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Abstract
Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in 
hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, 
myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its 
pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these 
pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of 
MyD88 and subsequent activation of NF-κβ, dysregulated IL1-receptor associated kinases (IRAK), alterations in 
TGF-β and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this 
review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus 
on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small 
molecule inhibitors against these pathways.
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Background
Myelodysplastic syndromes (MDS) are myeloid clonal 
disorders characterized by ineffective hematopoiesis and 
bone marrow dysplasia, and they are often associated 
with chronic inflammatory conditions and an increased 
risk of transformation to acute myeloid leukemia (AML) 
[1]. Multiple mechanisms operate in the pathogenesis of 
MDS, including genetic and epigenetic mutations and 
apoptotic and differentiation abnormalities, but there is 
increasing recognition of the role of the innate inflamma-
tory microenvironment. Genetic abnormalities and aging 
can influence the pathogenesis of MDS via alterations in 
the inflammatory microenvironment [2]. Understand-
ing the specific immune pathways in the pathogenesis 
of MDS and how they operate differently in low-risk and 
high-risk MDS patients is crucial to developing future 

therapeutics for MDS. This review elaborates on the vari-
ous innate immune pathways involved in the pathogen-
esis of MDS and AML and the clinical implications of the 
same.

Toll like receptors (TLRs) on binding to ligands, under-
goes conformational change, and leads to recruitment of 
an adapter protein called MyD88 leading to activation 
of IRAK4 and IRAK1. Once activated, IRAK-1 binds to 
TRAF-6 which consequently activates TAK1, leading to 
phosphorylation of IKK complex and activation of tran-
scription factor NF-κβ. Activation of NF-κβ can also 
occur through TRIF, not dependent on MyD88. Binding 
of TGF-β ligand to TGF-β receptor leads to activation 
on SMAD2/3, forms a complex with SMAD4 leading 
to upregulation of CDK inhibitors such as p15Ink4b, 

Fig. 1  Innate Immune Pathways involved in MDS
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p21Cip1, and p27Kip1. In MDS, there is increased signal-
ling and downstream molecules of TLR pathway which 
includes IRAK4, TRAF-6 and NF-κβ. TGF- β pathway is 
overactivated leading to increased levels of SMAD2 and 
SMAD3.

Role of Toll like Receptors (TLRs) Signaling in MDS
TLRs are pattern recognition receptors (PRRs) and major 
components of the innate immune system. TLRs recog-
nize pathogen-associated molecular patterns (PAMPs) 
and damage-associated molecular patterns (DAMPs) [2]. 
The drugs targeting TLR pathway have been discussed in 
Table 1.

Mechanism of signaling
TLRs have an ectodomain, a transmembrane domain, 
and a cytoplasmic domain. The ectodomain recog-
nizes specific PAMPs or DAMPs followed by activation 
of MyD88 dependent or independent pathway. TLR1, 
TLR2, TLR4, and TLR6 recruit the Toll/interleukin-1 
(IL-1) receptor (TIR) domain-containing adapter pro-
tein (TIRAP). The TIR domain of TIRAP binds the TIR 
domain of TLR2 and recruits MyD88. TL3 and TLR4 
uses a TIR domain-containing adapter-inducing inter-
feron-beta (IFN-beta) (TRIF) pathway, which is indepen-
dent of MyD88 signaling [3].

In the MyD88 dependent pathway, MyD88 recruits 
members of the serine-threonine kinase interleukin-1 

receptor-associated kinase (IRAK) family of proteins 
(IRAK4, IRAK1, and IRAK2), and forms a complex called 
Myddosome [4]. During complex formation, IRAK4 acti-
vates IRAK1, which is then autophosphorylated at multi-
ple sites followed by the release of activated IRAK-1 from 
MyD88 [5]. The activated IRAK-1 binds to the E3 ubiq-
uitin ligase tumor necrosis factor (TNF) R-associated 
factor 6 (TRAF6), which in turn activates the transform-
ing growth factor beta-activated kinase 1 (TAK1). TAK1 
binds to the IKK complex through ubiquitin chains, 
which results in phosphorylation and the activation of 
IKKβ [4]. This also results in the phosphorylation of the 
NF-kB inhibitory protein IκB⍺, which causes protea-
some degradation, thereby permitting NF-κβ to translo-
cate into the nucleus and induce proinflammatory gene 
expression [4].

In the TRIF dependent pathway, TRIF activation causes 
the recruitment of TRAF6 and TRAF3 [6]. TRAF-6 
recruits the Receptor-interacting protein (RIP) -1 kinase, 
which results in the activation of the TAK-1 complex [6]. 
The activated TAK-1 complex causes the activation of the 
NF-kB and MAPKs pathways, thereby resulting in the 
production of inflammatory cytokines [6]. In contrast, 
TRAF3 recruits the TANK-binding Kinase 1 (TBK 1), IκB 
kinases (Ikki), and NEMO for the phosphorylation and 
dimerization of the transcription factor Interferon Reg-
ulatory Factor 3 (IRF-3) [6]. Subsequently, IRF3 nuclear 
translocation and inducement of the expression of type I 

Table 1  Potential therapeutic agents targeting the inflammatory pathways in myelodysplastic syndromes
Target Molecule Drug Phase Type of MDS Proposed mechanism References
TLR2 Tomaralimab 

(OPN-305)
I/II Low IgG4 monoclonal antibody against TLR2 NCT02363491

TLR2 Bortezomib II Low TRAF6 inhibitor via bortezomib-mediated autophagy NCT01891968

IRAK4 Emavusertib
(CA-4948)

II High risk IRAK4 inhibitor NCT04278768

TGF-Beta Luspatercept III Low Binds to endogenous TGF-β superfamily ligands, thereby 
diminishing Smad2/3 signaling.

NCT02621070 
(MEDALIST trial)

TGF-Beta Galunisertib II Low Inhibitor of the TGF-β receptor type 1 kinase (ALK5) NCT02008318

Inflammasome MCC950 Preclinical Blocks the NACTH ATPase domain of NLRP3 Ashley A et al. 
[65]

Inflammasome 3,4 methylenedioxy-
β-nitrostyrene (MNS)

Preclinical Inhibits NLRP3 ATPase activity by cysteine modification Chakraborty et 
al. [66]

Inflammasome CY-09 Preclinical Inhibits NLRP3 ATPase activity to block NLRP3 activation Jiang Hua et al.
[67]

Inflammasome Ibrutinib I High BTK inhibitor; directly binds ASC and NLRP3; inh ASC 
speck formation

NCT03359460

P38 MAPK Pexmetinib
(ARRY614)

I Low or 
intermediate

Enhancing Megakaryopoiesis NCT01496495

P38 MAPK Talmapimod 
(SCIO-469)

II Low Enhancement of Hematopoiesis and reduction of 
apoptosis

NCT00113893

IL-8 receptor/CXCR2 SB-332,235 Preclinical Reduction of growth and colony forming in MDS BM 
cells

Schinke C et 
al. [93]

IL-8 BMS-986,253 I/II Anti-il-8 monoclonal antibody NCT05148234

Caspase CWP232291 1 High risk Inhibitor of Wnt signaling that causes degradation of 
β-catenin via apoptosis

NCT01398462
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interferon (IFN) by stimulating IFN stimulated response 
elements (ISREs) [6].

Role of TLRs in hematopoiesis
TLRs are widely expressed in hematopoietic cells such 
as dendritic cells, macrophages, lymphocytes, and non-
hematopoietic cells like fibroblasts cells and epithelium 
[7]. TLRs are also expressed in early hematopoietic 
progenitors and stem cells [8]. In vitro studies demon-
strated that when lineage marker negative, stem-cell anti-
gen positive-1, c-kit positive bone marrow cells (Lin(-) 
c-Kit(+) Sca-1(+) – LKS cells) from wild type mice were 
transplanted into TLR2, TLR4, or MyD88 knockout mice 
and then exposed to Pam3CSK4 (a TLR2 agonist), LPS 
(a TLR4 agonist), or CpG oligodeoxynucleotide (a TLR9 
agonist), the cells differentiated preferentially towards 

macrophages [9]. In vitro stimulation of hematopoietic 
progenitors with Pam3CSK4 (a TLR2 agonist) or LPS (a 
TLR4 agonist) also showed TLR signaling, which drives 
myeloid differentiation in a MyD88-dependent manner 
[8, 10]. Stimulation of TLR2 and TLR4 in mice leads to 
the production of one of the principal cytokines, GCSF, 
and results in the releasing of bone marrow HSPCs and 
myeloid precursors into the peripheral blood [11, 12]. 
All these studies demonstrate that TLRs have important 
roles in myeloid differentiation of hematopoetic stem 
cells.

TLRs in the pathogenesis of MDS
In MDS, there is an increased expression of TLR2 and 
its binding partners TLR4 and TLR6 in the bone mar-
row CD34 cells [13]. In lower-risk MDS patients, TLR2 

Fig. 2  Inflammasome Pathway
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expression was highest compared to high-risk MDS 
patients and healthy controls, and it correlated with a 
better overall survival. Whereas in higher-risk patients, 
TLR6 expression was highest [13–15]. In vitro studies 
demonstrated that TLR2 expression directly correlates 
with the apoptosis of CD34 cells, mostly occurring in 
the early stage of MDS due to the increased expression 
of pro-apoptotic molecules, such as Bax and Bad [16]. 
TLR2 induced CD34 + apoptosis is due to upregulation 
and nuclear translocation of beta arrestin 1, which is sig-
nificantly elevated in patients with low-risk disease com-
pared to those with higher-risk MDS or healthy controls 
[15]. In vitro studies demonstrated that the knockdown 
of β-arrestin1 in cultured CD34 + cells mitigated TLR2 
agonist-induced cell death [15]. In addition, 11% of the 
MDS patients had a genetic variant of the TLR receptor, 
TLR2-F217S, which resulted in the robust activation of 
NF-κB upon TLR2 activation [13].

Role of myeloid differentiation in primary response protein 
88 (MYD88) signaling in MDS
MyD88 was originally identified as a myeloid differentia-
tion primary response gene, which is upregulated during 
IL-6 induced macrophage differentiation [17]. MyD88 
is an important component of the signaling pathway 
mediated by the IL-1 and IL-18 receptors, which are 
responsible for TH1 cell differentiation and Interferon γ 
production [18].

Role of MYD88 in hematopoiesis
MYD88 is the key mediator of Toll-like receptor signal-
ing except for TLR3 [19, 20]. Studies on mice showed that 
MyD88 influences both myeloid and lymphoid cell devel-
opment in the bone marrow, and that it is also associated 
with early and late hematopoiesis [21]. Bruton tyrosine 
kinase (BTK) is associated with MYD88 in B cells and is 
involved in B cell signaling in the development and func-
tioning of adaptive immunity [22].

MYD88’s role in the pathogenesis of MDS
MYD88 mutations are commonly identified recur-
ring mutations in chronic lymphocytic leukemia (CLL), 
B-cell lymphoma, and Waldenstrom’s macroglobulin-
emia [23–25]. MYD88 RNA levels are higher in MDS 
patients and is associated with shorter overall survival 
(OS) [26]. The blocking of homodimerization of MYD88 
in the CD34 + cells of lower-risk MDS patients led to a 1.6 
to 2-fold increase in erythroid and a 30% increase in the 
total number of colonies; this effect was not observed in 
high-risk MDS patients [26]. Erythroid differentiation 
that occurs after the MYD88 blockade is positively cor-
related with an increased ratio of GATA1/GATA2 genes 
and the expression of CD71, EPOR, GYPA, and GYPB in 
CD34 + bone marrow cells [26].

Role of NF-κB (nuclear factor kappa light chain enhancer of 
activated B cells) signaling in MDS
The NF-κB signaling pathway is involved in the pro-
duction of inflammatory cytokines, chemokines, and 
adhesion molecules, and it also regulates apoptosis, cell 
proliferation and differentiation, and the activation of 
macrophages, granulocytes, osteoclasts, dendritic cells, 
and erythrocytes [27, 28]. NF-κB signaling pathway leads 
to myeloid differentiation by activating granulocyte mac-
rophage colony stimulating factor (GMCSF), a cytokine 
that promotes differentiation of bone marrow stem cells 
towards granulocyte and monocytes [27, 29]. In addition, 
the NF-κB can also act as both anti-apoptotic or a pro-
apoptotic regulatory factor based on cell type and stimuli 
[30].

NF-κB’s role in the pathogenesis of MDS
NF-κB activity is significantly elevated in MDS patients 
especially in those over the age of 75 [31]. In a study 
involving de novo MDS patients, the activation of NF-κB 
was significantly associated with increased ferritin (≥ 500 
ng/mL), percentage of blasts (≥ 5%) and IL-8 levels [31]. 
NF-κB is activated in the mesenchymal cells of patients 
with low-risk myelodysplastic syndromes, resulting in 
the attenuation of the HSPCs function [32]. NF-κB sig-
naling in human mesenchymal cells results in the upreg-
ulation of inflammatory markers such as IL6, IL8, CCL3, 
S100A9, INHBA, and CCL5 resulting in the impaired 
proliferation of mesenchymal cells, reducing support 
to HSPC, thereby attenuating the number and function 
of HSPCs, as reflected by reduced CFU-Colonies [32]. 
High-risk MDS and AML bone marrow samples express 
strong constitute activation of NF-κB. Inhibition of 
NF-κB activation results in increased apoptosis of MDS 
blasts cells, so NF-κB can be a potential therapeutic tar-
get in MDS [33].

Role of toll-interleukin 1 receptor (TIR) domain-containing 
adapter protein (TIRAP)
TIRAP, also known as MyD88-adaptor Like (MAL), is a 
key intracellular adaptor molecule not only associated 
with the signaling of TLR2 and TLR4, but also involved 
in MYD88 independent inflammatory signaling [34]. The 
IFN-γ-TIRAP pathway is involved in bone marrow failure 
and MDS [35]. An analysis of the gene expression in the 
CD34 + cells of MDS showed that TIRAP expression was 
increased in del 5q MDS [35, 36]. Mice transplanted with 
TIRAP-expressing HSPCs showed an overall decreased 
survival rate due to bone marrow failure and significant 
pancytopenia [35]. The TIRAP-transduced bone mar-
row of transplanted mice reduced the number of viable 
common myeloid progenitors (CMP) and granulocyte–
monocyte progenitors (GMP) resulting in pancytopenia 
[35]. The high mobility group box 1 (HMGB1) belongs 
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to a non-histone protein localized in the nucleus, where 
it acts as a DNA chaperone to help in DNA repair and 
maintenance [37]. It can also be seen on an extracellular 
surface, where it functions as a DAMP. It plays a signifi-
cant role in inflammatory diseases and cancers and acts 
as an alarmin in promoting AML progression [37, 38]. 
The overexpression of TIRAP in hematopoietic cells 
releases IFN-γ, which can act in two ways. IFN-γ can 
directly affect megakaryopoiesis and erythropoiesis in 
the bone marrow, and secondly, it can indirectly suppress 
myelopoiesis through the release of HMGB1 (alarmin), 
which disrupts the bone endothelium, resulting in bone 
marrow failure [35, 36]. In vivo experiments demon-
strated that blocking HMGB1 in the presence of TIRAP 
expression resulted in the reversal of the bone marrow 
endothelial defect and the restoration of myelopoiesis 
[36].

Role of TNF receptor-associated factor 6 (TRAF-6) in MDS
Tumor necrosis factor receptor-associated factor 6 
(TRAF6) is essential for maintaining HSC quiescence 
and controlling myeloid-biased differentiation through 
minimal NF-κB signaling via cyclin dependent kinase 
inhibitors, which are negative regulators of cell cycle 
progression [39, 40]. Myeloid-derived suppressor cells 
(MDSCs) are premature heterogenous group of myeloid 
cells derived from bone marrow, and they have the abil-
ity to suppress the immune responses against a tumor 
[41]. The signal transducer and activator of transcription 
3 (STAT3) is a transcription factor that is activated by 
growth factors and cytokines, and it plays an important 
role in MDSCs activation, function, and expansion [42, 
43]. E3 ubiquitin ligase TRAF-6 binds to STAT3, leading 
to the phosphorylation of STAT3, which results in the 
activation of MDSCs [41]. TRAF-6 knockdown in mice 
attenuated MDSCs role in accelerating tumor progres-
sion as the inhibitory effect of MDSCs on CD4 + T cell 
proliferation was significantly decreased [41]. TRAF-6 
expressing bone marrow transplanted mice progressed 
either to bone marrow failure or developed AML [44]. 
Activation of the canonical pathway, i.e., TLR4–TRAF6–
NF-κB activation has been reported in MDS. The 5q dele-
tion correlated with the loss of two miRNAs (miR-145 
and miR-146a), which resulted in an increased expression 
of TRAF-6 in MDS cells [44]. The knocking down of miR-
NAs in mice models resulted in significant thrombocyto-
sis, mild neutropenia, and megakaryocytic dysplasia [44]. 
IL-6 production and persistent elevation seen in TRAF-6 
transplanted mice is responsible for platelet survival and 
production [44].

Inflammasome pathway
S100A8/A9 released from immunocytes and MDSCs 
upon binding to TLRs/CD33/RAGE receptors not only 

activates NF-κB through IRAK1-TRAF6 but also acti-
vates the NADPH oxidase leading to generation of pro-
inflammatory mediators like IL-6, TNF alpha, and IL-1 
Beta which in turn stimulate NF-κB. NF-κB activation 
leads to downstream NLRP3 inflammasome assembly 
that leads to caspase-1-dependent pro-inflammatory cell 
death through the activation of inflammatory cytokines 
like interleukin 1β (IL-1β) and IL-18, and pore formation 
leading to osmotic lysis. In MDS, there is increased sig-
nalling of TLR pathway via S100 A8/A9 and inflamma-
some formation leading to cell death.

Role of IL1 receptor associated kinases (IRAK) in MDS
IL1-receptor associated kinases (IRAK) are a family of 
intracellular serine threonine kinases that play a signifi-
cant role as signal transduction mediators of TLR and 
interleukin–1 receptor signaling [45]. More recently, 
some groups have reported that IRAK 1 regulates the 
rapid NLRP3 inflammasome assembly and caspase 1 
cleavage in a transcription independent fashion. NRLP3 
assembly is dependent on the catalytic competency of 
both IRAK1 and IRAK 4 [46, 47] (Fig. 2).

IRAK1
IRAK1 mRNA is overexpressed in ~ 20–30% of MDS 
patients. More remarkably, the IRAK1 protein is overex-
pressed and in a hyperactivated state in the majority of 
the MDS marrow samples examined [48]. Studies with 
IRAK-Inh and IRAK1 knockdown in MDS cell lines/
human MDS samples demonstrated dramatic impair-
ment of MDS cell proliferation, progenitor function, and 
viability in vivo and in vitro. However, a subset of MDS/
AML progenitors escape IRAK-Inh apoptosis and had 
persistence of anti-apoptotic BCL2 like proteins. It has 
been demonstrated that a combination of BCL2/IRAK 
inhibitors in this subset suppressed MDS clones, which 
can be a potential target to treat MDS [48]. IRAK1 is also 
negatively regulated by microRNAs (miR-145 and mir-
146a), thereby increasing IRAK-1 levels and inflamma-
tion in MDS patients with del miR.

IRAK4
IRAK4 has two protein isoforms based on the inclu-
sion and exclusion of exon-4 [49]. The inclusion of exon 
4 in the mRNA resulted in a longer 460 residue IRAK4-
L protein, which has a death domain, hinge domain, 
and kinase domain. The exclusion of exon-4 resulted 
in a shorter 336 residue IRAK-S, which has a hinge and 
kinase domain and lacks a death domain [50]. U2 small 
nuclear RNA auxiliary factor 1 (U2AF1) is a gene encod-
ing an RNA-binding protein critical for recognition of 
AG dinucleotide in pre-mRNA 3´ splicing site [51]. The 
U2AF1 gene is located on 21q22.3, and its mutations are 
seen in approximately 7–11% of MDS patients [52–54]. 
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U2AF1 S34 mutants promote alternate splicing resulting 
in the inclusion of exon 4 and expression of IRAK4-L iso-
form [55]. In the study conducted by Smith et al., 100% of 
MDS patients with U2AF1 mutations expressed IRAK4-
L, whereas 52% of MDS patients without splicing-factor 
mutations expressed IRAK4-L [50]. Mice xenografted 
with primary U2AF1-mutant cells showed a 50% reduc-
tion in MDS cells after 3 weeks of treatment with IRAK4 
kinase inhibitor (CA-4948) [50].

SF3B1 is the largest component of the SF3B complex 
that stabilizes the binding of U2 snRNP to the branch 
site during pre-mRNA splicing [56]. The SF3B1 gene is 
located on chromosome 2q33. Mutations in this gene are 
observed in approximately 35–43% of MDS cases and 
98% of myelodysplastic syndrome–ringed sideroblasts 
(MDS- RS) [57, 58]. RNA-Seq splicing analysis of SF3B1 
Mutant MDS samples showed retention of exon 6 of 
IRAK4, resulting in IRAK4-L, which contains the entire 
death domain leading to NF-kB activation and blocking 
hematopoietic differentiation [59]. In MDS cells with pri-
mary SF3B1 mutation, inhibiting IRAK4 with CA-4948 
decreased NF-kB activation and production of inflam-
matory cytokines, along with an increase in myeloid col-
ony, myeloid differentiation, and reduction in leukemic 
growth in a xenografted mice model [59].

AML cells have significantly higher expression of 
IRAK4-L, whereas normal bone marrow-derived 
CD34 + hematopoietic cells predominantly express 
IRAK4-S [50]. The N-terminal death domain of IRAK4-L 
interacts directly with MyD88, initiating myddosome for-
mation, resulting in autophosphorylation of IRAK-4, and 
subsequently activating IRAK-1, which facilitates recruit-
ment of TRAF6 and NF-B activation [60]. IRAK4-S lacks 
an N-terminal death domain and does not interact with 
MyD88 [50]. On treatment with ATP-competitive IRAK4 
kinase inhibitor (CA-4948), IRAK4-L expressing MDSL, 
TF1, and THP1 cells generated fewer leukemic progeni-
tor colonies, although IRAK4-S expressing HL60, F36P, 
and normal CD34 + cells were unaffected. Thus, inhibi-
tion of IRAK4 kinase activity in MDS or AML cell lines 
expressing IRAK4-L decreased leukemic function in vitro 
relative to cells that primarily express IRAK4 [50]. Drugs 
targeting IRAK-4 have been mentioned in Table 1.

Role of inflammasomes in MDS
Inflammasomes are intracellular, cytoplasmic, mul-
tiprotein, high molecular weight immune complexes 
that play an important role in the host defense against 
pathogens [61]. The receptor proteins that can assem-
ble to form inflammasomes include nucleotide-binding 
domain leucine-rich repeat (LRR)-containing protein 
(NLR) family members NLRP1, NLRP2, NLRP3, NLRP6, 
NLRP7, NLRC4 (Nod-like receptor CARD domain-
containing 4) and the HIN-200 family member Aim2 

(absentinmelanoma2). Inflammasomes sense intra-
cellular DAMPs and PAMPs leading to the activation 
of inflammatory caspases such as caspase 1 [62, 63]). 
NLRP3 polymerizes apoptosis-associated speck–like 
protein (ASC) which contains a pyrin domain (PYD) and 
a caspase recruitment domain (CARD). ASC binds to 
inflammasomes through PYD and recruits procaspase 1 
via CARD [61, 62]. Proximity-dependent auto-activation 
of pro-caspase-1 leads to the formation of active caspase 
1, which in turn activates pro-IL-18 and pro-IL-1β into 
their mature forms. Caspase 1 mediates pore forming 
protein gasdermin-D (GSDMD) dependent pyroptotic 
lytic cell death, causing the release of mature IL-1β and 
IL-18, DAMPs, ATP, DNA, and even inflammasomes 
themselves which propagate inflammation [61, 62]. (Fig. 
2).

Pathogenesis of inflammasomes in MDS
There is increasing evidence supporting the role of 
inflammasomes in different phases of MDS pathogenesis 
including pyroptosis of HSPCs causing cytopenia, mac-
rocytosis, ineffective hematopoiesis, and the β-catenin 
induced proliferation of cancer cells [64]. Mononuclear 
cells from the bone marrow of MDS patients revealed 
profound upregulation of caspase-1 (~ 209-fold) and 
NLRP3 (~ 48-fold) with no difference in caspase-3 expres-
sion. Pyroptosis execution (active caspase-1+/active cas-
pase-3+/annexin-V- cells) was a predominant form of cell 
death when compared to apoptosis (active caspase-3/7+/
active caspase-1−/annexin-V+) [62, 64]. Mutations in 
MDS related genes and S100 A8/A9 can cause activa-
tion of NLRP3 inflammasome promoting pyroptosis. It 
is commonly seen in 5q deletion MDS, causing the acti-
vation of p53-S100A8/9-TLR4 axis [62]. Basiorka et al. 
(2016) reported that somatic gene mutations, irrespective 
of functional class, can activate the NLRP3-pyroptosis 
axis, and the extent of pyroptosis is directly proportional 
to the burden and complexity of somatic gene mutations 
[65]. RNA splicing gene (U2AF1, SF3B1, and SRSF2) and 
epigenetic regulatory gene (ASXL1 and TET2) mutations 
in HSPCs of mouse models induced pyroptosis which 
was suppressed by NLRP3 inhibition [64, 65].

Drugs targeting inflammasomes
NLRP3 activation and apoptosis play a crucial role in 
the pathogenesis of MDS. Although specific NLRP3 
targeting agents are still in preclinical development, 
they are showing promising results with a good safety 
profile in mice. Some direct NLRP3 inhibitors include 
3,4-methylenedioxy-β-nitrostyrene (MNS) and CY-09, 
an analog of CFTR inhibitor-172 (C172) which inhib-
its the CFTR channel, specifically targets ATP binding 
of NLRP3, but these inhibitors are still in the stage of in 
vitro and in vivo studies [64, 66–68].
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IL-1β antagonists such as anakinra, canakinumab, 
and rilonacept have been approved for the treatment 
of several other autoinflammatory conditions. It has 
been reported that prolonged IL-1β elevation can cause 
chronic stimulation of NF-κB and MAPK signaling. 
Hence, IL-1β can be a potential effective target in MDS 
[64, 66]. However, further investigations have to be done 
to determine the role of IL-1β antagonists in MDS. Cur-
rently, canakinumab (an IL-1β–neutralizing monoclonal 
antibody) is being studied in early phase clinical trials 
(NCT04810611, NCT04239157) [66]. Ibrutinib, a BTK 
inhibitor that prevents the formation of ASC specks and 
Caspase 1 activation is used in combination with lenalid-
omide and 5′-Azacytidine is under phase 1 clinical trials 
for MDS (NCT03359460 and NCT02553941) [66, 69]. 
Caspase 1 inhibitors, such as VX-765, and soluble ana-
logs of Parthenolide (an anti-inflammatory sesquiterpene 
lactone compound) can play a therapeutic role in MDS. 
However, further research needs to be done on their effi-
cacy. GSDMD has also been identified as a potential ther-
apeutic target, and it could become a crucial protein to 
prevent pyroptosis in the future [66, 69] (Table 1).

Role of transforming growth factor beta (TGF-β) in MDS
Transforming growth factor beta (TGF-β) is a large 
superfamily of growth factors that includes activins 
and bone morphogenetic proteins. They play a role in 
maintaining the proliferation and differentiation of the 
HSC [70]. The TGF-β family plays an important role in 
embryogenesis, as alterations in the pathway are associ-
ated with developmental abnormalities, autoimmune 
disorders, and carcinogenesis [71]. TGF-β ligands bind 
to cell surface receptors which are classified as type I and 
type II. The majority of the pathway signaling occurs via a 
type I receptor activin like kinase 5 (ALK 5) or TβRII [72] 
(Fig. 1). Upon activation, these receptors fire the down-
stream SMAD signaling circuit, which functions as the 
major signaling pathway of the TGF-β pathway [72]. The 
SMAD family includes eight subtypes (SMAD 1–8) with 
varying functions that can be either activating (SMAD 
2/3) or inhibitory (SMAD 6/7) in nature [73]. TGF-β 
functions as a major inhibitor of the HSCs via the upreg-
ulation of cyclin-dependent kinase inhibitors, such as 
p15Ink4b, p21Cip1, and p27Kip1 and, in turn, maintains 
the quiescent state of HSC and prevents its loss [74]. 
SMAD signaling also depends on other coregulatory sig-
nals in the bone marrow niche, such as the nuclear pro-
tein Transcriptional Intermediary Factor 1γ (TIF1γ) and 
SMAD 4. In vivo models have shown that SMAD 4 inhib-
its the SMAD 2/3 complex, resulting in the suppression 
of HSC transcription, but TIF1γ competes with SMAD 
4 for binding to the phosphorylated SMAD 2/3 complex 
and thereby promotes erythroid differentiation [75]. The 

pathway is also regulated by inhibitors such as SMAD7 
and Ski protein, corepressor for SMAD-4 [76, 77].

The inhibitory TGF-β pathway is normally tightly regu-
lated, but chronic TGF- β signaling is noted early in the 
course of MDS. Alterations in SMAD 7 and SKI proteins 
result in the sustained activation of pathways and lead to 
ineffective erythropoiesis [78]. Human CD 34 + cell lines 
have also shown elevated levels of microRNA 21 (miR-
21) that cause decreased levels of SMAD 7, culminating 
in the decreased formation of erythroid colonies as noted 
in a comparison of MDS patients to healthy controls [78]. 
Similarly, SMAD 2 is upregulated in MDS, and the in vivo 
pharmacologic inhibition of ALK 5 or the chemical inhi-
bition of miR-21 increased hemoglobin levels in a mouse 
model [79]. Murine models have shown that the trapping 
of Activin and GDF11 with RAP-536 inhibits the activa-
tion of SMAD 2/3 proteins and helps relieve the ineffec-
tive erythropoiesis seen in MDS [80]. In the MEDALIST 
trial, Luspatercept significantly reduced transfusion bur-
den in low-risk MDS patients with ring sideroblasts 
refractory or intolerant or unlikely to respond with 
erythropoiesis-stimulating agents [81]. Luspatercept is a 
recombinant fusion protein of the extracellular domain 
of human Activin receptor 2B and IgG1 Fc domain which 
binds TGF β ligands to reduce SMAD2 and SMAD3 sig-
naling resulting in erythroid differentiation [81].

Role of S100A8/A9 in MDS
S100 proteins are calcium-binding cytosolic proteins 
labeled due to their solubility in 100% saturated ammo-
nium sulfate [82, 83]. Members of the S100 family per-
form a wide range of functions at both the extracellular 
and intracellular levels, including cell proliferation, dif-
ferentiation, apoptosis, migration, inflammation, cal-
cium homeostasis, and enzyme regulation [84]. S100A8 
also called the migration inhibitory factor-related pro-
tein-8 (MRP-8)/calgranulin A, and S100A9, also called 
the migration inhibitory factor-related protein-14 (MRP-
14)/calgranulin B, act as alarmins or DAMPs [82, 84]. 
They are released from immunocytes and circulate in the 
plasma as homodimers or as S100A8/A9 heterodimers 
also called calprotectin. The levels of S100A8 and S100A9 
are high in autoimmune conditions, inflammation, and 
cancer [82, 84]. They are predominantly expressed in 
neutrophils, monocytes, and dendritic cells. S100A8 
and S100A9 constitute around 45% and 1% of the cyto-
solic proteins in neutrophils and monocytes, respectively. 
However, upon activation by cell damage/stress, they are 
also expressed in various other cells such as mature mac-
rophages, fibroblasts, erythroblasts, and vascular endo-
thelial cells [85].
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Mechanism of signaling and the role of S100 proteins in 
MDS
When S100 proteins are released from immunocytes due 
to cell damage/stress, they act as danger signals and play 
a significant role in inflammatory response facilitating 
apoptosis, autophagy, chemotaxis, invasion, and differ-
entiation [85]. S100A8/A9 proteins bind to TLRs, CD33 
and the receptor for advanced glycation end products 
(RAGE), thereby mediating several downstream effects 
such as the generation of inflammatory cytokines such as 
IL-6, TNF alpha, and IL-1 Beta, which in turn stimulate 
NF-κB activation leading to activation of inflammasome 
and osmotic lysis [64, 85, 86] (Fig. 1), (Fig. 2).

In an in vivo study conducted by Cheng et al. (2013), 
it was reported that the S100A9/CD3 pathway caused 
the stimulation of polyclonal MDSCs (CD33+/Lin−/
HLA − DR−) in the bone marrow and was responsible 
for hematopoietic senescence in MDS. CD3 is a mem-
ber of the sialic acid-binding Ig-like superfamily of 
lectins (Siglec) and possesses an immunoreceptor tyro-
sine-based inhibition motif (ITIM) which is associated 
with immunosuppression [64, 87]. When S100A9 binds 
to CD3, this ligand-receptor complex causes ITIM medi-
ated production of immunosuppressive cytokines like 
IL-10 and TGF-β, which repress erythropoiesis. Data 
also shows the restoration of hematopoiesis by break-
ing the S100A9/CD3/TLR4 circuit. Hence, S100A9 can 
be an initiating factor for the sequence of inflammatory 
responses leading to defective erythropoiesis in MDS 
[64, 87]. Furthermore, a study was conducted by Schnei-
der and his colleagues to investigate the 5q deletion 
phenotype of MDS. This study particularly focused on 
the molecular consequences of ribosomal protein small 
subunit 14 (Rps14) haploinsufficiency that happens with 
5q deletion using a conditional-knockout mouse model 
[88]. Data showed that the Rps14 haploinsufficient bone 
marrow cells caused stress leading to the overexpression 
of S100A8/9 proteins in monocytes, macrophages, and 
late-stage erythroblasts. This process in turn induced the 
expression of P53, mediating erythroid differentiation 
defects. A pharmacological intervention targeting the 
inactivation of S100A8/A9 could improve erythropoiesis 
in 5qdel MDS [88].

Role of interleukin-8 in MDS
Interleukin-8 (IL-8) is a member of the CXC chemo-
kine subfamily, produced by blood cells, and it acts on 
neutrophils, attracting them to the site of inflammation 
[89]. IL-8 activates multiple intracellular signaling path-
ways in the neutrophils, allowing their pathophysiologi-
cal role such as neutrophil degranulation and chemotaxis 
[90]. Elevated levels of IL-8 and its receptors have been 
reported in cancer cells, endothelial cells, infiltrating 
neutrophils, and tumor-associated macrophages, thereby 

activating multiple downstream signaling pathways, such 
as serine/threonine kinases which increase MAPK signal-
ing and the activation of IL-8 in ovarian and lung cancer 
cell lines mediates angiogenesis, cell motility, and inva-
sion [91]. Due to the hypoxia in the bone marrow micro-
environment, high levels of expression of IL-8 are noticed 
in AML cell lines and are associated with a poor prog-
nosis [92]. The role of IL-8 in MDS is evolving, and the 
overexpression of the IL-8 receptor CXCR2 was observed 
in AML/MDS CD34 + stem cell lines as compared to 
healthy CD34 + controls. CXCR2 inhibition in these cell 
lines led to selective inhibition of immature hematopoi-
etic stem cell lines, sparing the control cell lines and pro-
viding a potential therapeutic target [93]. Drugs targeting 
IL-8 and IL-8 receptors are mentioned in Table 1.

Low-risk and high-risk MDS
Innate inflammatory signaling also influences the dif-
ferentiation and expansion of hematopoietic stem cells 
(HSCs) and can be differentially activated in low-risk and 
high-risk MDS phenotypes [94, 95]. Apoptotic pathways 
predominate in bone marrow in low-risk MDS pheno-
types while high-risk MDS clones are able to evade the 
immune system aiding its progression to AML [96]. The 
most common cytogenetic abnormality in lower risk 
MDS, del(5q), is associated with dysregulated innate 
immune pathways as many genes involved in innate 
immune signaling, such as DIAPH1, TIFAB, MiR-146a, 
etc. are in close proximity to the 5q region [97]. In higher 
risk MDS, T regulatory cells predominate leading to 
suppressed immune surveillance and hence disease pro-
gression [98]. Several studies have also reported that 
autoimmune diseases cluster in high-risk MDS pheno-
types suggesting a common inflammatory link in the 
pathogenesis of these diseases [99–101]. VEXAS (Vacu-
oles, E1 enzyme, X linked, autoinflammatory, somatic) 
syndrome is an example dysregulated innate pathway 
that links autoimmune disease with MDS. This syndrome 
is due to somatic mutation of Ubiquitinin-like modifier 
activating enzyme 1 gene (UBA1) located on X chromo-
some leading to upregulation of unfolded protein accu-
mulation and increased stress in myeloid cells causing 
bone marrow failure [102].

Conclusion
Understanding the role of innate immune dysregulation 
has improved over time. There have been a number of 
preclinical and early phase clinical studies which have 
investigated novel therapies targeting these pathways. 
Unfortunately, despite their impressive progress, effec-
tive therapeutic options remain very limited. Addition-
ally, there are still several important, lingering questions 
dealing with the role of innate immunity in pathogen-
esis of MDS such as: (1) Which immune pathway is the 
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best to target in treating MDS? (2) Which age-related 
and microenvironmental changes favor the development 
of the MDS phenotype? Even though promising early 
activity is being seen with IRAK and TGF inhibitors, we 
hope future trials will be able to answer these questions 
comprehensively. Continued endeavors to gain a deeper 
understanding of innate immunity’s role, discover effec-
tive target molecules, and translate them into preclinical 
and early phase clinical trials will hopefully bring promis-
ing therapies in the future.
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