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Abstract

Background: Community-level analysis of the human microbiota has culminated in the discovery of relationships
between overall shifts in the microbiota and a wide range of diseases and conditions. However, existing work has
primarily focused on analysis of relatively simple dichotomous or quantitative outcomes, for example, disease status
or biomarker levels. Recently, there is also considerable interest in the relationship between the microbiota and
censored survival outcomes, such as in clinical trials. How to conduct community-level analysis with censored survival
outcomes is unclear, since standard dissimilarity-based tests cannot accommodate censored survival times and no
alternative methods exist.

Methods: We develop a new approach, MiRKAT-S, for community-level analysis of microbiome data with censored
survival times. MiRKAT-S uses ecologically informative distance metrics, such as the UniFrac distances, to generate
matrices of pairwise distances between individuals’ taxonomic profiles. The distance matrices are transformed into
kernel (similarity) matrices, which are used to compare similarity in the microbiota to similarity in survival times
between individuals.

Results: Simulation studies using synthetic microbial communities demonstrate correct control of type I error and
adequate power. We also apply MiRKAT-S to examine the relationship between the gut microbiota and survival after
allogeneic blood or bone marrow transplant.

Conclusions: We present MiRKAT-S, a method that facilitates community-level analysis of the association between
the microbiota and survival outcomes and therefore provides a new approach to analysis of microbiome data arising
from clinical trials.
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Background
The human microbiota, or the collection of microorgan-
isms that inhabits the human body, plays an important
role in many areas of health and disease. The develop-
ment of next-generation sequencing technologies allows
culture-free profiling of entire microbial communities,
often by sequencing the 16S ribosomal RNA (rRNA)
gene [1–3]. Similar 16S sequences are clustered into
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operational taxonomic units (OTUs); when clustered at
the level of 97% similarity, these OTUs represent bacterial
species [4]. Using these methods, the human microbiome
has been studied at a variety of body sites including the gut
[5], skin [6], and respiratory tract [7] and has been asso-
ciated with many health conditions, such as inflammatory
bowel disease, diabetes, psoriasis, and chronic obstructive
pulmonary disease [8–10].
Associations between the human microbiota and health

outcomes can be assessed by comparing individual OTU
abundances or overall diversity metrics between samples
or conditions [5, 11]. However, since taxonomic profiles
are sparse and high-dimensional—hundreds to thousands
of unique OTUs may be identified, many of which are
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present in only a subset of samples—comparisons on the
level of individual OTUs may have low power. An alter-
native to OTU-level analysis is to compare the microbiota
at the community level, i.e., to compare overall taxonomic
profiles between individuals [12–14]. This class of anal-
yses is often performed by computing pairwise distances
between communities (samples), where the distance met-
rics are ecologically relevant and may incorporate phy-
logenetic structure. The matrix of pairwise distances is
summarized by its top principal coordinates for visual-
ization, and distance-based multivariate methods coupled
with permutation are used to determine if dissimilarity
is related to an outcome. Community-level analyses may
provide power gains by utilizing phylogenetic informa-
tion, avoiding the multiple testing problem, and aggregat-
ing modest effects across multiple taxa [15].
Recently, as an alternative to distance-based approaches

that use permutation analysis, Zhao et al. [14] proposed
the microbiome regression-based kernel association test
(MiRKAT). MiRKAT uses a kernel machine framework
with a variety of ecologically informative kernels to test
for associations between the humanmicrobiota and either
continuous or binary outcomes. Intuitively, MiRKAT
compares similarity in taxonomic profiles between com-
munities (where similarity is measured via a kernel, which
can be obtained by transforming relevant distance matri-
ces) to similarity in outcome measures. p values are
obtained analytically using a variance-component score
test. MiRKAT is equivalent to distance-based analysis
but has the added advantages of flexible modeling of the
relationship between the microbiota and outcome mea-
sures, natural incorporation of covariates, and efficient
computation of p values.
A limitation of existing community-level analysis

approaches is that they cannot accommodate cen-
sored survival outcomes. However, such outcomes are
of tremendous interest as microbiome profiling studies
move into the clinical arena. For example, the lung micro-
biota has been related to progression of idiopathic pul-
monary fibrosis [16] and the gut microbiota to overall
survival after allogeneic blood and bone marrow trans-
plant [5]. Additional OTU-level studies with survival out-
comes have shown associations between the intestinal
microbiota and development of atopic dermatitis [17] and
allergic rhinitis [18] in children.
To address this critical gap in the literature, in this paper,

we propose a test for association between the microbiota
and censored survival outcomes (MiRKAT-S), account-
ing for covariates and potential confounders. We perform
a distance-based analysis using the kernel machine Cox
regression framework, encoding taxonomic profiles into
kernel matrices via a transformation of distance metrics
appropriate for microbial communities. This allows the
analysis to take into account phylogenetic information

and other features specific to biological communities. To
formally test the association between the microbiota, as
encoded in the kernel matrix, and censored survival times,
we use a variance-component score test. However, when
applied to microbial community profiles summarized by
common kernels, the usual test statistic with p values cal-
culated by resampling procedures is highly conservative
[19, 20]. We therefore implement a small sample correc-
tion that provides proper control of type I error while
maintaining adequate power, and we calculate p values
analytically rather than by resampling. We demonstrate
the performance of MiRKAT-S using real and simulated
data summarized by a variety of kernels commonly used
in microbial ecology.
This work represents the translation of existingmethods

in genetic studies with survival outcomes to applications
in microbiome research. The first major contribution of
this work is to allow survival outcomes in the kernel
machine regression framework with kernels that appro-
priately encode microbiome data. Our small sample cor-
rectionmethod provides proper control of type I error and
improved power when using microbiota-appropriate ker-
nels, whereas the kernel machine regression-based test as
implemented for genetic studies has almost no power to
detect relationships betweenmicrobial taxonomic profiles
and survival. Secondly, the ability to perform the test using
a variety of kernels provides robustness to the nature of
the true association between the microbiota and survival.
Therefore, although MiRKAT-S is technically similar to
previous kernel machine regression methods, it enables
microbiome analyses that are not possible using existing
methods.

Methods
To associate the microbiota at the community level and
censored survival times, we will relate censored sur-
vival times to taxonomic profiles using a flexible non-
parametric modeling framework. We will assess sig-
nificance via a variance-component score test which
acknowledges the modest sample sizes of the most taxo-
nomic profiling studies. In this section, we first describe
the modeling framework, followed by the testing strategy
and technical advances necessary to ensure proper con-
trol of type I error in this framework. Finally, we describe
simulations encompassing a variety of true relationships
between the microbiota and survival time.

Model specification
Suppose that for each of n subjects, we observe the micro-
bial taxonomic profile, encoded by a q-vector of OTU
counts Zi, and a p-vector of other covariates X i. Let Ti
be the survival time and Ci the censoring time for the ith
subject. We observe the bivariate vector (�i, Ui), where
Ui = min(Ti,Ci) is the observed time and �i = I(Ti ≤
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Ci) is the event indicator for subject i. We wish to test
whether taxonomic profiles Z are associated with survival
time, adjusting for covariates X.
The most commonly used model for censored survival

times is the Cox proportional hazards model [21] due to
its flexibility and relative robustness. Therefore, to relate
T and (X,Z), we propose to use the kernel machine Cox
proportional hazards model [19, 20], so that

λ(t;X,Z) = λ0(t)exp
[
Xβ + f (Z)

]
(1)

where λ0(t) is the baseline hazard function. In the ker-
nel machine regression framework, f (·) is generated by
a positive definite kernel function K(·, ·), that is, f (·) lies
in the reproducing kernel Hilbert space HK . Under the
representer theorem [22], f (Zi) = ∑n

i′=1 αi′K(Zi,Zi′)
for some α1, . . . ,αn. Choosing different kernel functions
K(·, ·) allows specification of a wide variety of models. For
example, the kernel function f (Zi) = Z′

iγ , corresponding
to the linear kernel K(Zi,Zi′) = ZiZ′

i′ , is used to spec-
ify a linear model. Kernels are similarity matrices, so each
element Kj,k = K(Zj,Zk) represents the pairwise similar-
ity between samples j and k. Because we use a score test,
which depends only on the null model, any kernel will
result in a valid test; however, the choice of kernel does
affect the power of the test.
To specify relevant models for microbial profiles, we

use kernel functions that encode the similarity between
the microbiota for two samples via a transformation of
pairwise distance metrics. There are many commonly
used ecological distance metrics, each with different fea-
tures and strengths. For example, the UniFrac [23] and
generalized UniFrac [24] distances take into account the
organization of OTUs into phylogenetic trees, thereby
gaining power when clusters of taxa are associated with
the outcome. Other distances, such as the Bray-Curtis
dissimilarity [25], look at the presence and relative abun-
dance of each OTU regardless of phylogenetic structure.
These and other commonly used distance metrics can be
used to create distance matricesD, where each element dij
is a pairwise distance between the taxonomic profiles of
two samples. The distance matrices are then transformed
to kernels, or similarity matrices, via

K = −1
2

(
I − 11′

n

)
D2

(
I − 11′

n

)

as described in [14]. Here, I is the identity matrix and 1
is an n-vector of ones. To ensure that K is positive semi-
definite, we replace negative eigenvalues with zero. That
is, we perform an eigenvalue decomposition K = U�U ,
where � = diag(λ1, . . . , λn), and then reconstruct the
kernel matrix using the non-negative eigenvalues �∗ =
diag(max(λ1, 0), . . . , max(λn, 0)) so that K = U�∗U .

Score test
Testing whether taxonomic profiles are associated with
the outcome in the kernel machine Cox model corre-
sponds to testing the hypothesis H0 : f (Z) = Kα = 0.
When the model is re-expressed using kernels as

λ(t;X,Z) = λ0(t)exp [Xβ + Kα]

where K = {K(Zi,Zj)}(i,j), we can estimate (β ,α) by
maximizing the penalized log partial likelihood function

log(PL)

=
n∑

i=1

∫ ∞

0
log

[
eβ ′Xi+α′K i

∑n
j=1 Yj(s)eβ

′X j+α′K j

]

dNi(s) − c
2
α′Kα

where Ni(s) = I(Ui ≤ s)�i, c ≥ 0 is the penalty
parameter, and Yj(s) = I(Uj ≥ s) is an indicator that
subject j is at risk at time s. An important relationship
between kernel regression and linear mixed models has
been described for non-censored outcomes [26]; a simi-
lar relationship holds in the Cox model, as discussed in
[20]. Therefore, solving the penalized log partial likeli-
hood above is equivalent to fitting the random effects Cox
model

λ(t;X,Z) = λ0(t)exp [Xβ + h]

where h = (h1, . . . , hn) are random effects with mean 0
and variance τK . Then, testing H0 : f (Z) = Kα = 0
is equivalent to testing H0 : τ = 0. This hypothesis can
be tested using a variance-component score test. Since a
score test only requires fitting the null model λ(t;X,Z) =
λ0(t)exp [Xβ], we do not need to estimate f (Z), so the
test is valid even if a poor kernel is chosen. However,
choosing a kernel that accurately reflects the true rela-
tionship between the microbiota and survival time will
provide higher power. Two factors determine how well
the kernel reflects the true relationship: first, whether the
abundance of the associated taxa matters (versus presence
or absence), and second, whether the OTUs related to the
outcome are clustered on a phylogenetic tree. For exam-
ple, since the weighted UniFrac distance encodes both
taxon abundance and phylogenetic information, a test
based on the weighted UniFrac distance will have higher
power when the true association is between the outcome
and the abundance of a cluster of OTUs on a phylogenetic
tree than when the true association is with the abundance
of randomly selected OTUs (of similar frequencies) or
with the presence or absence of a set of OTUs.
The variance-component score statistic is

Q = M̂′KM̂

where M̂ = (M̂1, . . . , M̂n) is the vector of estimated
martingale residuals under the null model, i.e., M̂i =
�i − ∫ ∞

0 Yi(t)eβ̂
′Xid�̂0(t) [19, 20]. Here, �̂0(u) =

∑n
i=1 �iI(Ui ≤ u)/Ŝ0(Ui) is Breslow’s estimator of the
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baseline hazard function �0(u) = ∫ u
0 λ0(t)dt under the

null model and Ŝ0(t) = ∑n
i=1 Yi(t)eβ̂

′Xi is the estimator
for the baseline survival function.
Q asymptotically follows a mixture of chi-square distri-

butions under the null model. The distribution has been
derived for a linear kernel [27] but can be written in
general form: by the central limit theorem,

K1/2M ∼ N
(
0,P1/20 KP1/20

)

where P0 = V − VX(X′VX)−1X′V with V =
diag

(∫ ∞
0 Yi(t)eβ̂

′Xid�̂0(t) − wi(β , ti)2
)

and wi(β , t) =
eβ̂ ′Xi/Ŝ0(t). Therefore,

Q ∼
n∑

i=1
λ̃iχ

2
1,i

where
(
λ̃1, . . . , λ̃n

)
are the eigenvalues of P1/20 KP1/20 and

χ2
1,i are independent χ2

1 random variables. Note that K
need not be full rank for this distribution to hold, since
λi = 0 for the terms associated with the singular compo-
nents of K , so those components of the distribution will
have weight zero [28].
Thus far, we have assumed that there are no tied survival

times. In practice, tied survival times are fairly common
due to coarse time measurements resulting from specific
visit schedules or study follow-up dates. We use the Efron
approximation to accommodate tied survival times [29].
This approximation performs well even with relatively
small sample sizes or a high proportion of ties [30].

Small sample correction
The test outlined above is highly conservative for mod-
est sample sizes and complicated kernels, such as kernels
commonly used for the microbiota (see Additional file 1:
Table S1).We therefore propose an approximate test using
a modified score statistic that accounts for overdispersion.
Analogous small-sample corrections have been proposed
for quantitative and binary traits [31]. Specifically, we
propose the modified score statistic

Q∗ = M̂′KM̂
M̂′M̂

.

To derive the distribution of this statistic, we need the
covariance of the residuals M̂. We use a diagonal small-
sample approximation to Cov(M̂) that is motivated by
the corresponding weighted linear model at convergence.
This approximation is justified both in existing literature
(e.g., [32, 33]) and through empirical evidence, namely
the rapid convergence of the iteratively reweighted least
squares (IRLS) algorithm using this weight matrix to the
correct coefficients and the proper empirical type 1 error
of our method.

Specifically, the fitted kernel machine Cox model (Eq. 1)
is equivalent to a weighted linear model at conver-
gence with weight matrix estimated using an iteratively
reweighted least squares (IRLS) algorithm, as described in
Appendix 1.We use a diagonal approximation for both the
covariance of the residuals M̂ and the weight matrixW for
IRLS. Several versions of W have been used for weighted
partial least squares in the literature (e.g., [34] and [32]);
we use an intermediate version that is diagonal as in [32]
and [33] but whose elements are defined by the negative
Hessian with respect to β as in [34].
To express this mathematically, let ỹ = Xβ + W−1M̂

be the working response. Again, although the covariance
matrix of the residuals M̂ is non-diagonal, we approxi-
mate Cov(M̂) using a diagonal form proportional to the
weight matrix W. Then, by defining ỹ∗ = W 1/2ỹ, X∗ =
W 1/2X, and ε∗ = W 1/2ε, the weighted linear model can
be written as

ỹ∗ = X∗β + ε∗, ε∗ ∼ N (0, σ 2I)

with projection matrix P∗
0 = I − X∗(X∗′X∗)−1X∗′ . This

model can be reframed using ỹ∗ = W 1/2ỹ, X∗ =
W 1/2X, and ε∗ = W 1/2ε and fit as a weighted linear
model. Then, at convergence, Var(ε∗) = W 1/2Var(ε)W 1/2

=W 1/2σ 2W−1W 1/2 = σ 2I.
Based on this, the distribution of Q∗ satisfies

P(Q∗ > q) = P(M̂′KM̂ − M̂′qM̂ > 0)
= P((P∗

0M)′(K − qI)(P∗
0M) > 0)

= P(ε′P1/20 P∗
0(K − qI)P∗

0P
1/2
0 ε > 0) (2)

where ε ∼ N (0, I). For the second equality, it is fairly
straightforward to show that M̂ = P∗

0M; this derivation is
included in Appendix 2. The third equality uses the dis-
tribution ofM stated in the previous section. Then, under
the null hypothesis,

Q∗ ∼
n∑

i=1
λ∗
i χ

2
1,i

where (λ∗
1, . . . , λ∗

n) are the eigenvalues of P1/20 P∗
0(K −

qI)P∗
0P

1/2
0 and, as before, χ2

1,i are independent χ2
1 ran-

dom variables. p values can be calculated efficiently using
Davies’ exact method [35]. For very small samples (e.g.,
n ≤ 50), Davies p values may be anticonservative and
permutation p values may be used instead.

Simulation scenarios
We carried out simulation studies in a range of set-
tings to confirm that MiRKAT-S properly controls type
I error and to assess its power using a variety of ker-
nels. Microbiome OTU counts were generated using the
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same approach as [14]. Specifically, for each individual,
we simulated OTU counts from a Dirichlet-multinomial
distribution with dispersion parameters and proportions
estimated from Charlson et al.’s real upper respiratory
tract microbiome dataset, in which 856 OTUs were mea-
sured on each of 60 individuals [7]. The data for each
simulated individual consists of 1000 total OTU counts
distributed among the 856 OTUs of Charlson et al. We
also simulated two covariates for each individual, X1i and
X2i, from a standard normal and a Bernoulli (0.5) distribu-
tion independently of taxonomic profiles. We considered
sample sizes ranging from n = 25 to n = 500 individ-
uals. For all simulation scenarios, we generated datasets
with approximately 25 and 50% censoring. Four simula-
tion settings were considered, varying (1) whether OTU
abundance or the presence/absence of OTUs was asso-
ciated with the outcome and (2) whether phylogeneti-
cally clustered or unclustered OTUs were associated with
the outcome.
In setting 1, the abundances of OTUs in one cluster on

a phylogenetic tree were associated with survival time.
We partitioned all of the OTUs into 20 clusters using
the partitioning-around-medioids algorithm based on the
cophenetic distances of OTUs in the phylogenetic tree.
The abundance of clusters ranged from 0.05 to 19.7% of all
OTU reads. We selected an abundant cluster, containing
19.7% of all reads, and a rare cluster, containing 0.9% of
all reads, to be associated with exponentially distributed
survival times through the model

Ti = −log(Ui)

λexp
(
X′
iβ + γ scale

(∑
j∈A Zij

)) (3)

where γ is the true effect size for the cluster, λ is the scale
parameter, Ui ∼ Uniform(0, 1), A is the set of indices of
OTUs in the selected cluster, and the “scale” function stan-
dardizes the total OTU abundance in the cluster to have
mean 0 and standard deviation 1:

scale

⎛

⎝
∑

j∈A
Zij

⎞

⎠ =
∑

j∈A Zij − 1
n

∑
i

(∑
j∈A Zij

)

SDi(
(∑

j∈A Zij
) .

Censoring times are simulated independently as Ci ∼
Exp(μ), and λ and μ are selected to give approximately
25% or approximately 50% censoring.
In setting 2, the ten most abundant OTUs overall,

accounting for 31.5% of all OTU reads, were associated
with survival time regardless of cluster membership. In
this setting, we simulated survival times as

Ti = −log(Ui)

λexp
(
X′
iβ + γ scale

(
∑

j∈A
Zi(j)
Z̄(j)

)) (4)

where Z̄(j) is the average across samples of the counts
for the jth OTU. This limits the ability of a single OTU

to dominate the communal effect of the microbiota. Set-
ting 2 is comparable to setting 1 when the associated
cluster is common, since in both cases the abundance of
common OTUs is associated with survival times, but it
lacks setting 1’s close phylogenetic relationship between
associated OTUs.
In setting 3, the presence or absence of each OTU in

a cluster was associated with survival time. OTUs were
clustered as in setting 1, but in this case, were associated
with survival time via the model

Ti = −log(Ui)

λexp
(
X′
iβ + γ scale

(∑
j∈A I(Zij > 0)

)) (5)

As in setting 1, we simulated situations where an abundant
cluster, containing 19.7% of all reads, was associated with
the outcome and where a rare cluster, containing 0.9% of
all reads, was associated with the outcome.
Finally, in setting 4, the presence or absence of 40 ran-

domly selected OTUs was associated with the survival
time. This mimics the size of an average cluster, since the
mean number of OTUs assigned to a cluster was 42.8,
with cluster sizes ranging from 3 to 118 OTUs. Since the
majority of OTUs are rare, the overall number of OTU
reads associated with the outcome is low in this setting.
The model for Ti was the same as in setting 3. Setting 4 is
comparable to setting 3 when the associated cluster is rare:
in both cases, the presence or absence of rare OTUs is
associated with survival times. However, it lacks setting 3’s
close phylogenetic relationship between associatedOTUs.
In all simulation settings, we considered the weighted

(Kw) and unweighted (Ku) UniFrac kernels, the Bray-
Curtis kernel (KBC), and the generalized UniFrac kernel
with α = 0.5 (K0.5). These kernels are expected to
have high power in different simulation settings. All of
the UniFrac kernels take phylogenetic information into
account. The unweighted UniFrac kernel does not account
for OTU abundance, whereas the weighted UniFrac ker-
nel does; the generalized UniFrac kernel is intermediate
between the weighted and unweighted. The Bray-Curtis
kernel does not account for phylogenetic structure or
overall abundance of an OTU but does compare both
presence/absence and relative abundance between sam-
ples of each OTU. Each kernel will have highest power
when its measure of distance (and therefore similar-
ity) accurately reflects the true relationship between the
microbiome and the outcome.
For each simulation setting, sample size n, and censor-

ing proportion, and using each kernel, we applied the test
described above to test for associations between OTU
counts and survival time. We used 5000 simulations with
γ = 0 to estimate the empirical type I error rate with a
nominal significance level of 0.05 and estimated empirical
power across a range of γ values using 1000 simulations.
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We also compare MiRKAT-S to two alternative
approaches sometimes used for community-level analy-
sis. First, we performed OTU-level tests of all OTUs. For
each of the 856 OTUs in the dataset, we ran a marginal
Cox regression model. The minimum p value from the
856 marginal models was compared to the null distribu-
tion to produce an overall p value for any association of
the microbiota with survival times. In practice, the null
distribution would be generated for an individual study
using permutation; however, in the interest of computa-
tional efficiency, we generated this distribution using the
minimum p values from 5000 simulations where survival
times were not associated with the microbiota. Second,
we performed principal coordinates analysis (PCoA) on
a relevant distance matrix (see, e.g., [16]). Since it is not
clear how to make PCoA plots with censored time-to-
event outcomes, we followed PCoA by Cox proportional
hazards regression. Specifically, we generated the UniFrac
and Bray-Curtis distance matrices as above, then took the
top two principal coordinates as our covariates for a Cox
regression analysis. We tested the two principal coordi-
nates jointly by using a chi-square test to compare nested
models with and without the microbiota-related predic-
tors. The covariates X1 and X2 were included in all models
exactly as in the MiRKAT-S simulations.

Results
Power and type I error in simulated datasets
Empirical type I error rates with 25% censoring are
reported in Table 1. Note that Eqs. 3, 4, and 5 are identical
when γ = 0 (i.e., there is no true association between the
microbiota and survival time), so settings 1–4 all have the
same type I error. From the table, we see that MiRKAT-
S is valid for all kernels and sample sizes of at least 100
individuals. For comparison, empirical estimates of type
I error without the small-sample correction are reported
in (Additional file 1: Table S1), demonstrating the uncor-
rected test is highly conservative. To further describe the
behavior of p values based on the uncorrected test statis-
tic, we have generated Q-Q plots (see Additional file 1:
Figure S1). These plots demonstrate that p values based
on the corrected statistic do not deviate significantly from
the theoretical distribution, whereas p values based on the

Table 1 Empirical type I errors for n =100, 200, or 500

Number Kw Ku K0.5 KBC

100 0.0544 0.0540 0.0530 0.0542

200 0.0494 0.0480 0.0470 0.0462

500 0.0506 0.0478 0.0536 0.0442

Empirical type I errors for sample sizes n =100, 200, and 500 with approximately
25% censoring. Results are based on 5000 simulated datasets. Kw, Ku, KBC, and K0.5
represent results for the weighted UniFrac kernel, unweighted UniFrac kernel,
Bray-Curtis kernel, and generalized UniFrac kernel with α = 0.5, respectively

uncorrected statistic are far from the theoretical distribu-
tion. They also show that, more specifically, p values based
on the uncorrected statistic tend to be less extreme than
they should be: p values that are truly smaller than 0.2
tend to be overestimated, whereas p values larger than 0.2
tend to be underestimated. All type I error results are sim-
ilar with 50% censoring (see Additional file 1: Table S2).
For sample sizes smaller than 100, the size of MiRKAT-S
is close to correct, though it may be slightly anticonser-
vative. Empirical type I errors for small sample sizes are
reported in Table 2. If the sample size is smaller than n =
50 and the p value fromMiRKAT-S is borderline, it may be
preferable to report p values obtained using permutation.
To interpret the simulation results evaluating the power

of the test, recall that two aspects of the relationship
between the microbiome and survival are important
for understanding which kernel will provide the high-
est power: the relationship between associated OTUs
(whether or not they cluster on a phylogenetic tree) and
the importance of taxon abundance (whether OTU count
or presence/absence matters). All of the UniFrac distances
account for phylogeny, while the Bray-Curtis dissimilarity
does not. The weighted UniFrac distance and Bray-Curtis
dissimilarity both utilize taxon abundance (OTU counts),
whereas the unweighted UniFrac distance only incor-
porates presence/absence of taxa, and the generalized
UniFrac distance is a compromise between the weighted
and unweighted UniFrac distances.
Figure 1 shows the estimated power under all simulation

settings. As expected, in all settings, power increases with
increasing true effect size (γ ). We first consider settings 1
and 3, in which a cluster of OTUs is associated with the
outcome. When the OTU counts of an abundant cluster
are associated with survival times (panel A), the weighted
UniFrac kernel and the generalized UniFrac kernel with
α = 0.5 provide the highest power, since the correspond-
ing distance metrics take both abundance and phylogeny
into consideration. Since the associated cluster is com-
mon, nearly all individuals have at least one read for each

Table 2 Empirical type I errors for n < 100

Number Method Kw Ku K0.5 KBC

25 MiRKAT-S 0.054 0.055 0.055 0.056

Permutation 0.046 0.048 0.046 0.049

50 MiRKAT-S 0.045 0.058 0.051 0.051

Permutation 0.041 0.052 0.045 0.045

75 MiRKAT-S 0.054 0.058 0.051 0.053

Permutation 0.051 0.053 0.048 0.049

Empirical type I errors for small sample sizes (n < 100) with approximately 25%
censoring. Results are based on 5000 simulated datasets, and permutation p values
were obtained using 1000 permutations. Kw, Ku, K0.5, and KBC represent results for
the weighted UniFrac kernel, unweighted UniFrac kernel, Bray-Curtis kernel, and
generalized UniFrac kernel with α = 0.5, respectively
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a b

c d

e f

Fig. 1 Empirical power. Empirical power was evaluated in all simulation settings, using a sample size of n = 100 and 25% censoring. Kw, Ku, KBC, and
K0.5 represent results for the weighted UniFrac kernel, unweighted UniFrac kernel, Bray-Curtis kernel, and generalized UniFrac kernel with α = 0.5,
respectively. γ is the true effect size for the associated cluster or OTUs. a Setting 1; survival is associated with OTU counts in a common cluster
containing 19.7% of all reads. b Setting 3; survival is associated with the presence or absence of each taxon in a common cluster. c Setting 1; survival
is associated with OTU counts in a rare cluster containing 0.9% of all reads. d Setting 3; survival is associated with the presence or absence of each
taxon in a rare cluster. e Setting 2; survival is associated with the ten most common OTUs, regardless of cluster membership. f Setting 4; survival is
associated with 40 OTUs selected at random, regardless of cluster membership

OTU in the cluster, so individuals cannot be distinguished
based on OTU presence/absence. Therefore, in this set-
ting, the unweighted UniFrac kernel has almost no power
to detect the association. In contrast, when OTU pres-
ence/absence in a rare cluster is associated with survival
time (panel D), the unweighted UniFrac kernel has highest
power, since this distance metric is based on the presence
and absence of OTUs. Here, the weighted UniFrac kernel
has very low power because OTU counts of a rare cluster
do not vary much between individuals. When the OTU
counts of a rare cluster are associated with survival time
(panel C) or when the presence or absence of an abun-
dant cluster is associated with survival time (panel B), the
OTU effect is small and similar across most individuals.
Therefore, in these settings, no kernel provided power
comparable to settings with larger effect sizes.

The power under settings 2 and 4, in which unclustered
OTUs are associated with the outcome, is reported in pan-
els e and f of Fig. 1. When the OTU counts of the ten most
commonOTUs are associated with survival time (panel e),
the Bray-Curtis kernel has highest power, followed by the
weighted UniFrac kernel and generalized UniFrac kernel
with α = 0.5. Since the Bray-Curtis dissimilarity metric
does not incorporate phylogenetic information, this dis-
tance is designed for unclustered rather than clustered
OTUs. However, since it takes abundance into account,
the Bray-Curtis kernel performs better when OTU counts
are associated with survival (e.g., panel a) rather than
OTU presence/absence (e.g., panel d) and when the asso-
ciated cluster is at least moderately abundant. When the
presence or absence of a random 40OTUswere associated
with survival time (panel f ), no kernel had high power, but
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the unweighted UniFrac kernel had higher power than any
other tested kernel. The low power is likely due to the rar-
ity of most randomly selected clusters and inability to gain
power by utilizing phylogenetic information.
Kernel choice has a strong effect on the power of the

test, and different kernels are optimal depending on the
nature of the true relationship between the microbiota
and survival time. In practice, a kernel representing rela-
tionships of particular scientific interest could be selected.
For example, if a healthy microbiome at a certain body
site has relatively few dominant taxa at high frequencies,
and changes in the relative abundance of these taxa is
hypothesized to be associated with the time to a disease
outcome or death, choosing a kernel that accounts for
taxon abundance will have the highest power to detect the
hypothesized changes. If there is no specific hypothesized
relationship, multiple kernels can be tested and then the
resulting p values adjusted formultiple comparisons. Test-
ing the four kernels discussed here is a reasonable starting
point, and the limited number of tests reduces the power
loss due to adjusting for multiple comparisons. In these
simulations, if the analysis is performed using all four ker-
nels included in Fig. 1 (Ku,K0.5,Kw,KBC) and then the
minimum p value after an FDR adjustment is used for test-
ing, the power does not quite match the best kernel but is
comparable to or better than the remaining three kernels
(see Additional file 1: Figure S2).
We also compared the power of MiRKAT-S to two

approaches used in current practice: performing a
marginal, or OTU-level, analysis for all OTUs and includ-
ing the top principal coordinates of the distance matrix
as the covariates of interest in a regression model (see
Additional file 1: Figure S2). We find that for most simu-
lation settings, MiRKAT-S has substantially better power
than the marginal analysis or PCoA, and in the remainder,
the power is comparable between methods. In particular,
the marginal analysis has power to detect an association
between counts of OTUs in a cluster and survival times,
but virtually no power to detect associations between
presence/absence of clustered OTUs and survival or asso-
ciations involving unclustered OTUs. The power of the
marginal test for detecting an association with clustered
OTU counts has similar power regardless of how common
the cluster is. Therefore, since MiRKAT-S is more pow-
erful for OTU counts of relatively common clusters, the
marginal analysis and MiRKAT-S have similar power for
rare clusters, and for very large effect sizes in this simula-
tion setting, the marginal analysis outperforms MiRKAT-
S slightly (Additional file 1: Figure S2 (panel C )). However,
in all other cases, MiRKAT-S is substantially more power-
ful than the OTU-level analysis. PCoA regression analysis
performs similarly to MiRKAT-S for each kernel when
OTU counts in a common cluster are associated with sur-
vival times (Additional file 1: Figure S2 (panel A)). In most

other simulation settings, PCoA matches or approaches
the power ofMiRKAT-S in only the case of the best kernel.
That is, MiRKAT-S is more robust to kernel choice than
PCoA. In addition, in settings where clustering informa-
tion does not matter (Additional file 1: Figure S2 (panels e
and f )), PCoA has very low power, while MiRKAT-S has
moderate power provided that the associated OTUs are
not too rare.

Analysis of blood and bonemarrow transplant data
Acute graft-versus-host disease (aGVHD) is a leading
cause of death after allogeneic blood or bone marrow
transplantation. There is a suspected relationship between
the intestinal microbiome and aGVHD, but previous stud-
ies in mice and humans have yielded mixed results about
the presence and nature of this relationship. Therefore,
Jenq et al. recently studied the association of a particu-
lar bacterial species (intestinal Blautia) and of intestinal
microbiome diversity indices with time to each of aGVHD
onset, aGVHD-related mortality, and adverse outcomes
unrelated to aGVHD [5].
In the original study, subjects were stratified into two

cohorts depending on sequencing platform. The com-
bined dataset used here results from resequencing of the
first cohort of patients using the IlluminaMiSeq platform;
unfortunately, four patients did not have additional DNA
available for MiSeq sequencing and were excluded from
our analysis. Therefore, 481 stool samples were available
for 111 unique subjects, and for each sample, the Illumina
MiSeq platform was used to sequence the V4–V5 regions
of the 16S rRNA gene. OTUs were generated as described
in [5]. Briefly, mothur version 1.34 was used to compile
and process sequence data [36], and quality filters were
applied as in [37]. This procedure yielded OTU counts for
2436 OTUs. As in the original paper, for each subject, we
only included the sample collected closest to 12 days post-
transplant in our analysis, and we excluded subjects for
whom no samples were collected between 8 and 16 days
post-transplant, so that 94 subjects were included. We
used QIIME with default settings to align the sequences
and generate a rooted phylogenetic tree. The 109 OTUs
that failed to be placed on the tree were excluded from
our analysis, leaving 2327 OTUs. We performed the test
using the unweighted and weighted UniFrac kernels, the
generalized UniFrac kernel with α = 0.5, and the Bray-
Curtis kernel, adjusting for age and gender. The out-
comes considered were overall survival and time to stage
III aGVHD.
The results of applying MiRKAT-S to these data with

and without the small-sample correction are reported
in Table 3. We do not find a significant association
between the microbiota and time until development of
stage III aGVHD using any kernel. However, the asso-
ciation between overall survival and the microbiota is
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Table 3 Analysis of gut microbiome after allogeneic transplant

Outcome Method Ku K0.5 Kw KBC

Overall Survival Uncorrected 0.049 0.008 0.065 0.029

Corrected 0.046 0.007 0.065 0.022

Grade III aGVHD Uncorrected 0.496 0.514 0.472 0.849

Corrected 0.560 0.575 0.518 0.933

p values from MiRKAT-S using the weighted (Kw) and unweighted (Ku) UniFrac
kernels, the generalized UniFrac kernel with α = 0.5 (K0.5), and the Bray-Curtis kernel
(KBC) with outcomes of overall survival and severe (at least grade 3) graft-versus-host
disease. “Corrected” indicates the p values are based on the modified score statistic
with proper type I error; “uncorrected” indicates the p values are based on the
original score statistic

significant at α = 0.05 using the unweighted UniFrac ker-
nel Ku, generalized UniFrac kernel K0.5, and Bray-Curtis
kernel KBC, but not using the weighted UniFrac kernel
Kw (Table 3). The association remains significant after we
adjust for multiple comparisons (multiple kernels) using
either the false discovery rate method or the Bonferroni
correction. The differences between the corrected and
uncorrected p values are fairly small. However, they are in
the directionwewould expect based on simulation results.
In particular, we saw that low and high p values are less
frequent than would be expected for a null distribution
of p values (see Additional file 1: Figure S1). This is con-
sistent with seeing higher p values for the uncorrected
statistic in the overall survival case, where the p values
based on the corrected statistic are fairly small, and con-
versely, seeing lower p values for the uncorrected statistic
in the grade III aGVHD case, where the p values based on
the corrected statistic are large.
To visualize this association, we clustered individu-

als using Ward’s agglomerative hierarchical clustering
method [38] based on the generalized UniFrac distance
with α = 0.5. Ward’s method is a generic clustering
method that can be used for many data types. Gener-
ally speaking, the goal is to divide samples into clusters
(groups) that tend to be similar in the ways that we care
about; here, clusters should reflect similarity of taxonomic
profiles. Operationally, Ward’s method begins by assign-
ing each sample to its own cluster and sequentially merges
pairs of clusters that are most similar into larger clus-
ters until all samples are merged into a single cluster.
Which clusters to merge is decided by minimizing the
increase in the sum of within-cluster squared distances
(when Euclidean distances are used, this is the within-
cluster variance). Through this process, a hierarchical tree
is created. The tree can be cut at different levels to cre-
ate the desired number of final clusters used for analysis.
Although Euclidean distances are often used for Ward’s
method, other squared distances (in this case, ecologi-
cally relevant metrics such as the UniFrac distances) can
be substituted while still using the same form of criterion

and algorithm [39]. For our analysis, we used the gener-
alized UniFrac distance to measure dissimilarity between
individuals to ensure that clusters are similar with regard
to the presence and abundance of taxa, accounting for
phylogenetic relationships. We chose to cut the tree to
create two clusters; a clear separation into clusters of sizes
n = 45 and n = 49 can be seen in Fig. 2a.
Kaplan-Meier curves for overall survival in the two

clusters are shown in Fig. 2b. However, the simple Cox
regression p value is not significant (p = 0.09). That is,
the similarity between individuals was measured the same
way in both analyses. MiRKAT-S yielded a highly signif-
icant p value for the association of the microbiota with
overall survival, whereas the analysis based on clustering
individuals gave a non-significant p value. This demon-
strates that MiRKAT-S has higher power to detect this
association than a simple clustering analysis based on the
same distance metric.
The highly significant result using MiRKAT-S with K0.5

may also provide information about the form of the asso-
ciation between the gut microbiota and survival post-
transplant. The generalized UniFrac kernel incorporates
phylogenetic information and represents a compromise
between abundance and presence or absence of OTUs.
Therefore, this kernel has highest power to detect rela-
tionships between taxonomic profiles and overall survival
that occur through moderately rare clusters of OTUs or
through a combination of common and rare clusters of
OTUs. Accordingly, the high significance of MiRKAT-S
using K0.5 may indicate that one of those settings holds:
either moderately rare clusters of OTUs are driving the
relationship between the microbiota and overall survival,
or multiple clusters of OTUs, some of which are abundant
and some of which are rare, are associated with over-
all survival. However, without further analysis, we cannot
determine which OTUs or clusters are associated with
survival times in aGVHD patients.

Discussion
We propose MiRKAT-S for testing the association
between the human microbiota and survival outcomes.
In the kernel machine Cox model framework, taxonomic
profiles are modeled through a kernel function. This
allows comparison of microbial community profiles using
microbiome-specific distance metrics such as the UniFrac
distances or Bray-Curtis dissimilarity. The kernel machine
regression framework also allows linear (or, more gener-
ally, parametric) adjustment for covariates and potential
confounders. We test the significance of the associa-
tion between the microbiota and survival times using a
variance-component score test, and we develop a small-
sample correction to account for the modest sample sizes
and sparse, high-dimensional data that often result from
microbiome studies. In contrast to existing methods that
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a b

Fig. 2 Cluster analysis. a Clustering of individuals using Ward’s hierarchical clustering method, based on generalized UniFrac distances with α = 0.5.
b Kaplan-Meier curves for the two clusters of individuals with an outcome of overall survival

use resampling, p values are obtained analytically using
the Davies approximation.
Like other distance-based analyses, MiRKAT-S is lim-

ited to detecting the presence of an association between
the microbiota and survival times. It cannot identify indi-
vidual taxa that are associated with the outcome and
does not provide information about relationships among
taxa within a microbial community. MiRKAT-S is there-
fore designed to be used when the question of interest is
whether an entire microbial community is associated with
the outcome. Alternative ways to answer this question
include testing the association of each OTU individu-
ally with the outcome of interest or using a dimension
reduction technique such as PCoA and testing the top
few principal coordinates. Our simulation studies show
that MiRKAT-S has power at least comparable to, and
often substantially greater than, either of these meth-
ods for community-level association testing. Community-
level tests can be used in combination with other methods
that identify taxa of interest. These include marginal tests
for particular OTUs of interest, identification of OTUs
with high loadings from PCA or PCoA, or penalized
regression methods that account for the structure and
compositional nature of the data.
Our simulation results show that MiRKAT-S correctly

controls type I error. However, under conditions of
extreme censoring or very small sample sizes, the ana-
lytic p values provided by MiRKAT-S may be slightly
anticonservative. In these cases, obtaining p values by

permutation may be preferable. Type I error is accurate
regardless of the choice of kernel; that is, the test is valid
even when a poor choice of kernel is made. The power
of the test depends heavily on how well the selected ker-
nel encodes the true relationship between themicrobiome
and the outcome of interest. For example, when the abun-
dance of an OTU or set of OTUs is related to the outcome,
a kernel that encodes abundance information, such as the
weighted UniFrac or Bray-Curtis kernel, will have higher
power than a kernel that encodes only taxon presence or
absence. There are situations in which MiRKAT-S has low
power regardless of kernel choice, but any method would
have low power in those settings because the true effect
size is very small. For example, if the presence or absence
of a common OTU is associated with the outcome, nearly
all subjects will have the OTU present in the sample,
so the association will be very difficult to detect using
any method.
If there is no a priori hypothesis about which kernel

will best represent relationships of scientific interest, the
analysis can be performed using multiple kernels and an
overall p value can be obtained by permutation or adjust-
ment for multiple comparisons. This analysis approach
can provide information not only about the presence of
a relationship but also about its form, depending on the
distance metrics considered and their relative power for
different forms of the true association. That is, if the
metric with the lowest p value has the highest power to
detect associations with abundance of common clusters,
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that may be the form of the true association. Furthermore,
weighted combinations of kernels could be used to simul-
taneously detect different types of shifts in themicrobiota.
Specific combinations or kernel weights could either be
selected a priori or via a grid search, again using permuta-
tion to test overall significance. As the field of microbiome
analysis matures and new distance metrics are proposed,
our approach will continue to increase in power.

Conclusions
We present MiRKAT-S, a method for testing the associ-
ation between the microbiota, assessed on the commu-
nity level, and survival (time-to-event) outcomes. Simi-
lar methods exist for binary and continuous outcomes;
however, MiRKAT-S is the first community-level test
for microbiome data that allows analysis of censored
survival outcomes. Community-level analyses have sev-
eral benefits: they often provide higher statistical power
to detect associations, and they allow investigators to
address additional scientific questions, such as whether
the entire microbiome is collectively associated with sur-
vival time or time to development of a disease. We use the
kernel machine regression framework, encoding micro-
biome data in ecologically relevant kernels.With judicious
choice of kernels, the test can detect a wide range of true
forms of association, including association of the outcome
withOTUpresence/absence or abundance andwith either
phylogenetically clustered or unclustered sets of taxa.
Therefore, MiRKAT-S facilitates a robust community-
level analysis of the association between the microbiota
and censored survival outcomes that is not possible using
existing methods.

Appendix 1
An iteratively reweighted least squares (IRLS) algorithm
can be used to fit the linear model at convergence that is
equivalent to the Cox PHmodel of interest. At the kth step
of the IRLS algorithm, we solve

ỹk = Xβ + ε, ε ∼ N
(
0, σ 2(W̃k)−1

)

with weight matrix

W̃k = diag
(∫ ∞

0
I(Ti ≥ t)eX

′
i β̃

k
d�̂0(t)

−
∫ ∞

0
I(Ti ≥ t)wi(β̃

k , t)eX
′
i β̃

k
d�̂0(t)

)

where wi(t) = eX
	
i β

∑n
l=1 Yl(t)e

X′
lβ

and working response

ỹ = Xβ̃k−1 +
(
W̃k−1

)−1
M̂k−1.

The corresponding quantities without the superscript k
refer to the model at convergence. Then, the modified
score statistic is equivalent to

Q∗ = (ỹ − Xβ̃)′W̃KW̃ (ỹ − Xβ̃)

σ̂ 2

which is analogous to the linear and logistic cases con-
sidered in [31]. Multiplying both sides of the equation
by W̃ 1/2 and defining ỹ∗ = W 1/2ỹ, X∗ = W 1/2X, and
ε∗ = W 1/2ε, the model can be expressed as

ỹ∗ = X∗β + ε∗, ε∗ ∼ N (0, σ 2I)

with projection matrix P∗
0 = I − X∗(X∗′X∗)−1X∗′ .

Appendix 2
To derive the relationship between M̂ andM, recall that

ẑ = Xβ̂ + W−1M̂
z = Xβ + W−1M
β̂ = (X′WX)−1X′Wz

Then, solving the first equation for M̂ gives

M̂ = W (z − Xβ̂) = W
[
Xβ + W−1M − Xβ̂

]

= W
[
I − X(X′WX)−1X′W

]
z

= W
[
I − X(X′WX)−1X′W

]
(Xβ + W−1M)

= [
WW−1M − WX(X′WX)−1X′WW−1M

]

= [
I − WX(X′WX)−1X′]M

=
[
I − X∗(X∗′

X∗)−1X∗]M = P∗
0M

so that M̂ = P∗
0M, as claimed.
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