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Abstract

Background: Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics
of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for
environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published
metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for < 1% of all sequenced
DNA, leading to limitations in detection of low-abundance resistome-virulome elements. This study describes the extent
and composition of the low-abundance portion of the resistome-virulome, using a bait-capture and enrichment system
that incorporates unique molecular indices to count DNA molecules and correct for enrichment bias.

Results: The use of the bait-capture and enrichment system significantly increased on-target sequencing of the
resistome-virulome, enabling detection of an additional 1441 gene accessions and revealing a low-abundance portion
of the resistome-virulome that was more diverse and compositionally different than that detected by more traditional
metagenomic assays. The low-abundance portion of the resistome-virulome also contained resistance genes with public
health importance, such as extended-spectrum betalactamases, that were not detected using traditional shotgun
metagenomic sequencing. In addition, the use of the bait-capture and enrichment system enabled identification of

rare resistance gene haplotypes that were used to discriminate between sample origins.

Conclusions: These results demonstrate that the rare resistome-virulome contains valuable and unique information that
can be utilized for both surveillance and population genetic investigations of resistance. Access to the rare resistome-
virulome using the bait-capture and enrichment system validated in this study can greatly advance our understanding of
microbiome-resistome dynamics.
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Background

The use of shotgun metagenomic sequencing to study
antimicrobial resistance (AMR) has increased dramatic-
ally over the past several years. This approach enables
characterization of all AMR genes within a microbial
community (the “resistome”), which can be useful in un-
derstanding evolutionary shifts in AMR [1], as well as
for detecting transfer of diverse AMR genes between
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hosts, environments, or uncultivable organisms [2].
AMR is an inherently ecological phenomenon, with
processes including transfer of genetic elements between
divergent bacteria, increased promiscuity and mutation
in the face of bacterial stress and inflammation, and
co-selection and co-mobility of multiple genes [3-6].
Shotgun metagenomics represents a tool for advancing
our understanding of these interactions by enabling ac-
cess to the genetic material of the microbial population
as a whole [7]. In addition, metagenomic sampling could
augment epidemiological surveillance and outbreak in-
vestigations of AMR [8, 9].
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However, a central challenge of this approach lies in
the fact that the resistome comprises a small proportion
of all DNA in a metagenomic sample [10]. In previously
published fecal metagenomic datasets sampled to a
depth of ~100 M reads, fewer than 100,000 reads are
typically attributed to the resistome [10, 11], meaning
that >99% of sequences could be considered “off-target”
if the resistome is the primary study interest. This is of
particular concern for epidemiological AMR surveillance
efforts, which aim to detect AMR genes in large num-
bers of continuously collected samples and therefore
cannot tolerate cost inefficiencies. Furthermore, effective
AMR surveillance schemes must focus on AMR genes
and AMR transfer events relevant to public health. Re-
cent evidence suggests that such AMR genes (e.g.,
extended-spectrum betalactamases) are not necessarily
the high-abundance resistome members and that hori-
zontal gene transfer from environmental to clinical envi-
ronments is a rare event [2, 12]. Therefore, even deep
sequencing of metagenomic samples may not allow reli-
able capture of elements or events in the rarest portion
of the resistome [12]. Aside from epidemiological
surveillance, the existence and importance of rare or
low-abundance members in the microbiome have been
demonstrated clinically and ecologically [13, 14],
prompting questions about whether the same dynamics
exist within the resistome. However, very little has been
described regarding the low-abundance portion of the
resistome, perhaps because it is difficult to access.

Methods do exist for selectively depleting unwanted
DNA from metagenomic samples prior to sequencing
[15]. However, these methods are designed for depletion
of eukaryotic content based on DNA/RNA characteris-
tics that differ between eukaryotes and prokaryotes.
Fecal, soil, and water samples do not typically contain
large amounts of eukaryotic DNA but rather are domi-
nated by bacterial DNA [11]. Recent advances show
promise in depleting unwanted DNA based on sequence
alone, and these methods could theoretically be applied
to microbial sequences [16]. However, in metagenomic
samples the unwanted DNA is comprised of thousands
of bacterial species, many with unknown genomes. Al-
ternatively, methods exist for proportional enrichment
of wanted versus unwanted DNA. One such method is
so-called bait-capture or target enrichment, an approach
based on hybridization of pre-designed 120-mer bio-
tinylated cRNA baits to target DNA for capture and
subsequent enrichment [17]. Originally used for capture
and sequencing of the human exome, this approach has
been expanded to eukaryotic and pathogenic bacterial
genomes [18, 19]. The ability to capture genetic variation
is a major advantage of this approach over PCR, as was
demonstrated recently for capturing the virome within
metagenomic samples [20, 21]. Given these successes,
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one aim of this project was to determine whether the
bait-capture and enrichment approach could be applied
to resistance genes within a metagenomic sample.

However, bait-capture and enrichment have the potential
to introduce bias into the metagenomic workflow, both
through differential capture affinity and amplification rates.
Many resistome-related analyses require quantification of
resistome-related sequences, ie., either absolute or relative
abundances. Such quantification would be precluded by
significant amounts of capture and/or amplification bias.
Therefore, another aim of this work was to incorporate the
use of unique molecular indices (UMIs) into the workflow
[22]. These randomly generated 12-mer oligonucleotide
sequences are affixed to individual DNA molecules prior to
bait-capture and enrichment and thus can be used to
correct for PCR bias and to count rare individual DNA se-
quences in post-sequencing analysis [23, 24].

To test the accuracy and efficiency of a combined bait-
capture enrichment and UMI system (which we term
MEGaRICH), 4 aliquots of whole-sample DNA from
each of 16 samples were subjected to the following li-
brary preparation assays: (1) non-enriched metagenomic
DNA libraries (“Metagenome”), (2) resistome-enriched
metagenomic DNA libraries (“Resistome”), (3) non-
enriched metagenomic DNA libraries with UMIs
(“Metagenome-UMI”), and (4) resistome-enriched meta-
genomic DNA libraries with UMIs (“Resistome-UMI”),
for a total of 64 sequencing libraries. The 16 samples
used for this comparison came from a larger study
investigating antimicrobial resistance and comprised
composite fecal samples from pork, beef, poultry, and
wastewater treatment plant (WWTP) operations (4 sam-
ples per source).

Our methodological objectives were to compare the
results of each assay in order to evaluate the ability of
the bait-capture and enrichment protocol to capture the
low-abundance portion of the resistome, as well as
virulence factors related to common enteric pathogens
(see Additional file 1: Supplementary Materials and
Methods), and to assess the use of UMIs for identifying
and correcting amplification bias introduced by bait-
capture and enrichment. We included enteric pathogen-
associated virulence factors in our methodology due to
their association with resistance evolution [25], as well
as their importance in epidemiological outbreak investi-
gations/surveillance [26, 27], evolution of resistant
pathogens [28], and ongoing antibiotic resistance policy
development [29]. Our overall objective was to
characterize the low-abundance portion of the resistome
and selected virulence factors (heretofore simply termed
the “resistome”) as compared to the high-abundance
portion and to determine whether this low-abundance
portion could provide additional insight into resis-
tome dynamics.
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Results

Bait-capture and enrichment enabled access to > 1000
additional, low-abundance gene sequences

Across all 64 sequenced libraries, we identified 2490
unique antimicrobial resistance (AR), metal resistance
(MR), biocide resistance (BR), and virulence factor (VF)
gene accessions across 48 unique classes of resistance
and virulence. Of the 2490 unique accessions, 2394
(96.1%) were identified in the sequencing data from
samples subjected to capture and enrichment with
MEGaRICH baits (i.e., Resistome and Resistome-UMI
datasets, n = 32), 1049 (42.1%) were identified in non-
enriched datasets (i.e., Metagenome and Metagenome-
UMI datasets, n = 32), and 953 (38.3%) were common
to both enriched and non-enriched datasets (n = 64).
Therefore, using the custom MEGaRICH bait set, an
additional 1441 unique gene accessions were identified
compared to non-enrichment methods (Fig. la and
Additional file 2: File S1). This represented more than a
100% increase in the number of unique accessions iden-
tified and therefore greatly expanded the detectable
resistome. The majority of these additional 1441 genes
originated from AR, BR, and MR genes (1155/1441 or
80.2%), and the majority of these were specific to AR
(999/1155 or 86.5%, Additional file 2: File S1). A minor-
ity of the additional 1441 accessions were VF genes
related to enteric pathogens (286/1441 or 19.8%). At the
read level, the vast majority of the additional reads align-
ing to these 1441 genes originated from AR genes
(87.3%), while 10.7% originated from VF genes and 2.0%
originated from BR or MR genes. Cumulatively, reads
aligning to these 1441 unique gene accessions accounted
for just 1.8% of all reads that aligned to the resistance-
virulence database across all 64 sequence sequencing
libraries, indicating that these genes were part of the
low-abundance or rare portion of the resistome.
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These descriptive trends were reflected in statistical
comparisons of gene richness between library prepar-
ation assays. Resistome-UMI libraries contained an
average of 495 and 486 more unique gene accessions
than the Metagenome-UMI and Metagenome libraries,
respectively, while the Resistome libraries contained an
average of 621 and 612 more unique gene accessions
(Tukey P < 0.001 for all comparisons, Table 1). There
were no differences in gene richness when comparing
the Resistome versus Resistome-UMI and the Metagen-
ome versus Metagenome-UMI libraries (Tukey P > 0.05).
These results demonstrated that non-enriched shotgun
metagenomic sequencing failed to identify hundreds of re-
sistance gene accessions, even within a single sample.

The type of assay also affected Simpson’s equitability,
which is a measure of the evenness of gene distribution
across the resistome. The Metagenome-UMI libraries
had higher equitability than both the Resistome-UMI
and Resistome libraries (Tukey P = 0.001 and 0.02, re-
spectively), and the Metagenome libraries had higher
equitability than the Resistome-UMI libraries (Tukey
P = 0.008). There was no statistically significant differ-
ence in equitability for the comparison of the Resistome
and Metagenome assays (P = 0.11) or when comparing
Resistome-UMI versus Resistome and Metagenome-
UMI versus Metagenome libraries (Tukey P = 0.99 for
both comparisons). These results suggest that enrich-
ment effectively expanded the resistome to include
thousands of low-abundance genes, resulting in a less
even distribution of abundance across the resistome.
Interestingly, the type of library preparation assay did
not exert a statistically significant effect on Simpson’s
diversity index (ANOVA P = 0.06, Table 1), which is a
measure of both the number of resistome elements
within each sample (i.e., richness), as well as the abun-
dance distribution of these elements (i.e., equitability).

-
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Fig. 1 Venn diagram depicting the number of gene accessions (a) and gene groups (b) identified in enriched libraries only (green, N = 32 libraries);
non-enriched libraries only (purple, N = 32 libraries); or both enriched and non-enriched libraries (overlapping blue areas, N = 64 libraries)
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Table 1 Diversity statistics, median (range). Medians with different
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letters were significantly different (Tukey P < 0.05). Medians

without letters were not subjected to pairwise comparison because the omnibus ANOVA test was not significant (P < 0.05)

Assay Gene-level richness Gene-level Simpson’s diversity Gene-level Simpson's equitability
Metagenome 277 (23-685)%° 145 (7.8-1054) 0.14 (0.01-047)7¢
Metagenome-UMI 366 (34-575)°° 23.8 (3.7-1498) 0.11 (0.01-0.36)*°
Resistome 1074 (595-1330) 590 (9.2-142.5) 0.06 (0.01-0.11)*
Resistome-UMI 766 (493-1265) 433 (16.5-144.4) 0.06 (0.03-0.12)

This suggests that the decreased equitability in the
enriched samples compensated for the increased rich-
ness, resulting in no statistically significant differences
in diversity.

The low-abundance portion of the resistome differed sig-
nificantly from the abundant portion

Importantly, the additional 1441 identified gene acces-
sions were not simply additional variants of resistance
mechanisms that had already been identified in the non-
enriched libraries. Rather, they comprised different pro-
portions of resistance classes than the overall resistome

(Fig. 2), indicating that the bait-capture and enrichment
process were not simply detecting “more of the same.”
At the most refined level of resistance classification (i.e.,
group, see Additional file 3: File S2), enrichment resulted
in identification of an additional 247 AR, BR, and MR
gene groups (Additional file 4: Table S1 and Fig. 1b). Of
these additional 247 gene groups, 103 were found only
in the enriched WWTP samples, 33 only in poultry, 11
only in beef, and 2 only in the enriched swine samples.
These results suggest that the diversity in the low-
abundance portion of the resistome may differ widely by
sample type/source.
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Fig. 2 One hundred percent stacked graphs of resistome/virulome composition, by sample type and by library preparation assay (R-UM/
Resistome-UMI, R Resistome, M-UMI Metagenome-UMI, M Metagenome, £ composition in portion of the resistome identified only through enrichment).
Proportional abundances were calculated by dividing the number of de-duplicated hits to each class by the total number of de-duplicated hits. Classes are
shown individually if they contained at least 10% relative abundance in one of the assays within each sample type; all other classes were grouped into the
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The low-abundance portion of the resistome contained
important and prevalent genes

The additional 247 gene groups identified with MEGa-
RICH included groups that confer resistance to anti-
microbial drugs with high public health importance,
such as extended-spectrum betalactamases (ESBLs) and
carbapenemases CMY, KPC, TEM, GES, and VE-B types
(Fig. 3). Interestingly, TEM betalactamases were identi-
fied in 29 of the 32 enriched libraries (i.e., Resistome
and Resistome-UMI assays, Fig. 3), indicating that these
genes were highly prevalent across the sample set, but
present in very low abundance within each sample and
therefore not detected without enrichment. The KPC
ESBL group showed a similar pattern within WWTP
samples (Fig. 3). These results highlight the insensitivity
of non-enriched metagenomic sequencing for detecting
high-importance, high-prevalence, but low-abundance
genes that may be present in samples.

The low-abundance resistome contained a higher diversity
of resistance genes with highly informative SNPs

Use of MEGaRICH enabled identification of more
read-pair haplotypes per gene (ANOVA P < 0.001),
indicating that the low-abundance portion of the
resistome contained more within-gene genetic diver-
sity than the high-abundance resistome. Specifically,
the Resistome dataset yielded an average of 1497
(range 259-3157) read-pair haplotypes per gene iden-
tified, while the Resistome-UMI, Metagenome and
Metagenome-UMI datasets averaged 720 (range 44—
2290), 57 (range 9-168), and 63 (range 11-143),
respectively (Tukey P < 0.001 for all pairwise compar-
isons except between Metagenome and Metagenome-
UMI, which was not significant).
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Only one gene was identified in all 64 sequencing li-
braries, namely an ermG gene that mediates resistance
to the macrolide-lincosamide-streptogramin class of an-
timicrobials [30]. We used this gene to illustrate the util-
ity of comparing SNP patterns of AMR genes found in
different samples, focusing only on SNPs that were
found in all 4 samples from each sample type and each
library assay. Within the Resistome and Resistome-UMI
datasets, we identified unique ermG SNP patterns that
could discriminate between sample type, ie., beef,
poultry, swine, and WWTP (Fig. 4a, b); this was not the
case for the Metagenome and Metagenome-UMI data-
sets, presumably because of the fewer reads generated
by shallower sequencing depth in the non-enriched sam-
ples (Fig. 4c, d).

Bait-capture and enrichment did not impact overall
resistome composition

Resistome composition at the class level differed greatly
by type (i.e., beef, poultry, swine and WWTP), as indi-
cated by ordination and the corresponding R-statistic
(ANOSIM R = 0.73, P < 0.001, Fig. 5a), which measures
the dissimilarity between groups; R values closer to 1.0
indicate high dissimilarity [31]. While the ANOSIM R-
statistic for the dissimilarity between library preparation
assays was statistically significant (P = 0.002), the R value
was 0.13, suggesting that the type of library preparation
assay did not account for large dissimilarities in resis-
tome composition between samples. Within the WWTP
and beef samples, there subjectively appeared to be sep-
aration by assay, but low sample numbers prevented us
from performing ordination separately on these libraries
(Fig. 5a). The influence of library preparation assay on
resistome composition also was observed within specific

Betalactamase Gene Group|

Beef Poultry

Swine |

Resistome-UMI| Resistome

Resistome-UMI| Resistome |Resistome-UMI| Resistome
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Resistome-UMI| Resistome
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CARB
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Fig. 3 Binary heatmap of betalactamase groups identified only in enriched sequence libraries (N = 32). Gray present, white absent
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A
Y

ermG resistance gene (1,917bp)

|: SNP variant found in all 4 sequencing libraries within sample type and library assay

|= SNP that uniquely identifies the sample type within which it is found, by assay
Fig. 4 a-d Nucleotide variant depiction for the ermG gene (the length of
which is represented on the x-axis) across all 64 samples (rows), grouped
by library preparation assay (a-d) and sample type. Blue lines indicate
SNPs identified in all 4 samples within sample type and assay, while red
lines highlight SNPs that uniquely identify the sample type in which they
are found by assay

classes of resistance (Fig. 2); for example, beef samples
exhibited decreased relative abundance of tetracycline
resistance genes in UMI libraries compared to non-UMI
assays (Fig. 2). Ordination of samples based only on the
low-abundance resistome (i.e., the 1441 gene accessions
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continued to show significant separation by sample type
(Fig. 5b, ANOSIM R = 0.73, P < 0.001), suggesting that
the low-abundance portion of the resistome, while
different in composition than the abundant portion, also
differed significantly by sample type.

Bait-capture and enrichment increased on-target sequencing
without deficits in gene coverage

The proportion of on-target sequencing across all 64
sequencing libraries ranged from 0.002 to 61.8%, with
statistically significant differences between all assays
except Metagenome and Metagenome-UMI (Fig. 6).
The use of MEGaRICH significantly increased on-tar-
get percentage from a median of 0.14% (range 0.002—
0.37%) in the Metagenome and Metagenome-UMI
datasets (n = 32) to 15.8% (range 0.28-68.2%) in the
Resistome and Resistome-UMI datasets (n = 32).
Within the latter sequencing libraries, the use of
UMIs significantly decreased the on-target percentage
(median 38.4% and range 4.5-61.8% for Resistome
datasets versus median of 8.4% and range 0.28-35.4%
for Resistome-UMI dataset). Across all 4 assays,
WWTP samples tended to have a lower proportion of
on-target reads compared to the other 3 sample types
(Fig. 6). Bait-capture and enrichment resulted in posi-
tive log-fold change of database alignments across
nearly all classes of resistance and virulence tested,
with increases reaching statistical significance in 36

identified only via bait-capture and enrichment) out of the 48 classes (Additional file 5: File S3).
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Fig. 6 Boxplots of proportion of sequencing reads on-target (log-scale), by assay. Each dot is a sample (n = 64), colored by type (blue beef, orange
poultry, red swine, gray WWTP). Boxes represent interquartile range and median, and whiskers represent range, except for outliers. Assays with
different letters were significantly different (Tukey P < 0.05)

The increase in on-target percentage in the Resistome
and Resistome-UMI datasets was accompanied by an in-
crease in gene coverage (i.e., proportion of nucleotides
with at least 1 aligned read, Tukey P < 0.001, Table 2). In
addition, evenness of coverage (as measured by Shannon
Entropy and L*-norm deviation per gene) did not differ
between the Resistome dataset and the Metagenome and
Metagenome-UMI datasets (Tukey P > 0.05), indicating
that baits bound relatively evenly across the entire length
of target genes when UMIs were not present. However,
Resistome-UMI sequencing libraries exhibited higher
Shannon entropy and L*-norm deviation than sequen-
cing data from the other 3 assays (Table 2, Tukey

P < 0.001), indicating that UMIs produced less even
coverage across genes.

Bait-capture introduced differing amounts of bias, which
was corrected using UMIs

Through the de-duplication process (which used UMIs
to correct for amplification bias), total numbers of
unique reads within the Metagenome-UMI and
Resistome-UMI sequencing libraries decreased from 742
to 738 M and from 760 to 508 M, respectively. Within
the Metagenome-UMI dataset, the proportion of single-
tons (defined as UMIs with only one associated read-
pair, i.e., without PCR duplicates in the sequence data)

Table 2 Target coverage statistics, median (interquartile range). Medians with different letters were significantly different (Tukey

P < 0.05). All models included sample type as a random effect

Assay

Gene coverage

Shannon entropy

[?-norm deviation

Metagenome
Metagenome-UMI
Resistome

Resistome-UMI

Coefficients for sample type

random effects

063 (0.27-0.98)°
057 (0.22-0.98)
0.76 (0.32-0.99)
0.83 (0.34-1.00)

Beef 0.66
Poultry 0.76
Swine 0.75
WWTP 0.59

091 (0.81-0.98)°
090 (0.78-0.98)°°
091 (0.81-0.96)°
0.94 (0.83-0.97)°

Beef 0.89
Poultry 0.91
Swine 091
WWTP 0.87

0987 (0.968-0.996)"
0985 (0.962-0.996)*
0.984 (0.966-0.992)*
0.989 (0.971-1.000)°

Beef 0.979
Poultry 0.983
Swine 0.983
WWTP 0975
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was >99% (range 99.2-99.4%, Additional file 6: File S4).
Within the Resistome-UMI dataset, an average of 45% of
such reads was singletons, demonstrating that bait-
capture and enrichment did indeed introduce amplifica-
tion bias into the workflow. Amplification rates varied
widely between sequencing libraries, ranging from 7.6—
84.1%. The rates did not vary systematically with
sequencing library diversity, richness, yield, or 260/280
ratio (Additional file 7: Figure S1) but did exhibit a loga-
rithmic relationship with post-capture amplification DNA
yield and proportion of post-capture DNA library used in
sequencing (Additional file 8: Figure S2). The singleton
rate for each sequencing library seemed to dictate the
singleton rate for all genes identified within the library, as
rank-abundance curves showed a lack of positive or nega-
tive relationship (Additional file 9: Figure S3).

Discussion

The limits of sequencing technology to detect low-
abundance members of ecosystems have been recog-
nized for many years [32]. Here, we demonstrated the
existence, extent, and importance of this detection limit
for resistome analyses, by the use of shotgun metage-
nomic sequencing of non-enriched and enriched DNA
from the same samples, using the same analytical
methods. Our results showed that traditional (i.e., non-
enriched) shotgun metagenomic sequencing failed to
detect the low-abundance members of the resistome,
which comprised 247 additional gene groups specific to
antimicrobial resistance, represented by 1155 additional
resistance-related gene accessions. These additional gene
groups included ESBLs and carbapenemases, which are
important from a clinical and public health standpoint
(Fig. 3 and Additional file 4: Table S1). Although live-
stock resistomes have not been heavily studied, available
data corroborate the sparsity of these resistance genes
within livestock-associated samples sequenced using
non-enriched metagenomic methods [11, 33-35], with
the exception of bla-TEM genes detected in livestock
fecal samples collected in China [36]. Increased sensitiv-
ity for rare yet clinically important sequences is espe-
cially important given interest from the scientific and
regulatory communities in metagenomic sequencing for
pathogen detection and AMR surveillance [37-39].
However, it should be noted that the risk of low-
abundance AMR genes within metagenomic samples is
not yet well understood [40]. Genomic context, i.e., loca-
tion on a mobile genetic element or within the genome
of a pathogenic bacterium, is a critical piece of informa-
tion in assessing such risk. Currently, metagenomic data
are not conducive to genomic localization, as the assem-
blies tend to be highly fragmented [41]. Therefore, until
the risk of these low-abundance genes is better under-
stood, large-scale surveillance efforts that utilize bait
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enrichment and/or metagenomic sequencing should
include follow-up isolation and/or PCR of identified
genes to better assess their clinical and/or public health
significance. Similarly, studies wishing to investigate the
effects of selection pressure on evolution of low-
abundance genes within the context of the resistome
should incorporate external methods of measuring gene
abundance, at least until the correlation between these
more traditional methods and metagenomic quantifica-
tion is better understood [42].

In addition to describing the diversity of the low-
abundance resistome, we also demonstrated that it
contained a high level of within-gene variation. We used
this variation to successfully discriminate between sam-
ple types, which was not possible in the non-enriched
datasets (Fig. 4). Such genetic information could be very
powerful for tracking and attribution of resistance genes
within environmental and clinical metagenomics
samples. This approach has been demonstrated with
whole-genome sequence data from isolates obtained
during several outbreak scenarios [43, 44]. Follow-up
study with more numerous and representative samples is
needed to understand both the full potential and limita-
tions of metagenomic data within this context.

The additional genes identified through bait-capture
and enrichment did not appreciably alter resistome com-
position (Fig. 5), despite the fact that the composition of
these additional genes differed from the total resistome
(Fig. 2). This dynamic likely resulted from the relatively
low abundance of these additional genes in the overall
resistome (< 2% of all aligned reads), as well as the fact
that resistome composition was driven primarily by dif-
ferences in sample source (i.e., beef, poultry, swine, or
WWTP, Fig. 5). This latter finding could be due to major
microbiome differences between the sample types
(Additional file 10: File S5), although there are many
potentially confounding factors including geographic
location, host species, and antibiotic usage patterns.
Regardless of the factors that may have impacted differ-
ences between resistomes, the results obtained via en-
richment suggest that the distribution of genes within
resistomes exhibited a “long tail” comprised of many
unique, yet rare genes, as has been described for the
human microbiome and ecological dynamics across sys-
tems [14, 45, 46]. The limitations of NGS to detect the
“rare biosphere” could constrain inferences about eco-
logical dynamics and diversity [46]. Rarefaction curves
for the 64 libraries in this study provided further evi-
dence of this “long tail,” as the curves increased steeply
and quickly before beginning a very long, gradual yet
steady incline with increasing sequencing depth
(Additional file 11: Figure S4). Even with enrichment,
these curves never completely leveled off (although the
rate of detection of new genes slowed considerably),
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suggesting that the complete sequencing diversity of
these samples has not been completely characterized.

Currently, there are few methods available for enrich-
ing the rare resistome within metagenomic samples.
Functional metagenomics is one such method that en-
riches AMR genes by constructing cloned metagenomic
libraries that are then exposed to antibiotic-impregnated
culture media; however, this approach necessitates
laborious and expensive lab-based techniques, which
render the approach unsuitable for high-throughput ap-
plications such as ongoing, large-scale AMR surveillance
programs [47]. The bait-capture and enrichment assay
utilized in this work followed a relatively simple
protocol and achieved a 2-4 order of magnitude in-
crease in on-target sequence data (Fig. 6 and
Additional file 5: File S3). The MEGaRICH bait set is
publicly available (Additional file 12: File S6) and can
be easily updated to incorporate additional target
sequences.

Many resistome projects aim to characterize and/or
compare the resistome within and across samples, which
requires the ability to accurately quantify DNA se-
quences. This, in turn, relies on the random nature of
library preparation and sequencing, as well as the as-
sumption that each piece of DNA is represented by a
single sequenced read. Traditional shotgun metage-
nomics typically meets this assumption in samples with
ample bacteria because the amount of DNA is so large
that even DNA from the most abundant species or genes
will only be sequenced once. We verified this fact using
UMIs in non-enriched samples, which showed that >
99.9% of sequence reads were singletons (i.e., sequenced
only once). However, our use of UMIs also demonstrated
that bait-capture and enrichment differentially amplified
DNA across samples. We hypothesized that this was
driven largely by the target-to-bait ratio and that sam-
ples with a more abundant resistome (and thus more
targets) would yield a higher proportion of singletons.
However, if this were true, we would expect the
relatively small resistome in the WWTP samples to ex-
hibit much lower singleton rates than libraries from the
other three sample types (Fig. 6). We did not find this to
be the case (Additional files 7, 8, and 9: Figures S1-S3),
and we can only posit that the target-to-bait ratio is dic-
tated by a complex interplay of resistome composition,
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degree of matching between targets and baits, and DNA
quality within each sample.

Given the differential amplification bias induced
though bait-capture and enrichment, concurrent use of
UMIs (or some other method for de-duplicating se-
quence data) is necessary if the goal of analysis is to
quantify or compare resistome composition within or
between samples. The use of UMIs, however, came at
the cost of decreased on-target sequencing (Fig. 6), per-
haps because our protocol did not include “blockers” for
UMI sequences. In standard bait-capture protocols,
blockers increase capture efficacy by masking adapters
so that baits do not bind to off-target sequence. The fact
that UMIs also decreased evenness of coverage (Table 2)
suggests that UMIs may have impeded bait binding
within targets. Future optimizations of our pre-
sequencing capture design should attempt to incorporate
UMI blockers to mitigate depression in on-target se-
quencing. Similarly, future work should attempt to
standardize the enrichment and UMI protocols around
an optimal insert size as well as a consistent sequencing
depth. The insert sizes and total sequence reads in this
work were significantly different between assays (Table 3)
because standard kit shearing protocols were followed,
and these protocols differed between the enrichment and
library preparation kits (Additional file 1: Supplementary
Materials and Methods). While we attempted to control
for this difference by including insert size and total se-
quence reads as confounders in mixed-effect models (see
Additional file 1: Supplementary Materials and Methods),
it is unknown whether or how such differences may ultim-
ately have impacted the ability to enrich for, sequence, and
then computationally identify targets [48, 49].

There are several important limitations to the overall
approach described in this report. First, baits were de-
signed based on known gene sequences and thus were
not able to capture completely novel AR, BR, MR, and
VF genes. While binding affinity tolerates approximately
40 mismatches between bait and target (and therefore
allows for sequence variant detection), even this level of
matching prevents novel gene discovery, which can be
accomplished with functional metagenomic screening
[50]. Second, reliance on reference databases likely
introduced bias into the bait set design, as some resist-
ance and virulence classes were overrepresented in the

Table 3 Sequencing statistics, median (range). Medians with different letters were significantly different (Tukey P < 0.05). All models
included sample type as a random effect

Assay Raw reads (M) Trimmed, non-host reads (M) Insert size Phred score

Metagenome 399 (14.2-55.3)° 388 (14.1-534)° 346 (322-380)° 350 (34.6-36.1)

Metagenome-UMI 435 (33.3-654)> 420 (31.0-62.7)> 315 (301-343)" 34.8 (34.2-35.0)™

Resistome 65.4 (54.7-79.1) ) 179 (146-186)° 1 (35.0-35.4)*
) ( ) ( )

Resistome-UMI

)
49.1 (27.6-57.7)"

(
64.0 (533-77.7)°
46.9 (24.5-55.2)°

328 (315-353)%

346 (33.9-35.0)>
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literature. While the use of a mock metagenomic com-
munity could help to correct for such bias, there are
logistical challenges to such an approach, including the
ability to isolate and clone all of the AR, MR, BR, and
VE gene accessions that were included in the MEGa-
RICH bait set.

Overall, our results suggest that the low-abundance
portion of the resistome contains additional and valuable
information that could substantially alter our under-
standing of resistome dynamics, while improving our
ability to track resistance genes across metagenomic
samples. However, we have demonstrated that standard
metagenomic sequencing approaches do not capture the
low-abundance portion of the resistome. MEGaRICH, a
bait-capture and enrichment system, greatly increased
our ability to detect the low-abundance portion of the
resistome, but also introduced amplification bias into
the data. This was corrected with UMIs but at the cost
of decreased amplification efficiency. Therefore, choice
of enrichment assay should ultimately be guided by
the primary study objective. If the goal is presence/
absence of rare resistome elements (including rare
SNPs), then pre-sequencing capture without UMIs
would be preferable. However, if quantification of the
resistome is desired, UMIs should be incorporated
into the workflow.

Conclusions

Antimicrobial resistance (AMR) has been recognized as
a critical threat to public health. AMR is a complex
phenomenon mediated by interactions between mi-
crobes, their hosts, and surrounding environmental con-
ditions. Historically, our ability to investigate the
complex interactions underlying AMR has been limited
by technological constraints on our access to the micro-
bial community. The present study uses a technique to
enrich resistance sequences within metagenomic sam-
ples, resulting in increased detection of AMR and dis-
covery of a rare resistome with features that are distinct
from the more abundant portion of the resistome. These
distinct features not only expand the utility of resistome
analysis but also modify our understanding of AMR
ecology within the context of microbial communities.
Furthermore, the discovery of AMR genes with high
public health importance within the rare resistome high-
lights the need for increased sensitivity of metagenomic
methods, particularly when they are applied to public
health surveillance. Therefore, the methods presented in
this study should find widespread utility within both
microbiome-resistome research and more practical
applications of metagenomic sequencing. Finally, our
results suggest that detection of rare resistance elements
is critical for advancing efforts to combat AMR.
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Methods

Design of capture baits used in the MEGaRICH system
Publicly available databases were used for design of a
custom set of 120-mer biotinylated cRNA baits that
form the foundation of the MEGaRICH system. Bait
design was based on a non-redundant list of gene nu-
cleotide sequences for all known antimicrobial resistance
(AR), metal resistance (MR), biocide resistance (BR), and
virulence factor (VF) genes. See Additional file 1:
Supplementary Material and Methods for details on the
bait design process. Briefly, AR gene sequences were
compiled from Resfinder [51], ARG-ANNOT [52],
CARD [53], and the Lahey Clinic betalactamase database
[54]. Metal and biocide resistance sequences were col-
lected from the BacMet database [55]. Virulence factor
sequences specific to the pathogens Escherichia coli, En-
terococcus spp., and Salmonella spp. were compiled from
revisions one [56] and three [57] of the Virulence Factor
Database. The final non-redundant list contained 5557
gene accessions (complete database available at http://
hdl.handle.net/10217/180280). Optimization allowed us
to condense the amount of target sequence from 6.98 to
3.34 Mb so that the final MEGaRICH bait set comprised
31,250 unique 120-mers (Additional file 12: File S6),
which fit easily within the smallest and least expensive
tier size (ie, <499 kbp) for Agilent’s SureSelect"
Custom Capture Library (Agilent Technologies, ELID
number 0792071).

Library preparation, target capture/enrichment, and UMIs
DNA was extracted from samples using the PowerMax
Soil DNA Isolation Kit according to manufacturer’s
instructions, with minor modifications (see Additional
file 1: Supplementary Methods). Library preparation of
Metagenome and Resistome libraries followed standard
commercial kit protocols, with some modifications. For
the Metagenome libraries, the TruSeq DNA PCR-Free
LT Library Prep Kit (Illumina) was used, while resistome
libraries were created using the SureSelect™’ Target
Enrichment System for Illumina Paired-End Multiplexed
Sequencing Library (Agilent Technologies) with the
custom-designed MEGaRICH bait set. The Resistome-
UMI and Metagenome-UMI libraries were created using
a protocol that incorporated dual-indexed UMI adapters
(see Additional file 13) into sequence libraries [23], with
modifications to allow for integration with Agilent Sure-
Select protocols (see Additional file 1: Supplementary
Methods for details).

Sequencing

All 64 sequencing libraries were sequenced at a depth of
four libraries per lane (i.e, 16 lanes total) on a HiSeq
2500 (Ilumina) with 2 x 125 bp paired-end reads using
HiSeq SBS Kit v4 reagents (Illumina). Fastq files for all
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sequencing runs are available on NCBI SRA under Pro-
ject PRINA339554. A total of 3.13B paired-end reads
were produced. Total raw reads per sequencing library
were higher in the Resistome-UMI and Metagenome-
UMI datasets compared to the Metagenome dataset
(Tukey P < 0.05, Table 3; for complete sequencing statis-
tics, see Additional file 6: File S4) and therefore were in-
cluded as a potential confounder in all analyses of
capture efficiency (see Additional file 1: Supplementary
Methods). The average quality score and insert size also
differed by assay, with the UMI datasets exhibiting
slightly lower Phred scores (Tukey P < 0.05, Table 3) and
the Resistome and Metagenome datasets containing
smaller and larger insert sizes than the other assays,
respectively (Tukey P < 0.05, Table 3). Differences in in-
sert size resulted from differences in library preparation
assays, i.e., the standard bait enrichment process used to
create the Resistome libraries included a longer shearing
time, resulting in smaller insert sizes. Conversely,
Metagenome libraries were created using the standard
TruSeq DNA PCR-Free LT Library Prep Kit (Illumina),
which resulted in a longer insert size. The UMI libraries
necessitated use of a custom protocol, which ended up
generating insert sizes in-between those for the
Resistome and Metagenome libraries (see Additional file 1:
Supplementary Materials and Methods for details on all
library preparation procedures).

Bioinformatics analysis

In order to identify and remove read duplicates within the
UMI libraries, the tag_to_header.py script published in
[23] was used along with a custom C++ program (https://
github.com/cdeanj/meg_scripts/tree/master/umi). See
Additional file 1: Supplemental Methods for details. De-
duplicated sequence reads were trimmed and filtered, and
then host-associated sequence reads were identified and
removed. Across all 4 datasets, a median of 3.3% of reads
were removed due to low quality (range 1-11%), and a
median of 0.07% of high-quality reads were identified as
host DNA and removed from further analysis (range
0.0009-3.1%, see Additional file 6: File S4).

Because a major update had been made to one of the
source databases used for bait design, an updated AR
nucleotide database was used to identify AR, MR, BR,
and VF genes within the sequence data (see Additional
file 1: Supplementary Methods for details, and http://
hdl.handle.net/10217/180280 for the updated version of
the database). The addition of new gene sequences in
this database also allowed us to test the ability of MEGa-
RICH to identify sequence variants not included in the
original dataset. Trimmed, non-host reads were aligned
to this database, and genes with at least 80% gene frac-
tion were included in further analyses (see Additional
file 1: Supplementary Methods for details). Genes were
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classified by resistance/virulence class (e.g., tetracycline
or betalactam drug classes) and gene group (e.g., tet-Q
or betalactamase-TEM) in order to further characterize
the resistome of the sample.

In order to identify and count sequence variants
within AR, MR, BR, and VG genes, SNPFinder [58] was
used to identify one or more single-nucleotide polymor-
phisms (SNPs) within aligned reads and concatenate
them into a read-pair haplotype, i.e., a pattern of SNPs
within a sequence read-pair. The average number of
unique read-pair haplotypes identified per gene within a
sequencing library was compared in order to evaluate
how effectively the different assays detected sequence
variability. Genes identified in all 64 sequencing libraries
were subjected to further SNP analysis to assess variant
stratification by sample type and library assay (see
Additional file 1: Supplementary Method for details).

Descriptive and statistical analyses

A number of metrics were used to evaluate potential
differences between library preparation assays (see
Additional file 1: Supplementary Methods for details).
To assess potential bias introduced by sequencing depth
or quality, we compared the numbers of raw, filtered
and host reads; median insert size; and average quality
score. To quantify the efficacy of the enrichment
process, we compared both the proportion of on-target
sequence reads (i.e., the proportion of reads that aligned
to the resistance/virulence database) and the log-fold
change in alignments per resistance/virulence class. To
evaluate the ability of the assays to provide complete
and uniform coverage across targets, we compared the
depth, breadth, and evenness of coverage (the latter of
which was measured using Shannon Entropy and L*-
norm deviation). Linear mixed models were used to
assess statistical significance of all of these comparisons.
To compare overall resistome composition across assays,
ordination using non-metric multidimensional scaling
(NMDS) was performed. Scatterplots were used to
analyze trends between amplification bias (measured
using the proportion of non-amplified DNA sequences)
and sample-level characteristics including number of
raw reads, DNA quality, and resistome diversity and
richness.

Additional files

Additional file 1: Supplementary materials and methods (DOCX 59 kb)

Additional file 2: File S1. Additional gene accessions identified using
bait enrichment. (XLSX 79 kb)

Additional file 3: File S2. Classification of genes at the class, mechanism
and group levels. (CSV 764 kb)
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Additional file 4: Table S1. Number of aligned reads to each gene
group identified only in enriched samples, by resistance class and sample
type. (DOCX 41 kb)

Additional file 5: File S3. Log-fold change in abundance for each class of
resistance, comparing enriched versus non-enriched libraries. (XLSX 31 kb)

Additional file 6: File S4. Per library sequencing and alignment statistics.
(XLSX 51 kb)

Additional file 7: Figure S1. Proportion of non-PCR amplified reads
within the Resistome-UMI dataset as a linear function of (a) resistome
richness at the gene level (R> =0.10), (b) Simpsons diversity at the gene
level (R? = 0.26), (c) total number of raw sequence reads (R* = 031), and (d)
average NanoDrop value (R* = 0.006). Each dot is a sequencing
library (N = 16); blue = beef, orange = poultry, red = swine,
grayWWTP. (EPS 148 kb)

Additional file 8: Figure S2. Proportion of non-PCR amplified reads
within the Resistome-UMI dataset as a function of (a) capture efficiency
and (b) proportion of DNA library pooled for sequencing. Each dot is a
sequencing library (n = 16); blue = beef, orange = poultry, red = swine,
gray = WWTP. Logarithmic trend lines with 95% confidence intervals
depicted in dashed lines (R = 0.93 and 0.98, respectively). (EPS 180 kb)

Additional file 9: Figure S3. Proportion of non-amplified PCR reads
within each gene (y-axes) as a function of gene rank abundance (x-axes)
within the Resistome-UMI samples (n = 16), separated by samples
obtained from (a) beef, (b) poultry, (c) swine, and (d) WWTP facilities. Each
color within each panel is a single sequencing library, and each dot is an
AR, BR, MR, or VF gene within that library. (EPS 399 kb)

Additional file 10: File S5. Matrix of species-level counts, by sample.
(XLSX 761 kb)

Additional file 11: Figure S4. Rarefaction curves for (a) samples
subjected to pre-sequencing enrichment and (b) subjected to
non-enriched shotgun metagenomic library preparation. Blue, beef;
orange, poultry; red, swine; gray, WWTP. Solid lines are samples with
UMIs, and dashed lines are samples without UMIs. (EPS 92 kb)

Additional file 12:. File S6. All of the 120-mer bait sequences used for
the MEGaRICH bait capture and enrichment assay, including target gene
accessions. (XLSX 2035 kb)

Additional file 13: Table S2. Primers used in custom dual-indexed UMI
protocol. (DOCX 68 kb)
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