods
Study design and sample collection
Eligible male and female patient participants were identi-
fied at the State University of New York Downstate
Medical Center (University Hospital of Brooklyn) and

Kings County Hospital Center, Brooklyn, New York. Cri-
teria for participation included Clostridium difficile in-
fection (CDI) with clinically significant diarrhea
symptoms (change in bowel movement habits with three
or more liquid or uniformed stools within 24 h) along
with confirmation by a positive laboratory stool test via
stool polymerase chain reaction (PCR) or toxin B assays,
as well as willingness to participate and the ability to
maintain close follow-ups. All subjects signed an in-
formed consent form prior to enrollment. Exclusion cri-
teria for participation included history of inflammatory
bowel disease (Crohn’s disease or ulcerative colitis) and
total or subtotal colectomy.
A total of 31 individuals experiencing their first episode

of CDI (median age 64.0 years, interquartile range 60.0–
73.0; 51.6% female) were enrolled between March 2014 and
April 2015. Participants were followed at regular intervals
beginning at the time of diagnosis before the administration
of antibiotics treatment (pre-treatment, n = 31), 2 days after
the start of antibiotics treatment (post-treatment, n = 31),
7 days after the start of antibiotics treatment or at the time
of discharge (whichever was earlier (pre-discharge, n = 18)),
followed by the fourth stool samples collected 2 weeks after
the start of antibiotics (4 days after treatment completion,
post-discharge, n = 9). Severity of CDIs were assessed early
in the course of the disease to adapt medical management
using the University of Pittsburgh Medical Center (UPMC)
Index (version 2) [29, 30], where a UPMC score lower than
2 indicated moderate CDI, and a score equal or greater
than 2 indicated severe CDI. Treatment regimens for each
patient were based on the Infectious Diseases Society of
America (IDSA) guidelines. Specifically, vancomycin was
used for patients having UPMC score equal or greater than
2, demonstrating signs of systemic toxicity with or without
profuse diarrhea, or warranting an ICU admission. The rest
of patients were treated with metronidazole.
At each sampling point, stool specimens were col-

lected in standard specimen containers, aliquoted with
sterile technique into RNAlater, and were flash-frozen at
− 80 °C. We also included five stool samples from
healthy donors, in order to compare diversity and com-
position of healthy subjects with patient participants.
Patient characteristics and clinical data including age, sex,

diet, weight, height, immunosuppressive therapy,
hospitalization within 3 months prior to CDI diagnosis, anti-
biotic treatment within 3 month prior to CDI diagnosis, PPI
therapy, and ICU stay prior to CDI diagnosis, in addition to
detailed laboratory metadata at the initial encounter were
extracted from medical records and patient interviews. Two
to 4 weeks after discharge, follow-up data including CDI
treatment regimen and its recurrence were obtained. This
protocol was approved by the Institutional Review Board
(IRB) at State University of New York Downstate Medical
Center and the Massachusetts Institute of Technology.
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DNA extraction and sequencing protocols
Total genomic DNA was extracted from 500-mg stool sam-
ples using the PowerFecal DNA Isolation kit (Mo Bio La-
boratories, Carlsbad, CA, USA), according to the
manufacturer’s instructions with the following modifica-
tions to improve yields from difficult-to-lyse bacteria. An
additional bead-beating step using Faster Prep FP120
(Thermo) at 6 m/s for 1 min was used instead of vortex
agitation. Incubation with buffers C2 and C3 was increased
to 10 min at 4 °C. Subsequently, quantity of extracted DNA
samples were measured by a Qubit Fluorometer (Life Tech-
nologies, Carlsbad, CA, USA), and then, extracted DNA of
samples were sent to MIT-BioMicroCenter for multiplexed
amplicon library preparation, covering the 16S rRNA gene
V4 region using a dual-index barcode protocol, followed by
Illumina MiSeq 16S rRNA gene sequencing.

16S rRNA gene data analysis
Sequencing of the stool samples on Illumina MiSeq instru-
ment generated 7,176,335 total raw sequencing reads. Raw
reads were processed using the QIIME version 1.8.0 [31]
and custom Python scripts. Forward and reverse Illumina
reads were joined, quality trimmed to a minimum PHRED
score of 25, and then truncated to a length of 250; the
lengths determined based on the mode of the read length
distribution. Singleton reads were removed from the data-
set, and chimeras were eliminated using the UPARSE-OTU
algorithm [32]. Closed reference OTU picking was
employed by aligning unique reads to the GreenGenes
OTU database, at 99% identity (May 2013 release) using
the USEARCH algorithm [33, 34]. Representative se-
quences for each OTU were aligned using PyNast, with a
minimum alignment overlap of 75 bp [35], and a phylogen-
etic tree was built using FastTree 2.0 [36]. Of the 89 col-
lected stool samples, a total of 6,754,571 high-quality
sequence reads were identified, representing 6160 OTUs
for downstream analyses. Relative abundances of different
bacterial genera were obtained by collapsing 16S rRNA
gene OTU taxonomies to the genus level and summing
OTUs within the same genus. Finally, abundances of differ-
ent bacterial families were obtained by collapsing 16S rRNA
gene OTU taxonomies to the family level and summing
OTUs within the same family. At each level, taxa occurring
in only one sample as well as low abundance taxa, account-
ing for less than 0.05% of the total community were re-
moved. This step reduced the total number of statistical
tests that were performed and thus reduced the burden of
multiple hypothesis testing. After filtering, 195 OTUs, 51
genera, and 16 families remained for downstream analyses.

Statistical analysis
Severity of CDIs were assessed early in the course of the
disease to adapt medical management using the Univer-
sity of Pittsburgh Medical Center (UPMC) Index

(version 2) [29], where a UPMC score equal or greater
than 2 indicated severe CDI. Microbial relationships be-
tween disease severity index, infection recurrence, and
other collected metadata were evaluated by Spearman
correlation with a false discovery rate (FDR) correction.
Overall microbial community diversity (α-diversity)

was measured using the Shannon entropy [18, 21, 22].
Significant difference in α-diversity between groups (pa-
tients with and without recurrence) was determined
using the Mann-Whitney U test. Differences in commu-
nity structure across samples (β-diversity) were calcu-
lated using the weighted UniFrac distance metric and
visualized by Principal Coordinates Analysis (PCoA)
plots using custom R scripts. Significant differences in
β-diversity across patient groups were evaluated using
Permutational Multivariate Analysis of Variance (PER-
MANOVA) with 104 permutations. We also performed
Kruskal-Wallis tests using R between features of groups
with and without recurrence. All p values were then ad-
justed using the FDR correction.
To test whether microbial community composition can

predict recurrence after full treatment, we trained a ran-
dom forest model on pre-treatment samples, at OTU,
genus, and family levels. We evaluated their performance
using leave-one-out cross-validation and scored the pre-
dictive power in a receiver operating characteristic (ROC)
analysis. The discriminatory power of OTUs, genera, and
families were calculated as the area under the ROC curve
(AUC). To assess the random forest model constructed,
study groups were shuffled randomly and 100 random for-
est classifications were computed. The out-of-bag error
estimate was compared to the un-shuffled dataset using a
one-sample Wilcoxon signed-rank test to assess the per-
formance of the classification model.

Meta-analysis
To further check the validity of the prediction results, a
meta-analysis was performed using recent data published
by Khanna et al. [22], which also aimed to find microbial
fingerprints predicting the risk of recurrence after success-
ful treatment in patients with primary CDI (more infor-
mation on both studies can be found in Table 1).
Sequence data and sample metadata, shared by the ori-

ginal authors, were downloaded from the NCBI Sequence
Read Archive (SRA, accession number: SRP087648). For
the Khanna et al. [22] dataset, only patients that
responded to primary treatment (with and without recur-
rence) were kept for the meta-analysis. In our dataset, be-
cause individuals were sampled at multiple time intervals,
only samples at the pre-treatment stage were included in
order to make the two datasets comparable. Also, because
only forward reads were used in the Khanna et al. study,
we also included only forward reads from our study in the
meta-analysis. For each dataset, sequence reads were
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demultiplexed, followed by quality filtering (PHRED score
of 25) and removing any reads containing ambiguous
bases. For both studies, read lengths were truncated to
200 bp. Subsequently, the quality-filtered reads were
pooled, followed OTU calling against a reference set of
OTUs assembled at 99% similarity from the Greengenes
database (May 2013 release), as described above. Tables at
OTU, genus, and family levels were constructed, and fi-
nally at each level, low abundant taxa (covering < 0.05% of
total OTUs) were removed.
β-Diversity was calculated using the weighted UniFrac

distance metric, and significant differences across patient
groups were evaluated using PERMANOVA. For predict-
ive models, we trained a random forest model on each in-
dividual dataset as well as the combined (meta) dataset.
We also built the model by training on one dataset and
using the other for cross-validation. The discriminatory
power of OTUs, genera, and families were calculated as
the area under the ROC curve (AUC) in each case.

Results
This longitudinal study enrolled 31 patients experiencing
their first episode of Clostridium difficile infection
(CDI), seven of whom met the criteria of severe or com-
plicated disease (UPMC score ≥ 2 [29]). The patient
population was mostly of Afro-Caribbean descent, and
54.8% of them were taking proton pump inhibitors
(Additional file 1). 16S rRNA gene analyses at the pre-
treatment level revealed random clustering of moder-
ately infected patients with both healthy individuals and
those with severe disease (Fig. 1a). However, gut micro-
bial communities in patients with severe infection were
significantly dissimilar when compared to healthy indi-
viduals (PERMANOVA, p value = 0.004). Over the
course of antibiotic treatment, gut microbial community
structures in infected patients (moderate and severe) be-
came gradually more similar to each other, with greater
distance from controls (Fig. 1b, c); the most distinct
clusters were observed at the post-discharge stage
(Fig. 1d). Follow-up data confirmed infection recurrence
in 32% of patients with no significant relationship with
disease severity index or any other metadata variable
(e.g., age, sex, BMI, pre-CDI antibiotic therapy, PPI) as
determined by FDR-corrected Spearman correlations.

Our results surprisingly showed larger difference be-
tween patients (with and without recurrence) “before”
treatment compared to after treatment. This is interest-
ing because it could be clinically useful to identify which
patient is more susceptible to recurrence. More specific-
ally, when we compared microbial diversity and commu-
nity structure of patients with and without recurrence,
16S rRNA gene data demonstrated a significant differ-
ence at the pre-treatment stage in α-diversity (measured
by Shannon’s entropy) between these groups of patients
(Mann-Whitney U test, p value = 0.026 (Fig. 2). Over
the course of treatment, the difference between the two
groups became marginal (Fig. 2). We observed a similar
difference in β-diversity (weighted UniFrac; PERMA-
NOVA, p value = 0.043) between the two groups at the
pre-treatment stage (Fig. 3a), but not after treatment
(Fig. 3b–d). At the phylum level, before treatment, pa-
tients with recurrence had lower abundance of Bacteroi-
detes than subjects without recurrence (Fig. 4). After
treatment, the gut microbiota of both groups were dom-
inated by Firmicutes and Proteobacteria (Fig. 4). At the
individual OTU level, for the pre-treatment stage, results
revealed a significant difference in relative abundance of
Veillonella dispar (Mann-Whitney U test, adjusted p
value = 0.026; Fig. 5). At the post-treatment and pre-
discharge stages, the relative abundance of this species
also was generally higher in patients without recurrence
(Fig. 5), although these differences were not statistically
significant. Even though at the genus and family levels
Veillonella and Veillonellaceae were notably different be-
tween groups, they were found to be insignificant after
multiple hypothesis correction.
To determine whether OTUs, genera, or families

could serve as biomarkers to classify patients with or
without recurrence at the pre-treatment stage, we con-
structed three separate random forest (RF) classifiers.
The OTU-level RF had an error rate of 0.35 with the area
under the ROC curve (AUC) of 0.68 (Additional file 2).
The predictability of the OTU RF model was found to
be significantly greater than randomly shuffled data
(Wilcoxon signed-rank test, p value = 0.026). This
model ranked OTUs belonging to Veilonella dispar as
the most important variables for predicting recurrence
(Additional file 2).

Table 1 Characteristics of the studies

Study Target region Sequence platform DNA extraction protocol Patients’ age Patients’ sex (%) BMI (kg/m2)

Khanna et al. [22] V4 MiSeq Illumina PowerFecal DNA Isolation
kit (Mo Bio)

Median, 52.7
Lower percentile, 36.9
Upper percentile, 65.1

M, 39.8
F, 60.2

Median, 26.7
Lower percentile, 23.1
Upper percentile, 30.6

Pakpour et al.
(current)

V4 MiSeq Illumina PowerFecal DNA Isolation
kit (Mo Bio)

Median 64.0
Lower percentile, 60.0
Upper percentile, 73.0

M, 48.4
F, 51.6

Median, 25.0
Lower percentile, 20.4
Upper percentile, 31.7
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Fig. 1 Hierarchically clustered heatmaps showing weighted UniFrac distances (β-diversity) between patient samples prior to antibiotic treatment
(a), following antibiotic treatment (b), prior to discharge from hospital (c), and following discharge from hospital (d). Light purple indicates
samples that are similar to one another, while dark purple shows highly dissimilar samples. The colored bars next to each row indicate disease
severity (healthy, moderate CDI, and severe CDI). Colored bars above columns indicate CDI recurrence

Fig. 2 Boxplots show distributions of Shannon’s diversities (α-diversity) for patients that did or did not show CDI recurrence across multiple time
points (pre- and post-treatment and pre- and post-discharge). The only time point when there was a significant difference in Shannon’s diversity
between recurrent and non-recurrent patients was pre-treatment
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Fig. 3 Principal Coordinate Analysis (PCoA) plots showing β-diversity differences between recurrent and non-recurrent patient samples at
the pre-treatment (a), post-treatment (b), pre-discharge (c), and post-discharge (d) time points. The only time point when there was a
significant difference in community structure (β-diversity) between recurrent and non-recurrent patients was pre-treatment

Fig. 4 Relative abundances of bacterial phyla in recurrent vs. non-recurrent patients across the different sampling time points
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At the genus and family levels, error rates were 0.37
and 0.38, with the AUC of 0.57 and 0.53, respectively
(Additional file 2). Veillonella ranked first at the genus
level (Additional file 2), and Veillonellaceae ranked first
at the family level (Additional file 2); however, the
models’ predictabilities were found to be not signifi-
cantly different from randomized data (Wilcoxon
signed-rank test, p value > 0.05).

Meta-analysis
We combined our high-throughput 16S rRNA gene se-
quence data with a recent study by Khanna et al. [22].
Although both studies shared a common experimental
approach, results revealed a strong study effect as the
most clearly discernible signal in the data (PERMA-
NOVA, p value = 0.002). The random forest trained to
classify which samples come from which study had an
error rate of about 2% with AUC of 0.98
(Additional file 3). This resilient study-level effect was
consistent, even when we included only shared OTUs
between two studies. We then generated predictive
models using our dataset with truncated sequences
(200 bp, leave-one-out cross-validation), and the results
showed a performance reduction at all taxonomic levels

compared to our original dataset with sequence read
lengths of 250 bp (Table 2). We also constructed three
separate random forest (RF) classifiers of CDI recurrence
using the Khanna et al. [22] dataset. Members of Veillo-
nellaceae family were ranked first for all constructed
models, albeit with no statistically significant discrimin-
atory powers (Table 2). Finally, when we trained on our
data and used the Khanna et al. [22] for cross-validation,
the error rate was 0.29, and vice versa, the error rate
was 0.32; none of these RF models were significant.

Discussion
Our results are in general agreement with the prior con-
sensus that healthy and robust gut microbiota are protect-
ive against C. difficile invasion [37–39]—often termed
“colonization resistance” [40, 41]. Disruption of the indi-
genous microbiota by perturbations, such as through the
administration of antibiotics, can alter the overall physico-
chemical environment of the gut and the concentration of
microbial and host metabolites [23, 26, 42, 43], as well as
host immunity [44–46]. Such alterations can, in turn, yield
lower colonization resistance and make the gut vulnerable
to germination and toxin production by indigenous C. dif-
ficile or invasion by exogenous C. difficile spores. We

Fig. 5 Bar plots show the relative abundance of Veillonella dispar OTU (predictive of CDI recurrence in our random forest model) in recurrent vs.
non-recurrent patients across the different sampling time points. A significant difference in relative abundance of Veilonella dispar was observed
between recurrent (n = 10) and non-recurrent (n = 21) patients (Mann-Whitney U test, adjusted p value = 0.026) at the pre-treatment time. All
the p values were adjusted using the FDR correction

Table 2 Comparison of different random forest model predictions at three bacterial taxonomic levels

Study Sequence length Error rate AUC p value Most important variable

C-OTU level 250 0.35 0.61 0.026 Veillonella dispar

C-Genus level 250 0.37 0.57 > 0.05 Veillonella

C-Family level 250 0.38 0.53 > 0.05 Veillonellaceae

C-OTU level 200 0.40 0.55 > 0.05 Bacteroides uniformis

C-Genus level 200 0.40 0.40 > 0.05 Veillonella

C-Family level 200 0.42 0.45 > 0.05 Veillonellaceae

K-OTU level 200 0.30 0.51 > 0.05 Phascolarctobacterium sp.

K-Genus level 200 0.34 0.46 > 0.05 Phascolarctobacterium

K-Family level 200 0.35 0.51 > 0.05 Veillonellaceae

C current study dataset, K Khanna et al.’s [22] dataset, AUC area under the ROC curve
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found that there were significant differences in the initial
(pre-treatment) microbial community structure between
patients who exhibited CDI recurrence and those who did
not. Administration of antibiotics to treat the initial C. dif-
ficile infection resulted in large-scale changes in the gut
microbial community, which made recurrent and non-
recurrent post-treatment microbial communities much
more similar to one another than to the healthy, untreated
controls. We did not find any notable associations be-
tween gut flora and the risk of recurrent CDI after anti-
biotic administration. We hypothesize that patients who
did not show recurrence were able to recover towards an
invasion-resistant community configuration [47] com-
pared to patients who showed infection recurrence, but
the exact configuration of this invasion-resistant state re-
mains unclear. The development of this invasion-resistant
state could be related to the positive feedback between in-
testinal bacteria and the intestinal mucosa. For example,
Johansson et al. [46] demonstrated the profound effect of
indigenous gut microbiota on the dynamics of mucus
layer development. We speculate that low diversity micro-
biota in recurrent CDI subjects may lead to alteration in
their intestinal mucosa, which in turn can negatively influ-
ence the host modulating effect of gut microbiota and lead
to infection relapse after full recovery. The ability to re-
cover to an invasion-resistant community can also depend
upon 7a-dehydroxylase activity and subsequently higher
conversion rates of primary bile salts to secondary bile
salts, which are inhibitory to the germination of C. difficile
spores and protect against CDI [21, 26]. Finally, invasion
resistance may also be achieved by the recovery of indi-
genous clostridia, which may exclude C. difficile by satur-
ating its available niche space in the gut [48].
We developed random forest classification models

using the microbiota data at different levels of taxo-
nomic resolution. The only significant model was at the
OTU level, which was able to differentiate, albeit not
very reliably, between individuals with and without re-
current CDI; classification did not improve when the
microbiota results were combined with patients’ clinical
metadata. Our RF analysis identified several OTUs re-
lated to Veillonella dispar as the most important fea-
tures for predicting CDI recurrence. These OTUs were
significantly enriched in non-recurrent patients. At
genus and family levels, members of Veillonellaceae and
Lachnospiraceae were the top-ranked RF features. Our
results support prior work suggesting a positive associ-
ation between members of the Lachnospiraceae family
and colonization resistance against CDI [23, 49], several
members of which are butyrate-producing, anaerobic
bacteria. Butyric acid is known to strengthen colonic de-
fensive barriers by elevating antimicrobial peptide levels
(AMPs) and mucin production [50, 51]. Our meta-
analysis showed that technical variation between studies

overshadowed the biological variation. The lack of full
consistency between the two studies may also be rooted
in the difference in the average age or ethnicity of the
two cohorts (Table 1). In addition, no significant feature
or model prediction was observed using the truncated
sequences from our original analysis (i.e., truncated in
order to match sequence lengths from the Khanna
study). This clearly implies the necessity for longer se-
quence (≥ 250 bps) reads for differentiating between
closely related but distinct bacterial taxa and subse-
quently for CDI classification models.

Conclusion
The present work showed that patients’ microbiota before
antibiotic treatment can be predictive of disease relapse,
but surprisingly, post-antibiotic microbial community is
indistinguishable between patients that recur or not.
While fecal microbiota transplantation (FMT) has been
effective for CDI therapeutics, there is a widespread inter-
est in designing microbial therapies that rely on pure cul-
tures of bacteria and that target CDI recurrence with
greater safety and efficacy. Such efforts require identifi-
cation of the gut microbial species conferring invasion
resistance against C. difficile. In our patient population
of Afro-Caribbean descent, Veillonella dispar could be
a candidate organism for negatively predicting CDI re-
currence. However, this cannot yet be generalized to
other patient populations with different demographic
characteristics, signifying the need for larger cohort
studies that include patients with diverse demographic
characteristics.

Additional files

Additional file 1: Clinical metadata for patient cohort. (DOCX 21 kb)

Additional file 2: Random Forest (RF) models were fit to pre-treatment
microbiome data at the OTU, genus, and family levels. The strongest RF
model was at the OTU level, with an ROC AUC of 0.61 (A). The strongest
predictors for the OTU RF model were two Viellonella dispar OTUs (B). At
the genus level, the ROC AUC was 0.57 (C) and the strongest predictor
was the Viellonella genus (D). At the family level, the ROC AUC was 0.53
(E) and the strongest predictor was Veillonellaceae (F). (PDF 847 kb)

Additional file 3: A Random Forest model was able to classify samples
according to study with very high accuracy (ROC AUC = 0.98). (PDF 745 kb)
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