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Abstract

Background: Colorectal cancer is a worldwide health problem. Despite growing evidence that members of the gut
microbiota can drive tumorigenesis, little is known about what happens to it after treatment for an adenoma or
carcinoma. This study tested the hypothesis that treatment for adenoma or carcinoma alters the abundance of
bacterial populations associated with disease to those associated with a normal colon. We tested this hypothesis by
sequencing the 16S rRNA genes in the feces of 67 individuals before and after treatment for adenoma (N = 22),
advanced adenoma (N = 19), and carcinoma (N = 26).

Results: There were small changes to the bacterial community associated with adenoma or advanced adenoma and
large changes associated with carcinoma. The communities from patients with carcinomas changed significantly
more than those with adenoma following treatment (P value < 0.001). Although treatment was associated with
intrapersonal changes, the change in the abundance of individual OTUs in response to treatment was not consistent
within diagnosis groups (P value > 0.05). Because the distribution of OTUs across patients and diagnosis groups was
irregular, we used the random forest machine learning algorithm to identify groups of OTUs that could be used to
classify pre and post-treatment samples for each of the diagnosis groups. Although the adenoma and carcinoma
models could reliably differentiate between the pre- and post-treatment samples (P value < 0.001), the
advanced-adenoma model could not (P value = 0.61). Furthermore, there was little overlap between the OTUs that
were indicative of each treatment. To determine whether individuals who underwent treatment were more likely to
have OTUs associated with normal colons we used a larger cohort that contained individuals with normal colons and
those with adenomas, advanced adenomas, and carcinomas. We again built random forest models and measured the
change in the positive probability of having one of the three diagnoses to assess whether the post-treatment samples
received the same classification as the pre-treatment samples. Samples from patients who had carcinomas changed
toward a microbial milieu that resembles the normal colon after treatment (P value < 0.001). Finally, we were unable
to detect any significant differences in the microbiota of individuals treated with surgery alone and those treated with
chemotherapy or chemotherapy and radiation (P value > 0.05).

Conclusions: By better understanding the response of the microbiota to treatment for adenomas and carcinomas, it
is likely that biomarkers will eventually be validated that can be used to quantify the risk of recurrence and the
likelihood of survival. Although it was difficult to identify significant differences between pre- and post-treatment
samples from patients with adenoma and advanced adenoma, this was not the case for carcinomas. Not only were
there large changes in pre- versus post-treatment samples for those with carcinoma, but also these changes were
toward a more normal microbiota.
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Background
Colorectal cancer (CRC) is the third most common cause
of cancer deaths in the USA [1, 2]. Disease mortality has
significantly decreased, predominately due to improve-
ments in screening [2]. Despite these improvements, there
are still approximately 50,000 CRC-related deaths per year
in the USA [1]. Current estimates indicate that 20–30% of
those who undergo treatment will experience recurrence
and 35% of all patients will die within 5 years [3–5]. Iden-
tification of methods to assess patients’ risk of recurrence
is of great importance to reduce mortality and healthcare
costs.
There is growing evidence that the gut microbiota is

involved in the progression of CRC. Mouse-based stud-
ies have identified populations of Bacteroides fragilis,
Escherichia coli, and Fusobacterium nucleatum that alter
disease progression [6–10]. Furthermore, studies that shift
the structure of the microbiota through the use of antibi-
otics or inoculation of germ-free mice with human feces
have shown that varying community compositions can
result in varied tumor burden [11–13]. Collectively, these
studies support the hypothesis that the microbiota can
alter the amount of inflammation in the colon and with it
the rate of tumorigenesis [14].
Building upon this evidence, several human studies have

identified unique signatures of colonic lesions [15–20].
One line of research has identified community-level dif-
ferences between those bacteria that are found on and
adjacent to colonic lesions and have supported a role
for B. fragilis, E. coli, and F. nucleatum in tumorigenesis
[21–23]. Others have proposed feces-based biomarkers
that could be used to diagnose the presence of colonic ade-
nomas and carcinomas [24–26]. These studies have asso-
ciated F. nucleatum and other oral pathogens with colonic
lesions (adenoma, advanced adenoma, and carcinoma).
They have also noted that the loss of bacteria generally
thought to produce short-chain fatty acids, which can
suppress inflammation, is associated with colonic lesions.
This suggests that gut bacteria have a role in tumorigen-
esis with potential as useful biomarkers for aiding in the
early detection of disease [21–26].
Despite advances in understanding the role between

the gut microbiota and colonic tumorigenesis, we still
do not understand how treatments including resection,
chemotherapy, and/or radiation affect the composition of
the gut microbiota. If the microbial community drives
tumorigenesis then one would hypothesize that treatment
to remove a lesion would not only remove the lesion, but
also the microbiota that promoted the tumorigenesis and
hence the risk of recurrence. To test this hypothesis, we
addressed two related questions: does treatment affect the
colonic microbiota in a predictable manner? If so, does the
treatment alter the community to more closely resemble
that of individuals with normal colons?

We answered these questions by sequencing the V4
region of 16S rRNA genes amplified from fecal samples of
individuals with adenoma, advanced adenoma, and carci-
nomas pre- and post-treatment. We used classical com-
munity analysis to compare the alpha and beta-diversity of
communities pre- and post-treatment. Next, we generated
random forest models to identify bacterial populations
that were indicative of treatment for each diagnosis group.
Finally, we measured the predictive probabilities to assess
whether treatment yielded bacterial communities similar
to those individuals with normal colons. We found that
treatment alters the composition of the gut microbiota
and that, for those with carcinomas, the gut microbiota
shifted more toward that of a normal colon after treat-
ment. In the individuals with carcinomas, no difference
was found by the type of treatment (surgery alone, surgery
with chemotherapy, surgery with chemotherapy, and radi-
ation). Understanding how the community responds to
these treatments could be a valuable tool for identify-
ing biomarkers to quantify the risk of recurrence and the
likelihood of survival.

Results
Treatment for colonic lesions alters the bacterial
community structure
Within our 67-person cohort, we tested whether the
microbiota of patients with adenoma (N = 22), advanced
adenoma (N = 19), or carcinoma (N = 26) had any
broad differences between pre- and post-treatment sam-
ples [Table 1]. None of the individuals in this study had
any recorded antibiotic usage that was not associated with
surgical treatment of their respective lesion. The struc-
ture of the microbial communities of the pre and post-
treatment samples differed, as measured by the θYC beta
diversity metric [Fig. 1a]. We found that the communi-
ties obtained pre- and post-treatment among the patients
with carcinomas changed significantly more than those
patients with adenoma (P value< 0.001). There were no
significant differences in the amount of change observed
between the patients with adenoma and advanced ade-
noma or between the patients with advanced adenoma
and carcinoma (P value > 0.05). Next, we tested whether
there was a consistent direction in the change in the com-
munity structure between the pre- and post-treatment
samples for each of the diagnosis groups [Fig. 1b–d].
We only observed a consistent shift in community struc-
ture for the patients with carcinoma when using a PER-
MANOVA test (adenoma P value = 0.999, advanced ade-
noma P value = 0.945, and carcinoma P value = 0.005).
Finally, we measured the number of observed OTUs,
Shannon evenness, and Shannon diversity in the pre- and
post-treatment samples and did not observe a significant
change for any of the diagnosis groups (P value > 0.05)
[Additional file 1: Table S1].
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Table 1 Demographic data of patients in the pre and post-treatment cohort

Adenoma Advanced adenoma Carcinoma

n 22 19 26

Age (mean ± SD) 61.68 ± 7.2 63.11 ± 10.9 61.65 ± 12.9

Sex (%F) 36.36 36.84 42.31

BMI (mean ± SD) 26.86 ± 3.9 25.81 ± 4.7 28.63 ± 7.2

Caucasian (%) 95.45 84.21 96.15

Days between colonoscopy (mean ± SD) 255.41 ± 42 250.16 ± 41 350.85 ± 102

Surgery only 4 4 12

Surgery and chemotherapy 0 0 9

Surgery, chemotherapy, and radiation 0 0 5

The treatment of lesions are not consistent across
diagnosis groups. We used two approaches to iden-
tify those bacterial populations that change between the
two samples for each diagnosis group. First, we sought
to identify individual OTUs that could account for the
change in overall community structure. However, using
a paired Wilcoxon test, we were unable to identify any
OTUs that were significantly different in the pre- and
post-treatment groups (P value > 0.05). It is likely that high

inter-individual variation and the irregular distribution
of OTUs across individuals limited the statistical power
of the test. We attempted to overcome these problems
by using random forest models to identify collections of
OTUs that would allow us to differentiate between pre-
and post-treatment samples from each of the diagnosis
groups. The adenoma and carcinoma models performed
well (adenoma AUC range = 0.54 –0.83 and carcinoma
AUC range= 0.82 – 0.98); however, themodel for patients

a

b c d

Fig. 1 General differences between adenoma, advanced adenoma, and carcinoma groups after treatment. a (θ)YC distances from pre- versus
post-sample within each individual. A significant difference was found between the adenoma and carcinoma group (P value = 5.36e–05). Solid black
points represent the median value for each diagnosis group. b NMDS of the pre- and post-treatment samples for the adenoma group. c NMDS of
the pre- and post-treatment samples for the advanced adenoma group. d NMDS of the pre- and post-treatment samples for the carcinoma group
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treated for advanced adenomas was not able to reliably
differentiate between the pre and post-treatment samples
(advanced adenoma AUC range = 0.34 – 0.65). Interest-
ingly, the top 10 most important OTUs byMDA that were
used for each model had little overlap with each other
[Fig. 2]. Although treatment had an impact on the over-
all community structure, the effect of treatment was not
consistent across patients and diagnosis groups. Both the
adenoma and carcioma treatment models had AUCs that
were significantly higher than a random model permuta-
tion (P value < 0.0001).

Post-treatment samples from patients with carcinoma
more closely resemble those of a normal colon. Next,
we determined whether treatment changed the micro-
biota in a way that the post-treatment communities
resembled that of patients with normal colons. To test
this, we used an expanded cohort of 423 individuals
that were diagnosed under the same protocol as hav-
ing normal colons or colons with adenoma, advanced
adenoma, or carcinoma [Table 2]. We then constructed
random forest models to classify the study samples, with
the three diagnosis groups (adenoma, advanced adenoma,
or carcinoma), or having a normal colon. The models
performed moderately with CRC being the best (ade-
noma AUC range = 0.50 – 0.62, advanced adenoma AUC
range = 0.53 – 0.67, carcinoma AUC range = 0.71 – 0.82;
Additional file 2: Figure S1). The OTUs that were in the
top 10% of importance for the adenoma and advanced
adenoma models largely overlapped and those OTUs
that were used to classify the carcinoma samples were
largely distinct from those of the other two models

[Fig. 3a]. Among the OTUs that were shared across
the three models were those populations generally con-
sidered beneficial to their host (e.g., Faecalibacterium,
Lachnospiraceae, Bacteroides, Dorea, Anaerostipes, and
Roseburia) [Fig. 3b]. Although many of important OTUs
in the top 10% were also included in the model differ-
entiating between patients with normal colons and those
with carcinoma, this model also included OTUs affili-
ated with populations that have previously been asso-
ciated with carcinoma (Fusobacterium, Porphyromonas,
Parvimonas) [24–26] [Additional file 3: Figure S2] with
some individuals showing a marked decrease in rela-
tive abundance [Additional file 4: Figure S3]. Finally, we
applied these three models to the pre- and post-treatment
samples for each diagnosis group and quantified the
change in the positive probability of themodel. A decrease
in the positive probability would indicate that the micro-
biota more closely resembled that of a patient with a nor-
mal colon. There was no significant change in the positive
probability for the adenoma or advanced adenoma groups
(P value > 0.05) [Fig. 4]. The positive probability for the
pre- and post-treatment samples from patients diagnosed
with carcinoma significantly decreased with treatment,
suggesting a shift toward a normal microbiota for most
individuals (P value = 0.001). Only, 7 of the 26 patients
(26.92%) who were diagnosed with a carcinoma had a
higher positive probability after treatment; one of those
was re-diagnosed with carcinoma on the follow up visit.
These results indicate that, although there were changes
in the microbiota associated with treatment, those experi-
enced by patients with carcinoma after treatment yielded
gut bacterial communities of greater similarity to that of a
normal colon.

a b c

Fig. 2 The top 10 most important OTUs used to classify treatment for adenoma, advanced adenoma, and carcinoma. a Adenoma OTUs. b Advanced
Adenoma OTUs. c Carcinoma OTUs. The darker circle highlights the median log10 MDA value obtained from 100 different 80/20 splits while the
lighter colored circles represents the value obtained for a specific run
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Table 2 Demographic data of training cohort

Normal Adenoma Advanced adenoma Carcinoma

n 172 67 90 94

Age (mean ± SD) 54.29 ± 9.9 63.01 ± 13.1 64.07 ± 11.3 64.37 ± 12.9

Sex (%F) 64.53 46.27 37.78 43.62

BMI (mean ± SD) 26.97 ± 5.3 25.69 ± 4.8 26.66 ± 4.9 29.27 ± 6.7

Caucasian (%) 87.79 92.54 92.22 94.68

a

b

Fig. 3 Top 10% most important OTUs common to those models used to differentiate between patients with normal colons and those with
adenoma, advanced adenoma, and carcinoma. a Venn diagram showing the OTU overlap between each model. b For each common OTU the
lowest taxonomic identification and importance rank for each model run is shown
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a b c

Fig. 4 Treatment response based on models built for adenoma, advanced adenoma, or carcinoma. a Positive probability change from initial to
follow-up sample in those with adenoma. b Positive probability change from initial to follow-up sample in those with advanced adenoma. c Positive
probability change from initial to follow-up sample in those with carcinoma

Difficult to identify effects of specific treatments on
the change in the microbiota. The type of treatment
that the patients received varied across diagnosis groups.
Those with adenomas and advanced adenomas received
surgical resection (adenoma, N = 4; advanced adenoma,
N = 4) or polyp removal during colonoscopy (adenoma,
N = 18; advanced adenoma, N = 15) and those with
carcinomas received surgical resection (N = 12), surgi-
cal resection with chemotherapy (N = 9), and surgical
resection with chemotherapy and radiation (N = 5).
Regardless of treatment used, there was no significant dif-
ference in the effect of these treatments on the number of
observed OTUs, Shannon diversity, or Shannon evenness
(P value > 0.05). Furthermore, there was not a significant
difference in the effect of the treatments on the amount
of change in the community structure (P value = 0.375).
Finally, the change in the positive probability was not sig-
nificantly different between any of the treatment groups
(P value = 0.375). Due to the relatively small number of
samples in each treatment group, it was difficult to make
a definitive statement regarding the specific type of treat-
ment on the amount of change in the structure of the
microbiota.

Discussion
Our study focused on comparing the microbiota of
patients diagnosed with adenoma, advanced adenoma,
and carcinoma before and after treatment. For all three

groups of patients, we observed changes in their micro-
biota. Some of these changes, specifically for adenoma,
may be due to normal temporal variation, however, those
with advanced adenoma and carcinoma clearly had large
microbiota changes. After treatment, the microbiota of
patients with carcinoma changed significantly more than
the other groups. This change resulted in communities
that more closely resembled those of patients with a nor-
mal colon. This may suggest that treatment for carcinoma
is not only successful for removing the carcinoma but also
at reducing the associated bacterial communities. Under-
standing the effect of treatment on themicrobiota of those
diagnosed with carcinomas may have important implica-
tions for reducing disease recurrence. It is intriguing that
it may be possible to use microbiome-based biomarkers
to not only predict the presence of lesions but to also
assess the risk of recurrence due to these changes in the
microbiota.
Patients diagnosed with adenoma and advanced ade-

noma, however, did not experience a shift toward a
community structure that resembled those with normal
colons. This may be due to the fundamental differences
between the features of adenomas and advanced adeno-
mas and carcinoma. Specifically, carcinomas may create
an inflammatorymilieu that would impact the structure of
the community and removal of that stimulus would alter
said structure. It is possible that the difference between
the microbiota of patients with adenoma and advanced



Sze et al. Microbiome  (2017) 5:150 Page 7 of 10

adenoma and those with normal colons is subtle. This
is supported by the reduced ability of our models to
correctly classify patients with adenomas and advanced
adenomas relative to those diagnosed with carcinomas
[Additional file 2: Figure S1]. Given the irregular dis-
tribution of microbiota across patients in the different
diagnosis groups, it is possible that we lacked the statis-
tical power to adequately characterize the change in the
communities following treatment.
There was a subset of patients (7 of the 26 with carci-

nomas) who demonstrated an elevated probability of car-
cinoma after treatment. This may reflect an elevated risk
of recurrence. The 26.92% prevalence of increased carci-
noma probability from our study is within the expected
rate of recurrence (20–30% (3, 4)). We hypothesized that
these individuals may have had more severe tumors; how-
ever, the tumor severity of these seven individuals (1 with
stage I, 3 with stage II, and 3 with stage III) was sim-
ilar to the distribution observed among the other 19
patients. We also hypothesized that we may have sampled
these patients later than the rest, and their communi-
ties may have reverted to a carcinoma-associated state;
however, there was not a statistically significant difference
in the length of time between sample collection among
those whose probabilities increased (331 (246–358) days)
or decreased (364 (301–434) days) (Wilcoxon test;
P value = 0.39) (all days data displayed as median (IQR)).
Finally, it is possible that these patients may not have
responded to treatment as well as the other 19 patients
diagnosed with carcinoma and so the microbiota may not
have been impacted the same way. Again, further stud-
ies looking at the role of the microbiota in recurrence are
needed to understand the dynamics following treatment.
Our final hypothesis was that the specific type of

treatment altered the structure of the microbiome. The
treatment to remove adenomas and advanced adenomas
was either polyp removal or surgical resection whereas
it was surgical resection alone or in combination with
chemotherapy or with chemotherapy and radiation for
individuals with carcinoma. Because chemotherapy and
radiation target rapidly growing cells, these treatments
would be more likely to cause a turnover of the colonic
epithelium driving a more significant change in the struc-
ture of the microbiota. Although, we were able to test
for an effect across these specific types of treatment, the
number of patients in each treatment group was rela-
tively small. Finally, those undergoing surgery would have
received antibiotics, and this may be a potential con-
founder. However, our pre-treatment stool samples were
obtained before the surgery and the post-treatment sam-
ples were obtained long after any effects due to antibiotic
administration on the microbiome would be expected to
occur (344 (266–408) days). We also found no difference
in the community structure of those that received surgery

and those that did not as a treatment for adenoma or
advanced adenoma.

Conclusion
This study expands upon existing research that has estab-
lished a role for the microbiota in tumorigenesis and that
demonstrated the utility of microbiome-based biomarkers
to predict the presence of colonic lesions. We were sur-
prised by the lack of a consistent signal that was associated
with treatment of patients with adenomas or advanced
adenomas. The lack of a large effect size may be due to
differences in the role of bacteria in the formation of ade-
nomas and carcinomas or it could be due to differences
in the behaviors and medications within these classes of
patients. One of the most exciting of these future direc-
tions is the possibility that markers within the microbiota
could be used to potentially evaluate the effect of treat-
ment and to predict recurrence for those diagnosed with
carcinoma. If such an approach is effective, it might be
possible to target the microbiota as part of adjuvant ther-
apy, if the biomarkers identified play a key role in the
disease process. Our data provides additional evidence
on the importance of the microbiota in tumorigenesis by
addressing the recovery of the microbiota after treatment
and opens interesting avenues of research into how these
changes may affect recurrence.

Methods
Study design and patient sampling
Sampling and design have been previously reported in
Baxter et al. [24]. Briefly, samples were stored on ice
for at least 24 h before freezing. Although we cannot
exclude that this sampling protocol may have impacted
the gut microbiota composition, all samples were sub-
jected to the same methodology. Study exclusion involved
those who had already undergone surgery, radiation, or
chemotherapy, had colorectal cancer before a baseline
fecal sample could be obtained, had IBD, a known hered-
itary non-polyposis colorectal cancer, or familial adeno-
matous polyposis. Samples used to build the models for
prediction were collected either prior to a colonoscopy
or between 1 and 2 weeks after initial colonoscopy.
The bacterial community has been shown to normalize
back to a pre-colonoscopy community within this time
period [27]. Our study cohort consisted of 67 individu-
als with an initial sample as described and a follow-up
sample obtained between 188 and 546 days after treat-
ment of lesion [Table 1]. Patients were diagnosed by
colonoscopic examination and histopathological review
of any biopsies taken. Patients were classified as having
advanced adenoma if they had an adenoma greater than
1 cm, more than three adenomas of any size, or an ade-
noma with villous histology. This study was approved by
the University of Michigan Institutional Review Board.
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All study participants provided informed consent, and
the study itself conformed to the guidelines set out
by the Helsinki Declaration. The original protocol for
the study did not provide for tracking patients after
the follow-up samples and so it was not possible for
us to ascertain their diagnosis after the completion of
the study.

Treatment
For this study, treatment refers specifically to the removal
of a lesion with or without chemotherapy and radiation.
The majority of patients undergoing treatment for ade-
noma or advanced adenoma were not treated surgically
[Table 1] but rather via colonoscopy. All patients diag-
nosed with carcinomas were treated with at least surgery
or a combination of surgery and chemotherapy or surgery,
chemotherapy, and radiation. The type of chemotherapy
used for patientswithCRC includedOxaliplatin, Levicovorin,
Folfox, Xeloda, Capecitabine, Avastin, Fluorouracil, and
Glucovorin. These were used individually or in combi-
nation with others depending on the patient [Table 1].
If an individual was treated with radiation, they were
also always treated with chemotherapy. Radiation therapy
generally used 18 mV photons for treatment.

16S rRNA gene sequencing
Sequencing was completed as described by Kozich et al.
[28]. DNA extraction used the 96-well Soil DNA isola-
tion kit (MO BIO Laboratories) and an epMotion 5075
automated pipetting system (Eppendorf ). The V4 variable
region was amplified, and the resulting product was split
between four sequencing runs with normal, adenoma, and
carcinoma evenly represented on each run. Each group
was randomly assigned to avoid biases based on sample
collection location. The pre and post-treatment samples
were sequenced on the same run.

Sequence processing
The mothur software package (v1.37.5) was used to pro-
cess the 16S rRNA gene sequences and has been previ-
ously described [28]. The general workflow using mothur
included merging paired-end reads into contigs, filtering
for low quality contigs, aligning to the SILVA database
[29], screening for chimeras using UCHIME [30], classi-
fying with a naive Bayesian classifier using the Ribosomal
Database Project (RDP) [31], and clustered into oper-
ational taxonomic units (OTUs) using a 97% similarity
cutoff with an average neighbor clustering algorithm [32].
The number of sequences for each sample was rarefied to
10523 to minimize the impacts of uneven sampling.

Model building
The random forest [33] algorithm was used to create the
three models used to classify pre- and post-treatment

samples by diagnosis (adenoma, advanced adenoma, or
carcinoma) as well as to assess the probability that a sam-
ple was more similar to the patient’s original diagnosis or
that of a disease-free patient. All models included only
OTU data obtained from 16S rRNA sequencing and were
processed using the caret (v6.0.76) R package. For each
model, we optimized the mtry hyper-parameter, which
defines the number of OTUs to investigate at each split
before a new division of the data was created with the ran-
dom forest model [33]. To insure that our optimization did
not result in over-fitting of the data, wemade 100 different
80/20 (train/test) splits of the data where the same propor-
tion was present within both the whole data set and the
80/20 split. For each of the 100 splits, 20 repeated 10-fold
cross validation was performed on the 80% component
to optimize the mtry hyper-parameter by maximizing the
AUC (area under the curve of the receiver operator char-
acteristic). The resulting model was then tested on the
20% of the data that were held out. A summary of the
mtry hyperparameter values that were tried is available
in Additional file 1: Table S5. The reported P values for
each model relative to a random labeling was assessed
by comparing the distribution of the 100 80/20 splits for
the correctly labeled data to the distribution of randomly
labeled data.
The three diagnosis models were constructed by using

the data fromBaxter et al. [24], which was censored for the
pre-treatment samples of the patients that we had post-
treatment samples. The treatment models were then used
to quantify the model probability that a patient with an
initial diagnosis retained that diagnosis or a disease-free
diagnosis.

Statistical analysis
The R software package (v3.4.1) was used for all statisti-
cal analysis. Comparisons between bacterial community
structure utilized PERMANOVA [34] in the vegan pack-
age (v2.4.3). Comparisons between probabilities as well
as overall differences in the median relative abundance
of each OTU between pre- and post-treatment samples
utilized a paired Wilcoxon ranked sum test. Compar-
isons between different treatment for lesions utilized a
Kruskal-Wallis test. Where multiple comparison testing
was appropriate, a Benjamini-Hochberg (BH) correction
was applied [35] and a corrected P value of less than
0.05 was considered significant. The P values reported
are those that were BH corrected. Model rank importance
was determined by obtaining the median MDA from the
100, 20 repeated 10-fold cross validation and then ranking
from largest to smallest MDA.

Reproducible methods
A detailed and reproducible description of how the
data were processed and analyzed can be found at
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https://github.com/SchlossLab/Sze_FollowUps_
Microbiome_2017. Raw sequences have been deposited
into the NCBI Sequence Read Archive (SRP062005 and
SRP096978) and the necessary metadata can be found
at https://www.ncbi.nlm.nih.gov/Traces/study/ and
searching the respective SRA study accession.
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Additional file 1: Normalization of the microbiota in patients after
treatment for colonic lesions (PDF 31 kb)

Additional file 2: Figure S1: ROC curves of the adenoma, advanced
adenoma, and carcinoma models. A) Adenoma ROC curve: the light green
shaded areas represent the range of values of a 100 different 80/20 splits of
the test set data and the dark green line represents the model using 100%
of the data set and what was used for subsequent classification. B)
Advanced Adenoma ROC curve: the light yellow shaded areas represent
the range of values of a 100 different 80/20 splits of the test set data and
the dark yellow line represents the model using 100% of the data set and
what was used for subsequent classification. C) Carcinoma ROC curve: the
light red shaded areas represent the range of values of a 100 different
80/20 splits of the test set data and the dark red line represents the model
using 100% of the data set and what was used for subsequent
classification. (PDF 92 kb)

Additional file 3: Figure S2: Summary of top 10% of important OTUs for
the adenoma, advanced adenoma, and carcinoma models. A) MDA of the
most important variables in the adenoma model. The dark green point
represents the mean and the lighter green points are the value of each of
the 100 different runs. B) Summary of important variables in the advanced
adenoma model. MDA of the most important variables in the SRN model.
The dark yellow point represents the mean and the lighter yellow points
are the value of each of the 100 different runs. C) MDA of the most
important variables in the carcinoma model. The dark red point represents
the mean and the lighter red points are the value of each of the 100
different runs. (PDF 87 kb)

Additional file 4: Figure S3: Pre and post-treatment relative abundance of
CRC associated OTUs within the carcinoma model. (PDF 6 kb)
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