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Abstract

Background: Metatranscriptomics is emerging as a powerful technology for the functional characterization of
complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic
composition and active biochemical functions of a complex microbial community. However, the lack of established
reference genomes, computational tools and pipelines make analysis and interpretation of these datasets
challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of
such pipelines to deliver biologically meaningful insights on microbiome function.

Results: Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic
data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea
thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76 % of putative messenger
RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and
availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and
functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino
acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate
metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional
annotations within a novel visualization framework revealed the contribution of different taxa to metabolic
pathways, allowing the identification of taxa that contribute unique functions.

Conclusions: The application of a single, standard pipeline confirms that the rich taxonomic and functional
diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects
distinct environmental influences. At the same time, our findings show how microbiome complexity and availability
of reference genomes can impact comprehensive annotation of metatranscriptomes. Consequently, beyond the
application of standardized pipelines, additional caution must be taken when interpreting their output and
performing downstream, microbiome-specific, analyses. The pipeline used in these analyses along with a tutorial
has been made freely available for download from our project website: http://www.compsysbio.org/microbiome.
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Background

Next generation sequencing technologies have revolu-
tionized the study of complex microbial communities
(microbiomes). In the context of human health, compos-
ition of the intestinal microbiome has been linked with
type I diabetes, inflammatory bowel disease and obesity
[1-3]. Many such studies focus on microbial community
composition using marker genes such as 16S ribosomal
RNA (rRNA) to survey the relative abundance of individ-
ual taxa [4—6]. Since multiple combinations of microbial
taxa can confer similar metabolic outputs, efforts have
begun to define microbiome function through untargeted
RNA sequencing (metatranscriptomics) [7-10]. For ex-
ample, metatranscriptomic analyses have recently revealed
the expression of specialized fermentation genes in the
production of kimchi [9] and methylamine degradation
pathways in the rumen of the cow [8].

[lumina sequencing platforms have emerged as lead-
ing technologies for metatranscriptomic analysis. In
addition to the volume of sequence reads generated, an-
notation of these complex data is further challenged due
to the relatively short sequence lengths [11]. Overcom-
ing these issues requires identification and removal of
sequence reads from library adaptors, ribosomal RNA or
other sequencing artefacts, transcript assembly, assign-
ment of reads to known functions and taxa and tools
that allow the intuitive visualization of the results. To
date, metatranscriptomic studies have tended to use a
variety of customized scripts and tools to perform filter-
ing, assembly and sequence similarity searches. For ex-
ample, a kimchi transcriptome dataset used BLASTN
sequence similarity searches to filter rRNA reads, the
SEED database [12] for functional annotation and BWA
software [13] to map reads to reference genomes of six
representative lactic acid bacterial strains previously as-
sociated with the kimchi microbial community [9]. Re-
sults were visualized with heatmaps showing the relative
expression of genes involved in carbohydrate metabol-
ism. A bovine metatranscriptome study focused on the
rumen [8], assembled sequence reads using the SHE-RA
software [14] performed taxonomic assignments with
BLASTX searches against the Genbank RefSeq protein
database [15, 16] and functional annotations using the
SEED database. Thus, in the absence of analyses being
performed using a single standardized software solution,
it has been difficult to compare the results of different
studies and identify microbiome-specific taxonomic and
functional signatures.

A key question is how availability of high quality refer-
ence genomes and the complexity of a microbial com-
munity impact sequence annotation and inference of
biological insight. The broad functional classification
schemes in resources such as KEGG, COG and SEED
[17-19] provide limited molecular level characterization.
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Moreover, the field needs to develop statistical ap-
proaches that capture significant gene expression differ-
ences across metatranscriptomes. To address these
limitations, we developed and applied a single standard-
ized pipeline analysis to compare five microbiomes from
diverse habitats: deep-sea, permafrost, cow’s rumen, kim-
chi and mouse cecal content. Our results demonstrate
how integration of taxonomic and functional data within a
novel visualization framework can provide insight into the
taxonomic contributions to biochemical pathways.

Results and discussion

Annotation of metatranscriptomic datasets reflect depth
of available reference genomes

We applied a systematic pipeline to process sequence
data from five metatranscriptomic studies: (1) 30 million
76 bp paired end reads from 12 mouse large intestine
samples [7]; (2) 35 million 101 bp single end reads from
a sample of kimchi, obtained on the 29th day of fermen-
tation [9]; (3) 14 million 100 bp paired end reads from a
sample obtained from a bovine rumen [8]; (4) 103 mil-
lion 100 bp paired end reads from a deep-sea sample
[10]; and (5) 131 million 150 bp paired end reads from a
sample obtained from permafrost (Fig. 1a). All datasets
were generated with Illumina sequencing platforms.
After the removal of rRNA/tRNA, low quality, adaptor
contaminants and host sequences, from 0.01 % (perma-
frost) to 19.1 % (kimchi) messenger RNA (mRNA) reads
were predicted (Fig. 1b and Additional file 1). The
permafrost sample was composed of 99.9 % low quality
and adaptor reads, likely reflecting the low biomass of
this sample. In addition, mouse intestinal content sam-
ples (prepared with Invitrogen mirVana kit) displayed
higher proportions of reads of host origin (23 and 47 %)
relative to other samples (0.3-21 %), reflecting the abun-
dance of epithelial cell shedding in this compartment. In
the absence of a complete set of reference genomes to
which reads could be effectively mapped, read assembly
can help improve annotation. For each dataset, putative
mRNA reads were assembled using the Trinity RNA-Seq
assembly algorithm [20] which we previously identified
as an optimal short read assembler for metatranscrip-
tomic data, in terms of improving annotation as well as
minimizing the incidence of misassemblies [11]. The
deep-sea and kimchi datasets possessed the highest pro-
portion of reads assembled (‘contigs’; 62 and 72 %, re-
spectively). The kimchi dataset featured a contig N50
length of 368 bp, likely reflecting the limited diversity of
this microbiome.

Assembled contigs and unassembled reads, representing
putative mRNA sequences, were then parsed through a
hierarchical annotation pipeline, with unannotated reads
passing to the next annotation step. This analysis included
(1) mapping of sequences to a reference set of 4443
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Fig. 1 Workflow and Read Processing. a Workflow of the pipeline for processing, annotation and analyses of metatranscriptome (RNA-seq).

b Composition of sequence reads for twelve mouse metatranscriptome datasets and four additional microbiomes (see Methods). ¢ Distribution
of reads annotated through three complementary sequence similarity search tools: (1) BWA and (2) BLAT searches against a database of 2271
microbial genomes and (3) BLASTX searches against the protein non-redundant database. The mouse dataset represents a summary of all 12

prokaryotic genomes using the BWA algorithm that relies
on near perfect sequence matches (defined here as no
more than two base pair mismatches—see Methods) [13];
(2) sequence similarity searches against the same set of
reference genomes using a less stringent BLAT algorithm
[21]; and (3) sequence similarity searches against the pro-
tein non-redundant database [22] using BLASTX [23]. Of
the five datasets, the cow rumen samples produced the
lowest frequency (19 %) and the kimchi dataset featured
the highest frequency (72 %) of mapped reads (Fig. 1c).
This latter result is a consequence of 51 % of putative
mRNA reads that were mapped to two reference genomes,
Lactobacillus sakei and Weissella koreensis. The high pro-
portion of BLAT mappings compared to BWA results
suggests genetic variation from the reference strains.
BLAT-based mapping identified 24 % of the deep sea, and
12 % of the permafrost datasets, but mapping of the
mouse gut and cow rumen samples reads performed bet-
ter with the least stringent BLASTX algorithm (Fig. 1c).
These findings highlight the lack of representative

reference genomes for these microbiomes, such that many
sequence reads map to homologs from distant relatives of
the actual species present in the samples.

These results are broadly consistent with the original
reports of these datasets but also highlight important
differences produced by the selected analytical pipelines.
For example, the cow rumen study [8], which relied on
BLASTX sequence similarity searches with a score cut-
off less than e, reported ~400,000 reads of putative
mRNA origin compared to 452,708 reported here. How-
ever, we do note some significant discrepancies. The ori-
ginal study of the kimchi microbiome [9] applied the
BWA algorithm to map 3.9 million reads to six reference
strains; here, using the BWA/BLAT/BLASTX pipeline,
we mapped 4.8 million reads to bacterial mRNA tran-
scripts. For the deep-sea microbiome, the original analysis
applied a combination of the Velvet and Oases assembly
algorithms to construct 78,000 contigs with an average
contig size of 243 bp [10]. Subsequent sequence similarity
searches using the BWA algorithm identified ~81,000
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predicted genes, of which only 18,500 were protein cod-
ing. In the current study, we identified 643,000 contigs
with an N50 of 110 bp with the Trinity assembly. Fur-
ther, we identified 243,000 unique transcripts by inclusion
of 3.0 million reads not assigned to a contig. These differ-
ences reflect the often arbitrary choice of parameters and
algorithms, usually in the absence of rigorous benchmark-
ing, that can impact coverage and accuracy, and highlight
the need for standardized pipelines.

Pathway enrichment analysis identifies tissue specific
gene expression in the mouse gut microbiome

In previous studies of the cow rumen, deep-sea and kim-
chi microbiomes, gene expression was assessed by direct
comparisons of raw or normalized read counts [8—10]. In
the absence of standardized statistical models to identify
significant changes in gene expression from metatran-
scriptomic datasets, we evaluated three methods previ-
ously employed to detect changes in gene expression:
DEseq2 [24], EdgeR [25] and ANOVA-like differential
expression analysis (ALDEx2—[26]). We compared mi-
crobial expression patterns between three cecal wall-
associated (cecal wall) and four cecal lumen flush derived
(cecal flush) microbiomes from four NOD strain mice of
identical age and sex which had been prepared with the
same RNA extraction protocol. Of the 20,160 non-mouse
transcripts identified in these samples (11,231 and 11,015
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for cecal wall and cecal flush, respectively), 2087 were
shared between sample types. Only five transcripts dis-
played significant differences in expression between the
two types of microbiome samples (Additional file 2). This
reflects the large variation observed across animals and
tissue samples as defined by a biological coefficient of
variation (BCV) of 1.11, where the BCV is a measure of
how the (unknown) true abundance of the gene varies
between replicate RNA samples (see Methods).

While the above approaches are useful for identifying
individual genes displaying differential expression across
samples, additional insights can be gained by considering
collections of functionally related genes (e.g. complexes
and pathways). We therefore applied a pathway enrichment
approach that, due to the limited number of genes identi-
fied above, relied on fold change in expression [27, 28], to
examine expression of metabolic pathways. In this analysis,
551 genes displayed =fivefold difference in expression be-
tween the two types of samples, with a greater frequency of
genes up-regulated in the cecal wall compared to the cecal
flush datasets (Additional file 3). We identified 199 genes
that could be mapped to 72 unique Enzyme Commission
(EC) identifiers. Pathway enrichment analysis revealed 17
metabolic pathways to be significantly associated with these
genes (hypergeometric test, p value <0.05; Table 1).
Pathways demonstrating significant differential expression
include six involved in carbohydrate metabolism (e.g. the

Table 1 Pathways enriched in transcripts displaying large (>fivefold) differences in relative expression between mouse cecal wall

and cecal flush samples

Fold change in expression

Differentially Matched ECs/total

Genes up-regulated

expressed genes  ECs in pathway

Genes up-regulated

in cecal wall in cecal flush
Pathway pvalue 5-10 10-20 >20 5-10 10-20 >20
Glycolysis/gluconeogenesis 9.35E-07 14 5 3 5 4 1 32 11/45
Methane metabolism 6.44E-05 10 5 3 4 5 2 29 11/68
Carbon fixation in photosynthetic organisms 1.00E-04 8 1 2 4 0 0 15 5/25
One carbon pool by folate 2.88E-04 4 3 0 1 2 0 10 6/24
Starch and sucrose metabolism 459E-04 5 4 2 3 3 0 17 10/71
Alanine, aspartate and glutamate metabolism 143E-03 9 1 0 0 1 0 11 7/43
Citrate cycle (TCA cycle) 152E-03 4 0 2 2 1 0 9 5/22
Pyruvate metabolism 3.08E-03 7 0 2 1 1 1 12 8/62
Amino sugar and nucleotide sugar metabolism  6.63E-03 5 3 1 1 3 2 15 9/85
Oxidative phosphorylation 1.10E-02 2 3 1 0 3 0 9 3/12
Purine metabolism 3.08E-03 10 0 0 2 0 2 14 9/100
Propanoate metabolism 337E-02 3 0 0 0 1 1 5 5/45
Valine, leucine and isoleucine biosynthesis 340E-02 1 1 0 0 1 2 5 3/18
Aminoacyl-tRNA biosynthesis 3.85E-02 2 0 0 1 0 3 6 4/32
Histidine metabolism 425E-02 1 3 0 1 0 0 5 4/33
Drug metabolism—other enzymes 449E-02 3 0 0 0 0 0 3 3/20
Other glycan degradation 488E-02 1 1 0 0 0 0 2 2/9
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citrate cycle, pyruvate metabolism and glycolysis/gluconeo-
genesis), four involved in amino acid metabolism and three
involved in energy metabolism. Previous studies have
shown that changes in the expression of carbohydrate-
associated enzymes in the mouse intestinal microbiome
were linked to microbial community composition [29, 30].

Short read data reveals microbiome-specific taxonomic
signatures

In addition to deriving functional insights (see following
sections), we were interested in the ability of metatran-
scriptomic datasets, associated with relatively short reads,
to inform on the taxonomic composition of a habitat.
Based on mappings of reads of putative mRNA origin to
known genes, we explored the taxonomic assignments of
reads at three different taxonomic levels (Fig. 2). Previous
comparisons across the mouse datasets revealed relatively
minor taxonomic variations between samples at least at
the class/phylum level [7, 11]. Here, we identified distinct

Page 5 of 18

taxonomic profiles for each microbiome. At the level of
phylum, reads from all five samples could be largely de-
fined into four major groups: Firmicutes, Proteobacteria,
Bacteroidetes and Actinobacteria (Fig. 2a). However, while
the cow rumen and mouse intestinal samples had signifi-
cant representation from all four taxa, the kimchi sample
was largely restricted to the Firmicute families Leuconos-
tocaceae and Lactobacillaceae, while the deep-sea and
permafrost samples lacked significant representation of
Bacteriodetes, the former also lacking significant represen-
tation of Actinobacteria. Indeed, consistent with a previ-
ous study based on 16S rRNA reads [10, 31], we found
that the majority (51 %) of reads of putative mRNA origin
from the deep-sea sample could be classified as Gamma-
proteobacteria. Interestingly, we also found reads mapping
to non-bacterial genes. For example, for the deep-sea data-
set, we identified reads mapping to Archaea (0.8 % of
reads of putative mRNA origin), fungi (0.6 %) and proto-
zoa (1.5 %).
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Next, we examined the contribution of distinct genera
to each microbiome (Fig. 2b). Within these ‘abundant’
genera, the deep-sea dataset displayed the largest num-
ber of unique taxa (13) while the kimchi dataset dis-
played the fewest (2; Leuconostoc and Weissellla).
Indeed, the kimchi dataset appears dominated by three
main taxa. On the other hand, Lactobacillus was well
represented across four of the five datasets; although
present in the deep-sea dataset, it does not comprise one
of the defined, abundant genera in this dataset. We note
that Lactobacillus is one of the twelve most abundant
genera in our reference datasets (45 genomes) and as-
signment of a large proportion of reads to this genus
may simply reflect that bias, potentially acting as a sur-
rogate taxon for species not represented within our ref-
erence datasets. In any event, despite such biases, our
pipeline reveals each habitat to possess a unique taxo-
nomic signature with the presence of specific abundant
taxa adapted to individual environmental conditions. For
example, Weissella is a genus of lactic acid bacteria, first
identified in kimchi at 2002, that are regarded as one of
the three main genera that are strongly associated with
fermentation of kimchi based on both transcriptome or
16S rRNA study [9, 32, 33]. This analysis also shows the
value in using a higher level of taxonomic resolution.
For example, from Fig. 2a, both the cow rumen and
mouse samples reveal the presence of reads from Bacter-
oidetes; however, deeper analysis reveals such reads to
be dominated by Prevotella in the cow rumen sample
compared to Bacteroides and Parabacteroides in the
mouse samples.

Finally, we examined the performance of the hierarch-
ical annotation pipeline to assign reads to discrete spe-
cies for each sample (Fig. 2c). To reduce the influence of
species with matches involving only a limited number of
genes, only species represented by 100 or more tran-
scripts were included in these analyses with the excep-
tion of the permafrost sample, the latter due to the low
number of putative mRNA reads. The kimchi sample
was associated with the simplest community, with 10
species accounting for ~93 % of total reads of putative
mRNA origin. These assignments were remarkably con-
sistent with a previous report [9], with similar abun-
dances for five of the top six most represented taxa.
Emphasizing the findings at the genus level, there was no
overlap in the ten most abundant species in the mouse
and cow datasets despite the phylum/sub-phylum similar-
ities (Fig. 1a). The mouse microbiome samples were ob-
tained from germ-free animals colonized with altered
Schaedler flora (ASF) which were defined, before the ad-
vent of high through-put sequence analysis, to contain
eight known species [34, 35]: Lactobacillus acidophilus,
Lactobacillus murinis, Parabacteroides distasonis, Mucis-
pirillum schaedleri, three members of Clostridium cluster
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XIV and a poorly characterized Firmicute species. Of these
previously defined species, only P. diastonis appears sig-
nificantly represented in our samples. However, previous
studies have suggested that Lactobacillus animalis, identi-
fied within the samples, is identical to L. murinis [34],
while reads assigned to the poorly classified ‘Clostridium
sp.” may represent the species associated with Clostridium
cluster XIV. The additional species presented in Fig. 2c
likely represent close relatives to the remaining un-
accounted ASF taxa. Conversely and again consistent with
a previous study, amongst the top ten most abundant spe-
cies represented in the cow dataset were those that have
previously been associated with the rumen [36] including
bacteria that degrade cellulose and other carbohydrates
(Prevotella spp. and Fibrobacter spp.) and those that
utilize fatty acids (Succinivibrionaceae spp. and Trepo-
nema spp.) as well as the protozoan Oxytricha trifallax, a
relative of Oxytricha granulifera, previously reported to
occupy the rumen [37]. Similarly, the deep-sea dataset was
represented by species previously associated with the mar-
ine environment [10, 31] including Alteromonas macleodi,
the ammonia oxidizing archaeon—Candidatus nitrospu-
milis, methanotrophs (Methylomonas methanica and
Methylomicrobium alcaliphilum) and the sulphur oxidiz-
ing SUPO5 [38]. Across samples, we note a varying pro-
portion (from 7 to 87 % for kimchi and cow rumen
datasets, respectively) of reads mapping to ‘Others’. These
include reads from species with few transcripts and likely
false positives, as well as reads associated with a more di-
verse community. For example, we note that in the deep-
sea dataset, 504 species were represented by 100 or more
transcripts, with species represented by 10 or fewer tran-
scripts contributing only 3.9 % of the reads, suggesting a
highly diverse microbiome. On the other hand, only 67
species were represented by 100 or more transcripts in the
cow rumen dataset, with 45 % of the reads contributed by
species with 10 or fewer transcripts, suggesting a higher
number of false positive assignments. Beyond resorting to
more complex phylogenetic mapping solutions such as
the naive Bayes classifier [39], more sophisticated
approaches to resolving such issues of false positive as-
signments could include examining BLAST-based se-
quence similarity matches to taxa beyond the first
match reported. For example, one source of false posi-
tives is reads that map to highly conserved regions of
sequences. Such reads are likely to possess many se-
quence similarity matches with the same BLAST score
cut-offs. Through considering abundant taxa identified
through mappings to other reads, it is possible to devise
an algorithm that selects the most likely match, from a
list of matches sharing the same score. In the next sec-
tion, we explore these issues further through comparing
the performance of 16S- and mRNA-derived reads to
assess diversity within and between samples.
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Consistency of diversity analyses between 16S rRNA and
mRNA datasets

We assessed species diversity for each sample based on
putative mRNA reads and compared them to species
representations derived from filtered 16S rRNA reads
obtained in our pipeline (see ‘Methods’). Four ecological
biodiversity indices were employed: three based on di-
versity measures (Shannon diversity index, Simpson
index and Fisher’s alpha) and the Chaol richness index
(Table 2). Amongst the diversity indices, the Shannon
and Fisher’s alpha are broadly consistent with the excep-
tion of the two individual cecal-derived samples, which
Fisher’s alpha suggest are less diverse than the Kimchi
dataset. Conversely, the Simpson index rates the mouse
cecal-flush sample as the most diverse. However, in gen-
eral, across samples and consistent with the large num-
ber of species with broad transcript representation, the
deep-sea dataset was found to be the most diverse and
rich with the results based on mRNA reads (5.01 and
4408 for Shannon and Chaol indices, respectively). Con-
versely, the kimchi dataset was the least diverse and rich,
likely due to the dominance of a few taxa (1.69 and 634).
Noteworthy, the permafrost dataset appeared the least
diverse microbiome based on the Chaol index but not
for any diversity based index. This is likely due to the
small number of annotatable reads associated with this
dataset.

Comparing between sequence types, we find broad
consistency between the results for the 16S rRNA and
mRNA based analyses, with the exception of the mouse
samples. For the latter datasets, while the 16S rRNA
gene analyses yielded lower diversity metrics for the
mouse datasets (reflecting the limited number of taxa
associated with the altered Schaedler flora (ASF) used to
inoculate germ free mice), the mRNA-based analyses
yielded comparatively higher diversity metrics. This is
likely due to the challenge of mapping the putative
mRNA reads in these datasets to their correct taxa in
the absence of ASF reference genomes used for map-
ping. Instead, reads appear to have been assigned to
multiple closely related taxa. We note for example that
this does not arise for the kimchi dataset for which there

Page 7 of 18

is good representation of reference genomes. Although
the 16S rRNA- and mRNA-based diversity and richness
analyses are largely consistent, excluding the permafrost
dataset, we find that from 56 % (kimchi) to 81 %
(mouse) of genera identified from 16S rRNA reads over-
lap with reads of mRNA origin (Additional File 4). At
the same time, we also note many genera predicted by
the mRNA reads compared to the 16S rRNA reads, with
the former predicting from 83 % (kimchi) to 478 % (deep
sea) additional genera. Such additional predictions likely
arises from a combination of the lack of a complete set
of reference datasets for both mRNA or 165 rRNA
reads, as well as mispredictions from the taxonomic an-
notation pipeline as noted above. Nevertheless, given the
consistency in diversity and richness metrics between se-
quence types for the cow rumen, kimchi and deep-sea
datasets, these results suggest that even short-read data
derived from mRNA can reveal significant taxonomic
differences that reflect genuine differences in habitat.

In the following sections, we show how this informa-
tion may be leveraged to identify distinct taxonomic
contributions towards biochemical activities within a
microbiome.

Functional interrogation of metatranscriptome datasets
reveals a conserved core of essential metabolic functions
supplemented with habitat-specific pathways

A major challenge in metatranscriptomic studies is de-
termining the depth of sequencing required to ad-
equately capture the functional capacity of a microbiome
(i.e. ‘how much sequencing is enough?’). Focusing on
metabolism, we performed a rarefaction analysis of en-
zyme annotations captured by increasing numbers of
reads within the five datasets. As expected, all five data-
sets revealed an asymptotic relationship between num-
ber of reads generated and enzymes (as defined by
distinct Enzyme Classification (EC) numbers—Fig. 3a).
For the two largest datasets, kimchi and deep sea, we
find that for ~4 million putative mRNA reads, the rate
of new enzyme discovery is 30 and 45 per million reads,
respectively. Given a current expected yield of 20 %
reads of putative mRNA origin, our analysis suggests

Table 2 Diversity analysis within mice samples and between five samples

Sample name Shannon index Simpson index Fisher's alpha Shannon index Chao1 index Chao1 index
(mRNA) (MRNA) (MmRNA) (165 rRNA) (MmRNA) (165 rRNA)

Mouse cecal wall 383 16.51 23.26 2.00 1162 283

Mouse cecal flush 443 4334 30.52 257 1055 411

Mouse combined 4.51 17.14 167.33 248 1709 523

Cow rumen 4.14 21.79 140.67 415 1461 1042

Kimchi 1.69 3.27 56.07 291 634 615

Deep sea 501 35.75 481.29 5.02 4408 4565
Permafrost 3.82 10.98 2431 45 295 348
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Fig. 3 Metabolic composition of five metatranscriptomic datasets. a Rarefaction analysis indicating the number of unique enzymes (as defined by
enzyme classification numbers) captured by increasing numbers of putative mRNA reads generated. b Overlap of enzyme complements across
four datasets reveals a common core of 592 enzymes. ¢ Global metabolic network indicating taxonomic representation of metabolic activities
within the combined mouse dataset. Pie charts indicate the relative proportion of each taxon, size of pie chart indicates relative expression (see

key). Indicated are specific metabolic pathways

that the generation of ~20 million reads for a micro-
biome provides a reasonable compromise between se-
quencing costs and enzyme discovery. However, such
decisions should also assess additional factors such as
mirobiome complexity; we note that the deep-sea data-
set contained the greatest metabolic capacity. Due to the
relatively low number of putative mRNA reads (~14,300)
suggesting only a limited sampling of its metabolic cap-
acity, the permafrost dataset was excluded from subse-
quent analyses.

Comparisons across the four datasets revealed a com-
mon core of 592 enzymes (Fig. 3b). These core enzymes
were significantly associated (hypergeometric test, p
value <0.01) with 22 pathways, as defined by the Kyoto

Encylcopedia of Genes and Genomes (KEGG—Table 3)
[40]. These pathways represent core metabolic functions
including carbohydrate and energy metabolism (7 path-
ways), amino acid metabolism (5 pathways) and nucleo-
tide metabolism (2 pathways). It is suggested that future
studies consider using enzymes involved in these path-
ways as a benchmark to assess the quality and coverage
of their datasets. For example, within the permafrost
dataset, of 152 defined enzymes, only 93 (15.8 % of our
defined core) are present. These include 5 of 40 (12.5 %)
core enzymes associated with nucleotide metabolism, 13
of 84 (15.5 %) core enzymes associated with amino acid
metabolism, 10 of 66 (15.2 %) core enzymes associated
with carbohydrate metabolism, 22 of 119 (18.5 %) core

Table 3 Pathways significantly enriched in ‘core” microbiome enzymes

Pathway name Pathway class® p value® Core enzymes in pathway Total enzymes in pathway
Aminoacyl-tRNA biosynthesis O 3.57E-08 22 32
Purine metabolism NT 149E-06 44 100
Peptidoglycan biosynthesis 4.30E-06 12 15
Glycolysis/gluconeogenesis 2.89E-05 23 45
Alanine, aspartate and glutamate metabolism AA 4.24E-05 22 43
Valine, leucine and isoleucine biosynthesis AA 8.75E-05 12 18
Pyrimidine metabolism NT 2.89E-04 27 63
Phenylalanine, tyrosine and tryptophan biosynthesis AA 6.27E-04 15 29
Pentose phosphate pathway @ 7.05E-04 17 35
Carbon fixation pathways in prokaryotes E 2.22E-03 17 38
One carbon pool by folate Cco 3.21E-03 12 24
Lysine biosynthesis AA 3.32E-03 13 27
Pyruvate metabolism C 3.37E-03 24 62
Fatty acid biosynthesis L 3.88E-03 9 16
Citrate cycle (TCA cycle) C 4.76E-03 11 22
Amino sugar and nucleotide sugar metabolism @ 5.66E-03 30 85
Oxidative phosphorylation E 8.48E-03 7 12
Drug metabolism—other enzymes X 2.34E-02 9 20
Cysteine and methionine metabolism AA 2.55E-02 21 61
Polyketide sugar unit biosynthesis T 2.74E-02 4 6
Streptomycin biosynthesis 348E-02 8 18
Folate biosynthesis Cco 3.61E-02 7 15

“Defined according to KEGG. AA amino acid, C carbohydrate, CO co-factor, E energy, G glycan, L lipid, NT nucleotode, O other, S secondary metabolites, T terpenoids,

X xenobiotics

PHere, we used the hypergeometric test to examine enrichment of pathways compared to all KEGG defined pathways
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enzymes associated with multiple pathways and 25 of
146 (17.1 %) core enzymes that were not assigned into a
KEGG defined pathway. Hence, it appears that enzymes
in core pathways missing in the permafrost dataset are
relatively evenly distributed across functional categories,
reflective of lower coverage rather than microbiome bias.

In addition to the core enzymes, we also identified the
unique expression of enzymes providing habitat-specific
biochemical functions (Additional files 5 and 6). For ex-
ample, the deep-sea dataset includes enzymes involved
in phosphonate metabolism, a significant component of
organic phosphorous in the marine environment [41].
Similarly, the glucosyltransferase, levansucrase (EC:
2.4.1.10), was uniquely associated with the kimchi dataset.
Levansucrase is involved in the synthesis of glucose poly-
mers and was previously isolated and characterized from a
key member of the kimchi community, Leuconostoc
mesenteroides [42]. Unique to the cow rumen dataset were
pectate di- and tri-saccharide lyases, reflecting the pres-
ence of pectin in animal feed and thought to be respon-
sible for supporting the growth of Trepnonema sp. [43].

In the next section, we combine the taxonomic and
metabolic annotation data to examine the contributions
of specific taxa to biochemical activities in the sampled
microbiomes.

Integration of taxonomic and functional annotations: I.
Metabolic networks

While previous microbiome studies have associated
shifts in taxonomic distributions and/or biochemical
functions with disease states or other evolving habitats,
such as the process of fermentation [9, 44, 45], our un-
derstanding of the contribution of specific taxa to these
functions is limited. In the previous sections, we demon-
strated the capacity of short sequence reads associated
with metatranscriptomic datasets to provide both taxo-
nomic and functional insights. In the following sections,
we show how the integration of such information can be
used to derive a more complete understanding of how
different taxa contribute towards the biochemical activ-
ities of a microbiome.

Given the limits of taxonomic resolution identified
above, we chose to divide reads into twelve taxonomic
categories including archaea and protozoa. From these
assignments, we constructed a global metabolic network
graph in which nodes, representing enzymes, are linked
through shared substrates. Each node is depicted as a
pie chart in which the relative contribution of each
taxon is represented as a slice (Fig. 3c and Additional
files 7, 8 and 9). These global views of metabolism en-
able the identification of biochemically related enzymes
sharing similar taxonomic profiles. For example, for the
mouse dataset, reads originating from Clostridiales
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dominate several amino acid pathways as well as parts of
the glycolytic pathway (Additional file 10). Pathways such
as pyruvate metabolism, the tricarboxylic acid (TCA) cycle
and alanine, aspartate and glutamate metabolism feature
larger contributions from other taxa such as Gammapro-
teobacteria and Bacteroides (Fig. 4 and Additional file 11).

Comparisons across samples further reveal that as noted
above, many pathways are conserved but the taxa respon-
sible for these pathways as well as their relative expression
are not conserved (Fig. 3¢, Fig. 4 and Additional files 7,
8, 9, 10 and 11). For example within the TCA cycle,
relative to the cow rumen dataset, the other three sam-
ples feature high expression of enzymes that together
comprise the pyruvate dehydrogenase complex involved
in anaerobic fermentation, e.g. dihydrolipoyl acetyl-
transferase (EC: 2.3.1.12), dihydrolipoyl dehydrogenase
(EC: 1.8.1.4) and pyruvate decarboxylase (EC: 1.2.4.1).
However, whereas Actinobacteria, Bacteroides and
Gammaproteobacteria contribute significant reads to
these enzymes in the mouse dataset, these enzymes are
represented largely by Gammaproteobacteria in the
deep-sea dataset and by Leuconostocaceae and Lacto-
bacillaceae in the kimchi dataset. Furthermore, within a
sample, we identify pathway sections that feature dis-
tinct taxonomic profiles. For example in the mouse in-
testinal dataset, Clostridiales contribute significantly to
pyruvate carboxylase (EC: 6.4.1.1) as well as members
of the TCA cycle. Also, noteworthy is the relatively high
expression of phosphoenolpyruvate carboxykinase (EC:
4.1.1.49) in the mouse intestinal and cow rumen data-
sets. Previously associated with Ruminococcus flavefa-
ciens, a Clostridiales bacterium found in the rumen [46]
and Bacteroides fragilis found in the human gut [47],
this enzyme is believed to be involved in the fermenta-
tion of cellulose to succinate in the rumen and catalyses
phosphoenolpyruvate to oxaloacetate with the con-
comitant formation of ATP in human gut, may act as a
‘feeder’ reaction for carbon from the TCA cycle to drive
various biosynthetic and oxidative processes such as
gluconeogenesis and serine synthesis [48].

Focusing on glycolysis/gluconeogenesis (Additional
file 10), as for the TCA cycle, we found that taxonomic
groups that dominate the entire datasets also dominate
specific enzyme activities. However again, sections of
the pathway can be dominated by specific taxa. For ex-
ample, aldose 1-epimerase (EC: 5.1.3.3) in the cow
rumen and L-lactate dehydrogenase (EC: 1.1.1.27) in
kimchi are predominantly expressed by Bacterioidetes and
Lactobacillaceae, respectively. Further, even apparently
minor taxa appear to provide specific functionality, sug-
gestive of keystone roles within the community. For ex-
ample, in the mouse intestinal dataset, both alcohol
dehydrogenase (EC: 1.1.1.2) and aldose 1-epimerase (EC:
5.1.3.3) are predominantly expressed by Lactobacillaceae
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Fig. 4 Detailed views of taxonomic contributions to specific components of the tricarboxylic acid (TCA) cycle for four metatranscriptomic
datasets. Each schematic indicates the taxonomic representation of enzymatic activities involved in the TCA cycle for four metatranscriptome
datasets: mouse, kimchi, cow and deep sea. Pie charts indicate enzymes, with coloured sectors indicating the relative proportion of each taxon,
size of pie chart indicates relative expression (see key). Small triangles indicate substrates with links indicating enzyme-substrate relationships

despite representing only 1.9 % of putative mRNA reads.
As a final example of taxonomic contributions to meta-
bolic functionality, we find that for the mouse intestinal
dataset, Bacterioidetes and Gammaproteobacteria tend to
dominate aspartate metabolism, while Closteridiales dom-
inate glutamate metabolism (Additional File 11). As for
the TCA cycle, while the majority of enzymes are well
expressed in the mouse intestinal dataset, for the Kimchi
dataset, expressions of genes within these pathways are

more heterogeneous. This raises an important caveat,
notably that the ability to map reads to the enzymes is
dependent on the availability of suitable sequences in
the reference databases. Hence, an inability to assign
reads to asparagine synthase (EC 6.3.5.4) in the kimchi
dataset may be due to the inability of sequence searches
to map reads from the orthologous genes in the kimchi
microbiome to known examples of this enzyme in the
reference database.
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Integration of taxonomic and functional annotations
provides molecular level insights into the biochemical
contributions of individual taxa: Il. Protein-protein
interaction networks

Beyond metabolic pathways, the provision of protein-
protein interaction (PPI) networks offers additional
opportunities to explore taxa-specific contributions to
biochemical processes. Here, we integrate taxonomic in-
formation with a PPI network previously constructed
for Escherichia coli [49]. The ABC transporter super-
family is a collection of transporters typically comprised
of an extracellular substrate binding subunit, an intra-
cellular ATP-binding subunit and a membrane incorpo-
rated permease. Across the different datasets, we see
distinct signatures of subunit expression and taxonomic
contributions (Fig. 5a). For example, while many members
of this family are well expressed in the mouse intestine,
expression within the kimchi dataset is largely limited to
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putrescine-ornithine transport (potA-D), oligopeptide
transport (oppA-D and F), ribose transport (rbsB-DK and
R) and members or glutamine, histidine and arginine
transport (e.g. glnH, glnP, hisP and argT). Similarly, in
cow rumen, only a subset of transporters were well repre-
sented; these included xylF-H (xylose), malE-GK (maltose)
and ugpA-CE (glycerol-3-phosphate).

In the deep-sea microbiome dataset, many transporter
components were associated with alphaproteobacteria,
although leucine, isoleucine and valine transport compo-
nents (livF-HJK and M) were broadly represented across
phyla. In the mouse dataset, alphaproteobacteria were
also the main contributors of transporters including di-
peptide ABC transporter (dppBD), glutathione ABC
transporter (yliABC), leucine ABC transporter (LivMF),
glycerol-3-phosphate ABC transporter (ugpC) and xly-
cose ABC transporter (xylFH). xylF was largely repre-
sented by clostridiales and ‘other bacteria’ in the cow
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rumen dataset, suggesting that the contribution of alpha-
proteobacteria in the mouse data does not reflect anno-
tation bias. The mouse intestine samples also display
Gammaproteobacteria and Actinobacteria contributions
to transporter components. Finally, the lack of Bacteroi-
detes representation in transporter components may re-
flect the reduced complement of these genes previously
noted for members of this phylum [50, 51].

Many genes involved in cell wall biogenesis and cell
division were expressed within all datasets (Fig. 5b). Of
these, secA, prlA(secY) and ftsZ were the most highly
expressed in each dataset. SecA mediate critical roles in
protein translocation, and ftsZ is involved in organizing
the initial stages of cell division. Within the mouse data-
sets, few reads from Bacteroidetes were assigned to ftsZ,
suggesting that the ortholog(s) within this taxon display
significant divergence from their E. coli counterpart. For
example, the conserved C-terminus of E. coli ftsZ is ab-
sent in Bacteroidetes [52]. Genes encoding proteins in-
volved in later steps of cell division (e.g. ftsN, ftsB, ftsQ
and zipA) were largely restricted to representation by
Gammaproteobacteria, suggesting these sequences are
highly specialized within this taxon. Genes involved in
the synthesis of cell wall components (e.g. mur and mrd)
were well represented across the datasets, with the mouse
and kimchi datasets featuring clear patterns of taxonomic
contributions. For example, within the mouse dataset,
murCEG were well represented by Bacteroidetes, while
for the kimchi dataset, mrdA and mrdB were largely rep-
resented by the Lacteobacillaceae, potentially representing
altered cell wall composition in these taxa.

Unlike cell wall biogenesis and cell division, genes in-
volved in flagella assembly, chemotaxis and hydogenases
were poorly represented in the four datasets (Additional
files 12 and 13). For example, both cow and kimchi data-
sets lacked significant expression of many flagella and
chemotaxis genes reflecting an absence of flagella in
many of the major taxa in these microbiomes (e.g.
Lactobacillus spp. and Leuconostoc spp. in kimchi). In-
deed, for kimchi, expression was largely limited to flg], a
peptidoglycan hydrolase required for flagella formation
and likely reflects significant local sequence similarity
with other proteins such as N-acetylmuramoyl-L-alanine
amidase from L. sakei which shares a conserved, ~200
residue lysine motif with flg]. In the mouse, we noted lit-
tle representation from Bacteriodetes, with most expres-
sion dominated by Closteridiales. As noted above, the
restriction of certain components to Gammaproteobac-
teria may reflect their relative sequence diversity and/or
specialized functions. Finally, we note that four genes
were dominated by representation from the Alphapro-
teobacteria: motA, mbhA, cheY and flip. Such abun-
dance may at least in part be due to variable copy
numbers of these genes in this taxon, for example, cheY
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is present in six copies in the Rhodobacter sphaeroides
genome [53].

Finally, we also explored the expression and taxonomic
representation of genes involved in NADH dehydrogen-
ase and hydrogenase complexes (Additional file 13). As
for flagella assembly and chemotaxis, many components
were not represented within the four samples. For ex-
ample, 16 of the 50 genes that comprise these complexes
lack expression in the kimchi, cow rumen and deep-sea
datasets. Indeed, within the kimchi dataset, only tpiA, dps
and iscS are well represented. This is likely related to local
sequence conservation between the Fe-binding motif of
dps and the cysteine desulfurization and conservative C-
terminal of iscS, resulting in misannotations. Curiously,
while both the cow and deep-sea datasets feature relatively
homogenous patterns of taxonomic representation in their
respective NADH dehydrogenase subunits, those in the
mouse dataset appear largely incongruent.

Conclusions

In this study, we present a standard bioinformatics pipe-
line to process, annotate and analyse metatranscriptomic
datasets. Applied to five disparate metatranscriptomic
datasets (mouse cecum, cow rumen, kimchi, deep sea
and permafrost), this pipeline captures both common
and microbiome-specific taxonomic and functional sig-
natures. In general, each microbiome is dominated by
members of four bacterial phyla (Firmicutes, Proteobac-
teria, Bacteroidetes, Actinobacteria) and one archaeal
phylum; however, each microbiome features distinct dif-
ferences in the relative representation at higher phylogen-
etic levels (i.e. families and genera). Diversity analyses
reveals that mRNA taxonomic representation is broadly
congruent with 16S taxonomic representation, with the
proviso that a lack of suitable reference genomes can re-
sult in mRNA datasets overestimating diversity. Compari-
sons of microbiome metabolic capacities revealed a core
of 592 enzymes common to the four well-sampled micro-
biomes (i.e. ignoring permafrost), largely associated with
housekeeping functions such as carbohydrate, amino acid
and nucleotide metabolism. While the concept of ‘core’
bacterial functions have previously been described for in-
dividual taxa (e.g. [54]), this concept has yet to be explored
from a metatranscriptomic viewpoint. Such conserved
pathways provide a valuable benchmark to assess the
quality and coverage of metatranscriptomic datasets. Fur-
thermore, we identified microbiome-specific enzymes
reflecting distinct differences in habitat. We choose to
compare mouse cecal flush and cecal wall samples to
determine whether gene expression is substantially differ-
ent in the wall-adherent compared to luminal micro-
biome. Analyses with three established tools identified
only a limited set of differentially expressed genes between
the cecal wall and cecal flush samples. However, a gene
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set enrichment approach applying a fold-change metric
identified several pathways of differentially expressed
genes at these two locations suggesting that biogeograph-
ical differences require additional study in mammalian gut
microbiomes. Finally, integration of phylogenetic and
functional annotations within a systems context provides
a powerful route to identify the relationship between taxo-
nomic representation within a microbiome and their con-
tribution to biochemical activities; while dominant taxa
appear broadly represented across biochemical pathways,
key contributions may be performed by a more limited set
of less abundant taxa.

Methods

Metatranscriptomic datasets and initial processing
Publically available metatranscriptomic datasets were
obtained from the National Center for Biotechnology
Information (NCBI) sequence read archive (SRA, http://
www.ncbi.nlm.nih.gov/sra; [55]). These include samples
consisting of:

(1) Thirty million pairs of 76 bp reads derived
from the luminal contains of the cecal wall and
cecal flush of four non-obese diabetic (NOD).
Mice were born and maintained in germ-free
environment and subsequently colonized with
altered Schaedler flora (ASF), a defined community
of eight known bacterial species: L. acidophilus, L.
murinus, B. distasonis, M. schaedleri, Eubacterium
plexicaudatum, an uncharacterized fusiform
bacterium and two uncharacterized clostridium species
(12 samples total—SRX134832-40, SRX134842 and
SRX134844-45; [11]).

(2) Thirty-five million 101 bp reads derived from a
29 day fermentation of kimchi (SRX128705; [9]).

(3)Fourteen million pairs of 100 bp reads derived
from the rumen of a Holstein dairy cow fed a
fat-supplemented diet (SRX196213; [8])

(4)One hundred three million pairs of 100 bp reads
derived from the Guaymas Basin hydrothermal vent
(SRX1347659; [10]).

(5)One hundred thirty-one million pairs of 150 bp
reads derived from permafrost soil (SRX119222).

For each sequence, low quality segments (Phred
score <15 [56]) were trimmed using an in-house script
and reads <50 bp discarded. Next adaptor contaminants
were filtered using cross-match (http://www.phrap.org)
with parameters minmatch =10 and minscore =20. In
addition, due to the large number of low quality reads in
the permafrost sample, we applied an in-house script to
remove those containing 10 consecutive N’s and/or Xs.
rRNA reads were identified and removed by first applying
BWA [13], with a bitscore cut-off of >50, against a
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database of rRNA genes collated from the SILVA, Green-
genes and NCBI databases [57-59]. Additional reads of
rRNA and tRNA origin were identified using the Infernal
software [60] with the Rfam database as a reference [61].
For mouse, cow and kimchi datasets, reads of murine, bo-
vine and plant origin were identified and removed through
BLAT searches (bitscore cutoff >50) against the mouse
genome and transcriptome (build GRCm38 downloaded
from Ensemble [62]), the cow genome and transcriptome
(build 6.1 downloaded from NCBI [63]) and a set of 25
plant genomes and 274 plant transciptomes obtained from
the PlantGDB database [64], respectively.

Assembly and annotation

To increase efficiency of annotation, putative mRNA
reads were assembled by the de novo assembly package
Trinity [20]. Reads were mapped back to contigs using
the Bowtie alignment tool [65]. Sequence annotation
was performed using a tiered set of sequence alignment
tools: BWA [13], BLAT [21] and BLAST [66]. BWA and
BLAT alignments were performed using default parame-
ters against a reference database of 4443 prokaryotic ge-
nomes (including 1918 plasmid, 152 archaeal and 2373
bacterial genomes) downloaded from the NCBI (February,
2013). For BWA, this translates to no more than two mis-
matches over the entire alignment, although we note that
previous studies suggest that different parameter set-
tings result in highly similar output [67]. Reads that
could not be aligned through BWA and BLAT were sub-
ject to BLASTX sequence similarity searches against the
protein non-redundant database obtained from the
NCBI (February, 2013). Two thresholds were used: (1)
for reads shorter than 100 nts, read alignments were
considered if sequence identity was >85 % over >65 % of
the read length; and (2) for reads longer than 100 nts,
we applied a more stringent bit score cut-off of 60. En-
zyme annotations for genes and proteins matching se-
quence reads was performed using: (1) DETECT
enzyme prediction tool [68] and (2) BLASTP sequence
similarity searches against a set of enzymes curated by
UniProt (e-value <le-10) [69]. Where DETECT and
BLASTP annotations conflicted, DETECT predictions
were assumed to be more reliable [68]. Transcript ex-
pression was normalized using reads per kilobase of
transcript per million mapped reads (RPKM [70]).

Analysis of differential expression

Differential expression analyses (genes and metabolic
pathways) were focused on the seven mouse samples
(three cecal flush and four cecal wall) that had been
prepared using the same RNA extraction treatment
(RNeasy—Qiagen Inc., Valencia, CA): SRX134832,
SRX134834, SRX134835, SRX134837, SRX134838,
SRX134840 and SRX134842. The performance of
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three algorithms were examined: edgeR [25], DEseq2
[24] and ALDEx2 [26]. Both edgeR and DESeq2 were
originally developed for microarray analyses and have
recently been updated for RNA-Seq data (edgeR v2.14
and DEseq2, v2.14), while ALDEx2 (version 1.0.0) was
developed specifically for RNA-Seq datasets. Initial ana-
lyses identified high variation within and between the
cecal wall and cecal flush samples as measured by the
biological coefficient of variation, a measure used to as-
sess differential expression in RNA-Seq experiments
[71] and calculated as:

Cvz(ygi) - v (ygi) [ bg® = 1/ug + 0,

Where 1/pu; is the squared CV for the Poisson distri-
bution and ¢, is the squared CV of the unobserved
expression values. We therefore estimated the vari-
ation per pairwise replicates using the Kruskal-Wallis
test and removed three samples displaying extreme vari-
ation (p <0.001): SRX134837, SRX134838 and SRX134842.
In addition to the algorithms applied above, we also applied
a pathway enrichment analysis of genes displaying at least a
fivefold change of expression (defined by the average ex-
pression for the four remaining samples (two cecal flush
and two cecal wall)) [27, 28]. Here, we applied the hyper-
geometric test by computing two-tailed p values for differ-
entially expressed genes for reference pathway sets
obtained from the KEGG [17].

Analysis of microbial composition and diversity
Taxonomic classifications of transcripts were derived
from the tiered set of read annotation searches with ref-
erence to the NCBI taxonomy database. For the com-
parative tree based analysis presented in Fig. 2b, we
included only those genera represented by greater than
100 reads across all five microbiomes (966 genera total).
To normalize genus representation across microbiomes,
each genus was divided by the average number of reads
assigned to each of the 966 genera and only genera with
normalized read values in excess of 10 were visualized.
Visualization was performed using MEGANS5 [72] in con-
junction with the Interactive Tree of Life (iTOL) software
[73] to modify and annotate the resulting phylogenetic tree.
Three measures were applied to measure sample di-
versity: Shannon entropy [74], Fisher’s alpha diversity
index [75] and Simpson diversity [75]. In addition, we
also measured taxonomic ‘richness, using the richness
index—Chaol [76]. To reduce the incidence of false posi-
tives and consistent with previous studies (e.g. [77-79]),
only species represented by at least 100 reads were in-
cluded in these analyses. The relative abundance of species
was normalized by the average read count for each sam-
ple. To compare diversity metrics obtained with putative
mRNA sequences to those obtained with 16S rRNA
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sequences, we mapped putative 16S rRNA reads identified
in the samples by our pipeline to 16S rRNA sequences re-
trieved from the SILVA database [59] using BWA. These
sequences were then clustered into ‘species’ at 97 % iden-
tity using CD-HIT [80]. For the Shannon entropy, the
non-parametric method was applied:

S
Hg = - E p; logp;
i=1

Where S is the number of species and p; is the relative
abundance of species i (defined by the number of reads
associated with that species). Fisher’s alpha diversity
index was calculated as:

S=ax In(1+n/a)

Where S is number of taxa, # is number of individuals
and a is the Fisher’s alpha. Simpson diversity was calcu-
lated by:

D=7 ((m/n))

Where n; is number of individuals of taxon i. Finally,
Chaol scores were calculated by:

2

o ny
Schaol = Sobs + g
2

Where S, is the total number of species observed in
all samples, 7; is the number of singletons (species cap-
tured once) and 7, is the number of doubletons (species
captured twice). Diversity indices based on these values
were calculated using EstimateS v 9.1 [81] using 100
bootstrap replicates.

Network visualization

Metabolic networks were constructed as previously de-
scribed [54]: enzymes (EC numbers) are represented as
nodes and substrates connecting two enzymes are
represented as edges in the network. Enzyme-substrate
relationships were inferred from KEGG [40]. Protein-
protein interaction (PPI) networks were constructed by
homology mapping of E. coli homologs of identified
bacterial transcripts using BLAST sequence similarity
searches (E-value <le™®) and layering expression data
onto a previously generated network of PPIs for E. coli
[49]. To compare expression across microbiomes,
RPKM values of each enzyme/E. coli homolog was nor-
malized by employing the min-max scaling method.
Networks were visualized using Cytoscape version 3.2.1
[82] and iPath [83].
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Additional files

Additional file 1: Summary of metatranscriptome processing,
assembly and annotation steps. This table provides summary statistics
for read processing steps applied to each dataset. (XLSX 16 kb)

Additional file 2: Transcripts displaying significant (p < 0.05)
differences in expression between mouse cecal wall and cecal flush
datasets as determined by three statistical programs (edgeR,
DEseq2 and ALDEx2). This table lists all transcripts displaying significant
differences in expression between the two types of mouse samples.
(XLSX 17 kb)

Additional file 3: Transcripts displaying greater than five-fold

This table lists all transcripts displaying large differences in expression
between the two mouse datasets. (XLSX 56 kb)

Additional file 4: Venn diagram illustrating overlap of genera
defined by putative 16S rRNA and mRNA reads for five
metatranscriptomic datasets. Numbers indicate the number of genera
defined by each type of sequence data. (PDF 112 kb)

Additional file 5: Enzyme expression for five metatranscriptomic
datasets. This table lists the expression (in terms of RPKM) for each
enzyme annotated in our datasets. (XLSX 226 kb)

Additional file 6: iPath representation of common and unique
enzymes in a global metabolism map from KEGG. The global
metabolic map was generated using the online iPath tool [83] with
reactions coloured according to their presence in different
metatranscriptomic datasets (see inset key). (PDF 1815 kb)

Additional file 7: Global metabolic network indicating taxonomic
representation of metabolic activities within the cow rumen
dataset. Global metabolic network indicating taxonomic representation
of metabolic activities within the cow rumen dataset. Pie charts indicate
the relative proportion of each taxon, size of pie chart indicates relative
expression (see key). Indicated are specific metabolic pathways. (PDF
1162 kb)

Additional file 8: Global metabolic network indicating taxonomic
representation of metabolic activities within the kimchi. Global
metabolic network indicating taxonomic representation of metabolic
activities within the kimchi dataset. Pie charts indicate the relative
proportion of each taxon, size of pie chart indicates relative expression
(see key). Indicated are specific metabolic pathways. (PDF 1352 kb)

Additional file 9: Global metabolic network indicating taxonomic
representation of metabolic activities within the deepsea dataset.
Global metabolic network indicating taxonomic representation of
metabolic activities within the deepsea dataset. Pie charts indicate the
relative proportion of each taxon, size of pie chart indicates relative
expression (see key). Indicated are specific metabolic pathways. (PDF
2066 kb)

Additional file 10: Detailed views of taxonomic contributions to
specific components of the glycolysis/gluconeogenesis pathway for
four metatranscriptomic datasets. Fach schematic indicates the
taxonomic representation of enzymatic activities involved in the
glycolysis/gluconeogenesis pathways for four metatranscriptome
datasets: mouse, kimchi, cow and deepsea. Pie charts indicate enzymes,
with coloured sectors indicating the relative proportion of each taxon,
size of pie chart indicates relative expression (see key). Small triangles
indicate substrates with links indicating enzyme-substrate relationships.
(PDF 635 kb)

Additional file 11: Detailed views of taxonomic contributions to
specific components of the alanine, aspartate and glutamate
pathways for four metatranscriptomic datasets. Each schematic
indicates the taxonomic representation of enzymatic activities involved in
the alanine, aspartate and glutamate pathways for four metatranscriptome
datasets: mouse, kimchi, cow and deep sea. Pie charts indicate enzymes,
with coloured sectors indicating the relative proportion of each taxon, size
of pie chart indicates relative expression (see key). Small triangles indicate
substrates with links indicating enzyme-substrate relationships. (PDF 658 kb)

difference in expression between cecal wall and cecal flush samples.
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Additional file 12: Taxonomic contributions to flagella biosynthesis
and chemotaxis modules as defined through protein-interaction
networks for the four well sampled datasets. Each network indicates
the taxonomic representation of components of flagella biosynthesis and
chemotaxis modules as defined through protein-interaction networks for
four metatranscriptome datasets: mouse, kimchi, cow and deepsea. Pie
charts indicate genes, with coloured sectors indicating the relative
contribution to gene expression for each taxon, size of pie chart indicates
relative expression (see key). (PDF 202 kb)

Additional file 13: Taxonomic contributions to select hydrogenase
modules as defined through protein-interaction networks for the
four well sampled datasets. EFach network indicates the taxonomic
representation of components of hydrogenases as defined through
protein-interaction networks for four metatranscriptome datasets: mouse,
kimchi, cow and deep sea. Pie charts indicate genes, with coloured sectors
indicating the relative contribution to gene expression for each taxon, size
of pie chart indicates relative expression (see key). (PDF 190 kb)
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