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Abstract 

Normal karyotype acute myeloid leukemia (NK-AML) is a heterogeneous hematological malignancy that contains a 
minor population of self-renewing leukemia stem cells (LSCs), which complicate efforts to achieve long-term survival. 
We performed single-cell RNA sequencing to profile 39,288 cells from 6 bone marrow (BM) aspirates including 5 NK-
AML (M4/M5) patients and 1 healthy donor. The single-cell transcriptome atlas and gene expression characteristics of 
each cell population in NK-AML (M4/M5) and healthy BM were obtained. In addition, we identified a distinct LSC-like 
cluster with possible biomarkers in NK-AML (M4/M5) and verified 6 genes using qRT‒PCR and bioinformatic analyses. 
In conclusion, we utilized single-cell technologies to provide an atlas of NK-AML (M4/M5) cell heterogeneity, compo-
sition, and biomarkers with implications for precision medicine and targeted therapies.
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Introduction
Normal karyotype acute myeloid leukemia (NK-AML) 
is a complex heterogenous disease, and its pathogen-
esis, disease evolution and prognosis have not been fully 
elucidated. NK-AML is the most common cytogenetic 
type of AML, accounting for 40–49% of adult AML and 
20–25% of pediatric AML diagnoses [1, 2]. In NK-AML, 
Bullinger et  al. first distinguished two distinct groups: 
the FAB M1/M2 subtype with FLT3 mutation, in which 
the GATA2, NOTCH1, DNMT3A and DNMT3B genes 
are highly expressed, and the FAB M4/M5 subtype, in 
which the abnormally expressed genes are associated 

with granulocyte and monocyte differentiation, the 
immune response, and hematopoietic stem cell survival. 
Of note, patients classified into these groups have dif-
ferent outcomes [3]. Leukemia stem cells (LSCs) are a 
minor fraction of self-renewing cells that are capable 
of initiating and maintaining leukemia [4]. AML LSCs 
have been demonstrated to exhibit self-renewal, rela-
tive quiescence, apoptosis resistance, and increased drug 
efflux, which likely render these cells less susceptible to 
conventional therapies aimed at bulk proliferative dis-
ease [5]. Therefore, for the purpose of eradicating AML 
and achieving long-term remission, treatment courses 
must eliminate the LSC population [6]. Recently, high-
throughput sequencing has increased our knowledge of 
the genomic and transcriptome landscapes of AML [7, 8], 
but merging these data with the in vivo biology of LSCs is 
still in early stages. Thus, a powerful approach is needed 
to characterize malignant cell populations, such as LSCs, 
and their biological information.
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In AML, traditional sequencing technologies have 
masked the characteristics of minor populations of leu-
kemic cells, while single-cell sequencing can explore the 
differences in the genomic [9, 10], transcriptomic [11, 12] 
and epigenomic landscapes [13] of this disease between 
cells at single-cell resolution. The application of single-
cell RNA sequencing (scRNA-seq) has led to the identifi-
cation of new LSC populations and new markers in AML 
patients and has also identified independent factors of 
a poor prognosis and strategies to prevent AML recur-
rence [11, 12]. In AML, scRNA-seq identified intratu-
moral heterogeneity and distinguished malignant AML 
cells from normal cells. In brief, this technique provides 
a powerful means to potentially address questions related 
to stemness, developmental hierarchies, and interactions 
between malignant and immune cells [14]. However, the 
application of scRNA-seq in AML, the most common 
hematological malignant tumor in adults, is still in its 
infancy, especially in NK-AML, and there is no system-
atic description in the literature.

Here, we adapted scRNA-seq technology to acquire 
transcriptional data for thousands of single cells from 
bone marrow (BM) aspirates. We profiled 36,865 cells 
from 5 NK-AML (M4/M5) patients and 2423 cells from 
1 healthy donor by scRNA-seq and acquired a total of 18 
cell subpopulations. We also profiled the single-cell tran-
scriptome atlas of BM cells from the NK-AML (M4/M5) 
patients and healthy donor. In addition, we revealed the 
existence of a key cell subset, which could be a group of 
LSC-like cells that may play key roles in the initiation and 
maintenance of NK-AML, as this population coexpressed 
multiple genes related to AML pathogenesis and a poor 
prognosis. Finally, through combination of clinical data 
from the GEO database with qRT‒PCR analysis results, 
we verified that integrin subunit α-4 (ITGA4), inositol 
1,4,5-trisphosphate receptor type 2 (ITPR2), adhesion G 
protein-coupled receptor E2 (ADGRE2), ankyrin repeat 
domain 28 (ANKRD28), lysine demethylase 5B (KDM5B) 
and cyclin-dependent kinase 6 (CDK6) were significantly 
upregulated in NK-AML and that ITGA4 and ITPR2 may 
be biomarkers for predicting NK-AML prognosis.

Methods
Human specimen procurement and isolation
Five patients who were pathologically diagnosed with 
NK-AML (M4/M5) and one healthy volunteer at The 
First Affiliated Hospital of Guangxi Medical University 
between 2019 and 2020 were enrolled in this study. None 
of the patients were treated with chemotherapy, radiation 
or any other antitumor medicines prior to BM sample 
collection. This study was approved by the Ethics Com-
mittee of The First Affiliated Hospital of Guangxi Medi-
cal University. Written informed consent was obtained 

from every participant in accordance with the Declara-
tion of Helsinki.

BM mononuclear cells were isolated using density 
gradient centrifugation according to the manufacturer’s 
instructions. In brief, 2 ml of fresh BM aspirate and 2 ml 
1 × DPBS (Gibco) were collected in an EDTA antico-
agulant tube and subsequently layered onto Lymphocyte 
Separation Medium. After centrifugation, BM mononu-
clear cells (the third layer) were carefully transferred to a 
new tube and washed with 1 × DPBS. After supernatant 
removal, the cell pellets were suspended in red blood cell 
lysis buffer (Solarbio) and incubated on ice for 10 min to 
lyse red blood cells. After washing twice with 1 × DPBS, 
the cell pellets were resuspended in cell freezing medium 
(90% fetal calf serum supplemented with 10% dimethyl 
sulfoxide (DMSO)). Finally, the BM mononuclear cells 
were viably frozen and stored in liquid nitrogen or a 
– 85 ℃ freezer.

Viably frozen cells were thawed using standard proce-
dures. First, frozen cells were thawed at 37 °C, suspended 
in Dulbecco’s Modified Eagle Medium (DMEM) and 
washed with DMEM. The cell suspension was passed 
through a 40  µm filter after resuspension in DMEM at 
a concentration of 1–2 million cells per ml. Finally, we 
obtained a single-cell suspension. Cell counts and viabil-
ity were determined with a hemocytometer with trypan 
blue staining (Gibco). Samples were analyzed on a Chro-
mium system (10 × Genomics) according to the manu-
facturer’s instructions for an expected capture rate of 
20,000 single cells per patient.

Sample processing with the 10X genomics platform 
and cDNA library preparation
To process the previously mentioned single-cell suspen-
sions, we added a single-cell sample, gel beads and par-
titioning oil to 10X Genomics Single Cell A Chip Kits 
and acquired gel beads in emulsion (GEMs). The GEMs 
were reverse transcribed using a Bio-Rad C1000 Touch. 
The conditions were as follows: 53 ℃ for 45 min, 85 ℃ for 
5 min, and hold at 4 ℃. The hot cover was set to 53 ℃. 
After reverse transcription, cDNA was recovered using 
Recovery Agent, which was provided by 10X Genom-
ics, and then purified with Silane DynaBeads as outlined 
in the user guide. Purified cDNA was amplified before 
being cleaned using SPRIselect beads to eliminate short 
fragments. The PCR conditions were as follows: 98 ℃ for 
45  s; 98 ℃ for 20  s, 67 ℃ for 30  s, and 72 ℃ for 1  min 
for 12 cycles; and 72 ℃ for 1  min. The cDNA concen-
trations of samples were quantified using the Qubit3.0 
Fluorometer (Invitrogen). The cDNA libraries were con-
structed using the Chromium Single Cell 5’ Library Kit. 
The constructed libraries were analyzed on an Illumina 
HiSeq2500 sequencer in the PE150 mode.
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scRNA‑seq data processing
The Chromium-prepared sequencing data were demul-
tiplexed and converted to FASTQ files with 10X 
Genomics Cell Ranger software (version 3.1.0). The 
same software package was used for filtering, align-
ment, and count quantification. The FASTQ files were 
aligned to the human reference genome GRCh38. These 
preliminary data were then analyzed with the R pack-
age Seurat. Cells with too many or too few genes or too 
much mitochondrial RNA were filtered out, as these 
might represent doublets. Specifically, cells with < 500 
or > 4000 genes, a UMI ≥ 8000 or a mitochondrial 
gene percentage ≥ 10% were filtered. The expression 
value of each gene in a given cluster was compared 
against that in the rest of the cells using the Wilcoxon 
rank-sum test. Significantly upregulated genes were 
identified using the following criteria: (1) gene expres-
sion ≥ 1.28-fold in the target cluster, (2) gene expres-
sion of cells belonging to the target cluster > 25%, and 
(3) p value < 0.05. After rigorous quality control, a total 
of 39,288 cells and an average of approximately 2 × 104 
genes were retained in the six samples for subsequent 
scRNA-seq analysis.

After removing poor-quality cells from the data-
set, we employed the global-scaling normalization 
method “LogNormalize” to normalize gene expression 
and identified highly variable genes in the single cells. 
Subsequently, the most variable genes were identified, 
and a linear dimensionality reduction approach (prin-
cipal component analysis, PCA) was performed with 
the variable genes. The principal components were 
then included in a graph-based clustering algorithm. 
For visualization purposes, a nonlinear dimensionality 
reduction approach (t-distributed stochastic neighbor 
embedding, t-SNE) was used, and the t-SNE plots were 
colored according to the clusters determined in the 
previous step. Ultimately, we identified 18 clusters from 
the scRNA-seq data.

TCGA and GTEx databases
We obtained BM mRNA expression data and clinical 
parameters from normal donors in the GTEx database 
and downloaded the mRNA expression data and clini-
cal parameters of AML patients in the TCGA database. 
Then, we integrated and normalized the data from these 
two databases using the R package “GTEx.merge.R” 
and acquired differentially expressed genes (DEGs) by 
comparing the AML and normal control data. The R 
package “GTEx.Survival.R” was used to obtain progno-
sis-related genes and survival curves by survival analy-
sis. P < 0.05 was considered statistically significant.

Functional analysis
Genes with a P value < 0.01 and an absolute log2-fold 
change (log2FC) > 0.36 between a target cluster and 
other clusters were used for GO and KEGG path-
way enrichment analyses. In addition, preranked gene 
set enrichment analysis (GSEA) was performed. The 
required input files were extracted from the expres-
sion matrix, and the enrichment analyses were per-
formed using OmicShare tools. Interactions between 
DEGs were analyzed using the Gene Multiple Asso-
ciation Network Integration Algorithm (GeneMANIA; 
http://​www.​genem​ania.​org/). The Search Tool for the 
Retrieval of Interacting Genes (STRING; https://​string-​
db.​org/) was used to investigate the protein‒protein 
interactions between DEGs.

Survival analysis
The transcriptome data and clinical information of the 
GSE106291 dataset were downloaded from the GEO 
database. After normalizing the read counts and log2-
transforming the gene expression values, the gene expres-
sion matrix of each patient was obtained. A median 
threshold of gene expression was used to categorize 
patients into high- and low-expression groups. A total 
of 250 AML patients and the top 76 DEGs from a cluster 
were selected for survival analysis to explore the relation-
ship between the expression of target genes and patient 
clinical outcome. GraphPad Prism 7 software (GraphPad 
Software Inc., La Jolla, CA, USA) was used to visualize 
the Kaplan‒Meier estimates of survival curves. P < 0.05 
was considered statistically significant.

Quantitative real‑time PCR (qRT‑PCR)
A total of 30 BM samples were obtained from 20 chem-
otherapy-naive NK-AML (M4/M5) patients and 10 
healthy volunteers between 2013 and 2016 at The First 
Affiliated Hospital of Guangxi Medical University. The 
NK-AML(M4/M5) patients were classified according to 
the French-American-British (FAB, 2016) Criteria. All 
NK-AML (M4/M5) patients received regular follow-
up, and the follow-up period ended in December 2017. 
Patients who had other hematological diseases or malig-
nant tumors were excluded. The healthy volunteers had 
no obvious abnormalities in any examination indexes. 
Written informed consent was obtained from all the par-
ticipants according to the Declaration of Helsinki prior to 
BM collection. Detailed clinical features of the 30 sam-
ples are provided in Additional file 2: Table S1C.

Up to 2 ml of BM sample was extracted from each par-
ticipant, and BM mononuclear cells were separated by 
density gradient centrifugation. Total RNA was isolated 
from the BM cells using TRIzol reagent (Invitrogen, 
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USA) according to the manufacturer’s instructions. 
RNA was then reverse transcribed into cDNA. Reverse 
transcription was performed with a SuperScriptTM III 
Reverse Transcriptase kit (Invitrogen: 18080–044) on a 
Gene Amp PCR System 9700 (Applied Biosystems). qRT‒
PCR was performed on a ViiA 7 Real-time PCR System 
(Applied Biosystems) using the 2X PCR Master Mix Kit 
(Arraystar). The following reaction conditions were used: 
95 °C for 10 min, followed by 40 cycles of 95 °C for 10 s 
and 60  °C for 1 min. ACTB was used as an endogenous 
reference gene, and the primer sequences used in the pre-
sent study were as follows: ACTB forward: 5′GTG​GCC​
GAG​GAC​TTT​GAT​TG3′ and reverse: 5′CCT​GTA​ACA​
ACG​CAT​CTC​ATATT3′; ITPR2 forward: 5′TGC​GCC​
AAT​CAG​CTA​CTT​CT3′ and reverse: 5′TCA​GGA​TTA​
AGC​TCT​GCA​GCTA3′; ADGRE2 forward: 5′GGT​CCT​
GGA​ACC​TGA​GAA​GC3′ and reverse: 5′AGG​TGC​TGG​
TGT​TCT​GGA​TG3′; ANKRD28 forward: 5′TGG​TCA​
CCG​TCT​ATG​TCT​TCAG3′ and reverse: 5′AGG​GCT​
TAT​TGT​TGC​TCT​ATT​ATC​3′; KDM5B forward: 5′AAT​
AGA​ACC​CGA​GGA​GAC​AACG3′ and reverse: 5′GAC​
AGA​CAT​ACA​GGT​CCA​CAGCA3′; ITGA4 forward: 
5′CTG​GGT​AGC​CCT​AAT​GGA​3′ and reverse: 5′ATG​
CCC​ACA​AGT​CAC​GAT​3′; and CDK6 forward: 5′CAT​
TCA​AAA​TCT​GCC​CAA​CC3′ and reverse: 5′GGT​CCT​
GGA​AGT​ATG​GGT​GA3′. The relative expression of tar-
get genes was calculated with the comparative 2 −  ∆∆Ct 
method. As the data did not exhibit a normal distribu-
tion, the relative expression of target genes was compared 
among different groups using the Mann‒Whitney U test.

Results
Identification of cell populations in healthy BM samples
To characterize the features and cellular diversity of 
healthy BM, we performed scRNA-seq using a single-cell 
suspension from a healthy donor on the high-through-
put platform 10X Genomics Chromium. To obtain a 
more representative transcriptomic profile of healthy 
BM samples, we integrated four other healthy donors 
from the GEO database (GSM3396162, GSM3396167, 
GSM3396172, and GSM3396185) (Additional file  2: 
Table S1A). A total of 14,689 high quality cells were iso-
lated and sequenced with a median of 2859 UMI counts 
and 904 genes detected per cell. We distinguished 15 
clusters consisting of cells in the range of 30–6816 cells 
per cluster by unsupervised clustering analysis. Based 
on the marker genes of each cluster, such as CD3D/
CD3E for T cells and CD19 for B cells (Fig.  1A), we 
merged the 15 clusters into 9 main cell populations, 
which corresponded to hematopoietic stem/progeni-
tor cells (HSPCs), granulocyte–macrophage progenitors 
(GMPs), T cells, natural killer (NK) cells, B cells, plasma 
cells, monocytes, erythrocytes and dendritic cells (DCs) 

(Fig.  1B). Basically, the similar cell clusters gathered 
together in a range. Our cell type annotations were con-
sistent with published gene signatures and researches. 
[14–16]. All 15 cell types were identified in all 5 samples 
(Fig. 1C). We then explored the distribution proportions 
of these clusters and found that T cells were dominant in 
the BM mononuclear cells of normal controls (more than 
50%), followed by monocytes (approximately 20%) and B 
cells (approximately 10%), which was in accordance with 
previous results [17] (Fig. 1D). Thus, scRNA-seq analysis 
of normal BM revealed diverse hematopoietic cell types 
and suggested a distribution pattern consistent with cur-
rent views on hematopoiesis.

Single‑cell profiling of NK‑AML(M4/M5) tumor ecosystems
To examine cellular diversity in NK-AML, we also car-
ried out scRNA-seq with viably frozen BM cells from 5 
treatment-naive NK-AML (M4/M5) patients without 
enrichment to achieve a broad overview of the transcrip-
tional profile and gene expression patterns of NK-AML 
at the single-cell level. To compare the similarities and 
differences between NK-AML (M4/M5) patients and 
the normal control, we combined the data from 6 sam-
ples for further analysis. Based on the gene expression 
characteristics of individual cells, we applied Seurat soft-
ware to identify cell clusters and visualized them after 
dimensionality reduction by t-SNE. After rigorous quality 
control, a total of 39,288 effective cells and an average of 
approximately 2 × 104 genes per patient (range 19,316–
20,409) were retained from the 6 samples for subse-
quent scRNA-seq analysis (Additional file 2: Table S1B). 
According to the DEGs and known cell type-specific 
markers of each cluster, we identified 7 clusters: erythro-
cytes (clusters 1 and 7), monocytes (clusters 4, 5, 14 and 
16), T cells (including NK cells, cluster 8), immature T 
cells (cluster 10), DCs (cluster 11), B cells (cluster 15) and 
plasma cells (cluster 17). The top 5 DEGs of each cluster 
are presented in Table 1. In addition, the remaining clus-
ters (clusters 0, 2, 3, 6, 9, 12 and 13), which lacked com-
mon markers for normal hematopoietic cells and were 
almost exclusively derived from the NK-AML (M4/M5) 
samples, were considered to be leukemic cells (Fig. 2A). 
This allowed us to merge the 18 clusters into 8 main cell 
populations (Fig.  2B). Among the NK-AML (M4/M5) 
patients, there were significant differences in cell popula-
tion abundance even if the patients were of the same FAB 
type, which revealed tumor heterogeneity among the 
patients (Fig. 2C–G).

When comparing the AML patients and normal donor, 
we observed that the number of cells in the NK-AML 
(M4/M5) samples was greater than that in the nor-
mal sample. With the normal control, we also obtained 
8 clusters (Fig.  2H). However, there was significant 
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heterogeneity in the cell proportions between the nor-
mal sample and NK-AML (M4/M5) samples. The normal 
control samples were mainly composed of monocytes, 
T cells and B cells, while there were more leukemic cells 
and fewer lymphocytes in the NK-AML (M4/M5) sam-
ples (Fig.  2C–H). These findings suggest the malignant 
clonal proliferation of leukemic cells in AML. The normal 
hematopoietic cells and leukemic cells clustered together, 
indicating that malignant cells may have an expression 
pattern similar to that of normal cells.

Cluster 12 may be LSC‑like cells
To identify the similarities and differences in gene 
expression among the 18 cell subsets, the top 50 DEGs 
(757 genes in total) of each cluster were selected for heat-
map analysis (Fig.  3A). The gene expression patterns of 
a single cell type (for example, clusters 4, 5, 14 and 16) 

were similar, consistent with the cell annotation results. 
Gene expression patterns varied widely among the cell 
types. Pearson correlation analysis was performed to 
more intuitively understand the similarities among cell 
subsets (Fig.  3B). The results demonstrated that cluster 
12 showed low similarity to the other clusters apart from 
cluster 17, which was classified as plasma cells and was 
significantly different. In addition, from the t-SNE plot 
(Fig. 2A), we observed that a continuous arc was formed 
by the 12 myeloid cell clusters, and the 5 lymphoid cell 
clusters were distributed on both sides, which may indi-
cate the differentiation process of hematopoietic cells. 
However, cluster 12 appeared to be separated from other 
clusters. These results all indicated that cluster 12 was 
obviously specific.

To predict the functions of DEGs in AML, GO and 
KEGG pathway enrichment analyses were performed for 
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the top 50 DEGs of each cluster (Additional file  1: Fig-
ure S1). Cluster 1, which expressed the primary genes 
GATA1 and GATA2, exhibited enrichment in erythrocyte 
differentiation and homeostasis and was considered early 
erythrocytes. Cluster 7 was related to the heme metabolic 
process, the porphyrin-containing compound metabolic 
process and hemoglobin binding, indicating that it was 
involved in the synthesis, binding and transport of hemo-
globin and comprised functionally mature erythrocytes. 
Monocytes (clusters 4, 5, 14 and 16) were involved in the 
immune and defense responses and immune cell activa-
tion. T cells (clusters 8 and 10) and B cells (clusters 15 
and 17) were associated with the immune response and 
T/B-cell activation and proliferation. The genes in DCs 
(cluster 11) were enriched in the MHC protein complex, 

antigen processing and presentation. DCs are profes-
sional antigen-presenting cells that can efficiently take 
up, process and present antigens on MHC I and MHC 
II and effectively activate naive T cells. These events are 
central to initiating, regulating, and maintaining the 
immune response [18]. The data were consistent with our 
cell annotation results. Among leukemia cell populations, 
cluster 2 was related to the terms cytokine-cytokine 
receptor interaction and response to stimulus, defense 
and immune. Clusters 6 and 9 showed similar enrich-
ment in the cell cycle process, chromosome organization 
and the p53 signaling pathway. It appeared that clusters 
2, 6 and 9 were not sufficiently relevant to AML. Clusters 
0, 3, 12 and 13 were related to transcriptional misregu-
lation in cancer, acute myeloid leukemia, hematopoietic 
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cell lineage, microRNAs in cancer and pathways in can-
cer (including the MAPK/PI3K-Akt/Rap1/p53/Ras/Phos-
pholipase D signaling pathway). However, cluster 12 was 
also associated with myeloid/lymphoid progenitor cell 
differentiation, gene expression regulation and leukocyte 
activation, while clusters 0, 3 and 13 were enriched in cell 
proliferation, lymphocyte activation and differentiation, 
and cell secretion, respectively, by GO analysis. Cluster 
12 was comprehensively and highly involved in AML-
related signaling pathways (the PI3K-Akt/Ras/MAPK/
Phospholipase D signaling pathway), acute myeloid leu-
kemia, hematopoietic cell lineage, and transcriptional 
misregulation in cancers, suggesting that the function of 
cluster 12 was highly correlated with AML compared to 
that of the other leukemia cell clusters (Fig. 3C–D).

We further compared the surface markers of each 
cluster and found that the number of cells in cluster 12 
accounted for only 0.51%-3.84% of the total but that these 
cells highly expressed CD34, CD38, CD96, CD46, CD34, 
CD47, CD82, CD44 and CD133, most of which are highly 
expressed in LSCs [19] (see Table 2). These markers were 
also expressed in the other 6 leukemia cell clusters. How-
ever, this pattern was not comprehensive, and the expres-
sion values of the other clusters were significantly lower 
than that of cluster 12. Cluster 12 was almost exclusively 
derived from the 5 NK-AML (M4/M5) samples (677 
cells), and only a few cells (19 cells) came from the nor-
mal sample. The results showed that cluster 12 was more 
likely to be LSCs. In addition, the nontraditional LSC 

markers CD38 and CD46 were highly expressed in clus-
ter 12. In conclusion, we hypothesized that cluster 12 was 
not traditional LSCs but might be a group of LSC-like 
cells that might play important roles in the initiation and 
maintenance of NK-AML.

To explore the gene expression pattern of cluster 12, 
a total of 76 upregulated genes were screened out from 
the cluster according to the gene expression cutoff of 
log2FC > 2 (Additional file  3: Table  S2). There were sig-
nificant differences in the abundance of cluster 12 among 
the NK-AML patients; thus, we compared the expres-
sion discrepancy of these 76 genes between cluster 12 
and the other clusters in 5 AML samples respectively 
(Fig. 4A). The results showed that the expression levels of 
the 76 genes were all higher in cluster 12, indicating that 
the high expression characteristics were consistent in all 
NK-AML (M4/M5) samples. We observed that many of 
these genes, including LSC markers (CD96, CD34, CD47, 
CD82, CD44, CD99 and CD133) and AML-related genes 
(KIT, FLT3, RUNX1, IKZF2, HGF, SSBP2, FCHSD2, 
ADGRE2, ERG, MSI2, ZBTB20, ITPR2, ELMO1, MDM4, 
ZEB2, KDM5B, and CDK6), were associated with AML 
and were more highly expressed in cluster 12 than in the 
other clusters (Fig.  4B). Some of the genes were poor 
prognostic indicators in AML (such as CD133, KIT, HGF, 
ERG, FCHSD2, ADGRE2, ITPR2 and ELMO1). These 
findings showed that cluster 12 coexpressed multiple 
genes related to the pathogenesis and poor prognosis of 
AML. In addition, GSEA further confirmed the results of 

Table 2  Expression of cell surface markers in each cell subpopulation

Cluster Marker gene(log2FC)

0 CD34, CD133, CD200

1 CD36, CD55, CD63, CD82, CD84

2 None

3 CD7, CD38, CD82, CD244

4 CD1D, CD4, CD14, CD36, CD48, CD68, CD86, CD93, CD300A, CD300C, CD300E, CD302

5 CD14, CD36, CD48, CD68, CD86, CD93, CD300C, CD302

6 CD59

7 CD36, CD63, CD151, CD320

8 CD2, CD3D, CD3E, CD3G, CD7, CD8A, CD8B, CD47, CD48, CD52, CD53, CD69, CD247

9 CD59

10 CD2, CD3E, CD3D, CD3G, CD5, CD6, CD7, CD8A, CD8B, CD27, CD52, CD69, CD247

11 CD1C, CD1D, CD4, CD74, CD86, CD300C

12 CD34, CD38, CD44, CD46, CD47, CD82, CD96, CD99, CD133

13 CD44, CD99, CD133

14 CD14, CD36, CD68, CD84, CD86, CD151, CD300C

15 CD19, CD22, CD24, CD27, CD37, CD40, CD52, CD53, CD55, CD72, CD74, CD79A, 
CD79B, CD83, CD180

16 CD4, CD37, CD48, CD52, CD68, CD79B, CD86, CD300A, CD300C, CD300E

17 CD19, CD27, CD48, CD59, CD79A, CD79B, CD138, CD320
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the GO and KEGG enrichment analyses. GSEA revealed 
significant activation of gene sets associated with hemat-
opoietic stem cells, hypoxia, NPM1 mutation-related 
AML, p53 signaling pathways, and FGFR and ERBB2 
receptor tyrosine kinase family-mediated signaling 
pathways in cluster 12 (Fig.  5). Thus, cluster 12 may be 
LSC-like cells, and the top 76 genes in this cluster were 
significantly related to the pathogenesis and poor prog-
nosis of NK-AML.

PCR analysis
To research the relationship between the expression 
of the 76 genes and prognosis in AML, we combined 
BM samples from AML patients in the TCGA data-
base and those from normal controls in the GTEx 
database for analysis. Ultimately, 2800 differentially 
upregulated genes and 777 prognosis-related genes in 
AML were obtained. Venn diagram analysis showed 
that 29 of the differentially upregulated genes and 19 
of the prognosis-related genes overlapped with the 76 
genes identified with our data. Among them, 12 genes 
were upregulated in AML and associated with prog-
nosis: MIR181A1HG, MIR222HG, KIT, HGF, MCTP2, 
FCHSD2, ERG, ITGA4, ITPR2, DPYD, CDK6, SPN, 
and ARHGEF6. Since MIR181A1HG and MIR222HG 
are RNA transcripts, we did not further analyze them. 
Afterward, the GSE106291 dataset, containing known 
treatment outcomes (including overall survival, OS) of 
250 AML patients, was selected to determine the prog-
nostic significance of the above 10 genes. Kaplan‒Meier 
analysis confirmed that the expression values of ITGA4 

and ITPR2 could predict the OS outcomes of AML 
patients with P < 0.05, which was consistent with the 
results of the analysis of TCGA and GTEx data. Low 
expression levels of ITGA4 and ITPR2 indicated a poor 
outcome (Fig. 6A–B). We further conducted PCR vali-
dation and found that ITGA4 and ITPR2 were signifi-
cantly upregulated in AML (Fig. 6C–D), but the sample 
size was too small for us to perform a significant sur-
vival analysis.

We next performed differential expression analysis 
between each NK-AML (M4/M5) patient and the nor-
mal control to assess commonalities in RNA clonal evo-
lution across the patients. We identified a total of 107 
significantly (log2FC > 1 and q < 0.05) upregulated genes 
among the five patients (Additional file  4: Table  S3). 
Venn diagram analysis showed that 8 of the genes over-
lapped with the 76 genes mentioned above: MIR222HG, 
ATP8B4, ADGRE2, ANKRD28, FLT3, PLAGL1, KDM5B, 
and CDK6. PCR analysis was performed on ANKRD28, 
CDK6, ADGRE2 and KDM5B and showed that these 
genes were significantly upregulated in AML (Fig.  6E–
H). Similarly, survival analysis showed no significant 
significance.

To predict the functions of these six genes in AML, we 
performed protein‒protein and gene‒gene interaction 
network analyses (Fig.  7). There were 89.27% coexpres-
sion, 10.7% colocalization and 0.03% genetic interaction 
in the gene interaction network. As the target genes had 
no obvious correlations in the protein–protein interac-
tion network, we performed protein‒protein interaction 
network analysis of the top 76 genes of cluster 12, which 
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showed the highest associations between ITGA4 and 
AML-associated genes such as CD34, CD38, PROM1 
and KIT.

Discussion
At present, the treatment of NK-AML remains a chal-
lenge. The standard therapy for AML is still cytarabine- 
and anthracycline-based regimens (‘‘3 + 7’’ regimen) 
to achieve and maintain complete remission (CR) and 
cure AML. Approximately 60–80% of young people and 
40–60% of elderly people (60  years or older) achieve 
initial remission after chemotherapy. However, at least 
40% of these patients relapse with refractory disease, 
and the five-year survival rate is approximately 30% to 
40% [20, 21]. LSCs are a key factor in cancer treatment 
failure and disease evolution. In AML, there are a small 
number of cells, including LSCs, side population cells 
and other stem cell-like cells, that possess the biological 

characteristics of quiescence, multilineage differentia-
tion, self-renewal and disease maintenance, leading to 
disease relapse [22, 23]. Therefore, characterization of 
stem cell-like populations and the development of ther-
apeutic strategies targeting these cells are the basis for 
achieving long-term remission of AML.

In this study, scRNA-seq was performed on BM mono-
nuclear cells from 5 patients with NK-AML (M4/M5) and 
1 normal control. The transcriptome profiles and gene 
expression patterns of the NK-AML (M4/M5) patients 
and healthy individual at the single-cell level were dem-
onstrated. We captured a broad distribution of cell types, 
including monocytes, T cells, B cells, DCs, erythrocytes, 
and multiple leukemia cell populations. All 18 cell types 
were identified in all donors. Our results are consistent 
with the differential distribution of BM cells in healthy 
controls and AML patients and provide more evidence of 
the heterogeneity in NK-AML.

NK-AML Normal
0

2

4

6

8

R
el

at
iv

e 
IT

G
A

4 
Ex

pr
es

si
on

P=0.0033

0 1000 2000 3000
0

50

100

Time (day)

Pe
rc

en
t s

ur
vi

va
l

ITPR2 high expression
ITPR2 low expression

P=0.0261

NK-AML Normal
0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
A

D
G

R
E2

 E
xp

re
ss

io
n P=0.0006

NK-AML Normal
0

10

20

30

R
el

at
iv

e 
A

N
K

R
D

28
 E

xp
re

ss
io

n P=0.0005

NK-AML Normal
0

10

20

30

40

50

R
el

at
iv

e 
C

D
K

6 
Ex

pr
es

si
on

P<0.0001

NK-AML Normal
0

10

20

30

40

R
el

at
iv

e 
K

D
M

5B
Ex

pr
es

si
on P<0.0001

0 1000 2000 3000
0

50

100

Time (day)

Pe
rc

en
t s

ur
vi

va
l

ITGA4 high expression
ITGA4 low expression

P=0.0099

NK-AML Normal
0

2

4

6

8
R

el
at

iv
e 

IT
PR

2 
Ex

pr
es

si
on P=0.0045

BA

EDC

F HG

Fig. 6  A–B Kaplan‒Meier survival curves of AML patients from the dataset GSE106291 (n = 250) using the ITGA4 and ITPR2 genes. C–H The relative 
expression of ITGA4, ITPR2, CDK6, ANKRD28, ADGRE2 and KDM5B in the NK-AML (M4/M5) group and the normal control group



Page 13 of 16Wu et al. Experimental Hematology & Oncology           (2023) 12:25 	

Due to cell scarcity, it is difficult to distinguish can-
cer stem cells (CSCs) using classic next-generation 
sequencing. In the scRNA-seq data, we found that clus-
ter 12, which was rare in number, highly expressed not 
only multiple LSC markers, such as CD34, CD96 and 
CD133, but also the nontraditional LSC markers CD38 
and CD46. CD38 is highly expressed mainly in multiple 
myeloma and chronic B-cell leukemia [24, 25]. CD46 
is a key regulator of the classical and selective comple-
ment activation cascade in the innate immune system 
and is associated with a variety of immune inflamma-
tory diseases [26]. GO and KEGG enrichment analy-
ses showed that the DEGs of this cluster had biological 
functions related to the malignant pathways of AML. In 
AML, the first study of CSCs was published in the late 
twentieth century, in which Bonnet and Dick isolated 
a subset of CD34+/CD38− leukemia cells. Compared 
with CD34+/CD38+ and CD34− cells, CD34+/CD38− 
cells can initiate AML in nonobese diabetic mice with 
severe combined immunodeficient disease (NOD/SCID 
mice) [27]. To date, the CD34+/CD38− phenotype is 
still a recognized marker for LSC isolation. Our data 
showed that cluster 12 with high expression of CD34 
and CD38 may be an LSC-like subpopulation, such as 
a side population. Hence, we speculated that the cluster 
might be an LSC-like group that plays important roles 
in NK-AML initiation and maintenance.

To explore gene expression patterns in this cluster, we 
identified 12 genes that were upregulated in AML and 
associated with prognosis in combination with data from 
the TCGA and GTEx databases. Studies on KIT, HGF 
and ERG in AML have demonstrated that these genes are 
all upregulated and that high expression predicts an unfa-
vorable outcome [28–31]. Moreover, KIT mutations are 
common in AML. KIT is expressed on more than 10% of 
blasts in 64% of de novo AML cases and 95% of relapsed 
AML cases. Thus, KIT represents a potential therapeu-
tic target in AML [32]. FCHSD2 is also highly expressed 
in AML, and its overexpression significantly increases 
cellular chemotherapy resistance. It was shown that 
FCHSD2 is a predictor of outcome in AML patients and 
that the determination of FCHSD2 expression at the time 
of diagnosis could help to predict the responses of AML 
patients to chemotherapy [33]. There are few studies on 
the DPYD, ARHGEF6, MCTP2 and SPN genes in AML, 
but these genes are known to be differentially expressed 
in other tumors, such as colorectal cancer, lung cancer 
and hepatocellular carcinoma. In addition, ITGA4 and 
ITPR2 were validated in AML datasets from the GEO 
database. Low expression levels of ITGA4 and ITPR2 
indicated a poor outcome. The prognostic significance 
of ITPR2 was the opposite of the significance reported in 
the literature, which may be due to tissue differences and 
requires further validation in the future. Furthermore, 
the functional and prognostic significance of the other 
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various genes requires future experimental clarification. 
PCR analysis further demonstrated that the expression 
levels of ITGA4, ITPR2, ADGRE2, ANKRD28, KDM5B, 
and CDK6 in NK-AML (M4/M5) were significantly 
higher than those in normal controls, suggesting that 
these genes may be possible biomarkers of NK-AML.

ITGA4, a member of the integrin alpha chain family of 
proteins, is considered to be an adverse prognostic fac-
tor for chronic lymphoblastic leukemia (CLL) with an 
invasive course and short time to treatment, and ITGA4 
gene hypermethylation is a characteristic status in CLL 
compared with healthy controls [34, 35]. Protein–pro-
tein interaction network analysis showed that ITGA4 was 
associated with PROM1, KIT, CD34 and CD38, which 
were closely related to AML. GO and KEGG enrich-
ment analyses showed that ITGA4 was enriched in cell 
adhesion, leukocyte migration and hematopoietic pro-
cesses and participated in the PI3K-Akt signaling path-
way, which is related to tumor cell migration, adhesion, 
tumor angiogenesis and extracellular matrix degradation. 
ITPR2 is a key regulator of calcium ion transmembrane 
transportation and plays critical roles in cell migration, 
cell division, the cell cycle and proliferation. ANKRD28 
is located at 3p25.1, and its function remains unclear. 
ANKRD28 is widely expressed in human tissues, espe-
cially in the BM, brain and testis. ITPR2 and ANKRD28 
were demonstrated to be novel biomarkers for worse 
prognosis in NK-AML [36, 37]. ADGRE2 encodes a pro-
tein that is expressed mainly in myeloid cells and pro-
motes cell‒cell adhesion. Upregulation of ADGRE2 was 
significantly associated with shorter OS in AML using 
publicly available genomic data [38]. KDM5B encodes 
a lysine-specific histone demethylase that belongs to 
the jumonji/ARID domain-containing family of histone 
demethylases. This protein plays a role in the transcrip-
tional repression or certain tumor suppressor genes and 
is upregulated in certain cancer cells [39]. Downregula-
tion of KDM5B produces efficient antileukemic effects 
in MLL-rearranged AML cells and HL-60 cells, suggest-
ing that KDM5B may be a potential epigenetic target 
for AML treatment [40, 41]. CDK6 is a member of the 
CMGC family of serine/threonine protein kinases and 
is important for cell cycle regulation. CDK6 is highly 
expressed in AML patient samples and represents a 
promising target in MLL fusion-expressing, FLT3-ITD-
positive and NUP98 fusion protein-driven AML [42, 43].

In summary, we leveraged the combination of single-
cell transcriptomics and qRT-PCR to parse leukemia cells 
in NK-AML (M4/M5). Our results provide insight into 
the transcriptomic profiles of NK-AML (M4/M5) BM 
samples for the first time and identify a distinct LSC-like 
cell population with possible biomarkers in AML with a 
normal chromosomal karyotype. These findings provide 

a new population of LSCs and offer potential biomarkers 
and prognostic predictors for clinical applications in NK-
AML. However, our experiment had a limited sample 
size, and the data may not be representative. In addition, 
the results have not been verified yet. Therefore, our next 
research step is to isolate the LSC-like cells according to 
their cell-surface markers identified by current data using 
flow cytometry. Quantitative Real-time PCR and West-
ern blotting will be performed to detect the mRNA and 
protein expression of candidate marker genes to further 
verify our research results. The data and findings can 
guide therapeutic strategies aimed at malignant cells 
and target genes in NK-AML. Finally, the present study 
provides evidence that scRNA-seq plays an important 
role in the study of NK-AML and suggests that strategies 
promoting scRNA-seq may be valuable approaches for 
hematological malignancy therapy.
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