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PCSK9 promotes tumor growth by inhibiting 
tumor cell apoptosis in hepatocellular 
carcinoma
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Abstract 

Background:  Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key enzymes in the process of lipid 
transport, is involved in the disease progression of various types of tumors. This article is to study the role of PCSK9 in 
the progression of hepatocellular carcinoma (HCC).

Methods:  Immunohistochemistry was used to assess the expression of PCSK9 in tumor specimens from 105 HCC 
patients who underwent curative resection. Western blotting and quantitative real-time PCR were used to test the 
protein and mRNA expression levels in HCC cell lines. Cell Counting Kit-8 (CCK-8) and clone formation assays were 
performed to evaluate the proliferation ability of different kinds of cells in vitro. Flow cytometry was used to analyze 
cell cycle distribution and apoptosis rate. A xenograft model was established to study the effect of PCSK9 on HCC 
growth in vivo. TUNEL and immunofluorescence assays were used to detect cell apoptosis.

Results:  High expression of PCSK9 in tumor tissues was related to microvascular invasion (p = 0.036) and large tumor 
size (p = 0.001) in HCC patients. Overall survival and disease-free survival after surgery were poor in patients with 
high expression of PCSK9 (p = 0.035 and p = 0.007, respectively). In vivo and in vitro experiments showed that PCSK9 
promoted the growth of HCC by inhibiting cell apoptosis. A mechanistic study revealed that PCSK9 increases FASN 
expression, thereby inhibiting apoptosis of HCC cells via the Bax/Bcl-2/Caspase9/Caspase3 pathway.

Conclusions:  PCSK9 expression level in HCC is an indicator of poor prognosis for patients with HCC. FASN-mediated 
anti-apoptosis plays an important role in PCSK9-induced HCC progression.
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Background
Liver cancer, mostly hepatocellular carcinoma (HCC), 
has the fifth-highest morbidity and the second-highest 
mortality rate among men worldwide [1]. Although we 
have witnessed advances in HCC treatment in recent 
years, the rapid growth and high recurrence rate after 

curative therapy are still important factors affecting 
prognosis. To date, only anti-angiogenic therapy and 
immune-checkpoint inhibitors have shown clinically sig-
nificant effects in practice.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) 
is mainly synthesized by hepatocytes and is one of the 
key enzymes in lipid transport. PCSK9 causes low-
density lipoprotein (LDL) accumulation in the blood by 
reducing the amount of low-density lipoprotein receptor 
(LDLR) on the cell membrane, leading to hyperlipidemia 
[2–4]. In addition, PCSK9 is closely related to nervous 
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system development [5, 6], hepatocyte regeneration [7], 
and islet cell function regulation [8]. Recently, PCSK9 
was found to inhibit cell apoptosis in a variety of tumors, 
such as neuroglioma [9], lung adenocarcinoma [10], mel-
anoma [11], and neuroendocrine neoplasms [12]. How-
ever, it is still unknown whether the expression level of 
PCSK9 in HCC has clinical significance. In this study, we 
investigated the relationship between the expression level 
of PCSK9 in tumor cells and patient prognosis after cura-
tive surgery, and then explored the mechanisms by which 
PCSK9 promotes tumor growth in HCC.

Methods
Patients and tissue specimens
This study was approved by the Clinical Research Eth-
ics Committee of Zhongshan Hospital, Fudan Univer-
sity, Shanghai, China, and all patients signed informed 
consent forms. Tissue microarrays (TMAs) were com-
posed of specimens from 105 HCC patients who under-
went curative liver resection from December 2009 to 
December 2010 at Zhongshan Hospital of Fudan Uni-
versity. These patients had no extrahepatic metastasis 
of HCC and had not received any anti-tumor treatment 
before surgery. Detailed methods of TMA establishment 
and patient follow-up were described in our previous 
study [13]. Overall survival (OS) was defined as the time 
between surgery and patient death or the last follow-up 
date. Disease-free survival (DFS) was defined as the time 
between surgery and tumor recurrence or patient death.

Immunohistochemistry
Paraffin sections were incubated with rabbit anti-PCSK9 
antibody (1:100, ProteinTech Group, Chicago, IL). Ultra-
Vision Quanto Detection System HRP DAB (Thermo 
Fisher Scientific, CA, USA) was used to detect PCSK9 
expression. The integrated optical density (IOD) of posi-
tive expression was calculated using Image-Pro Plus 6.0 
software. The detailed steps were described in our previ-
ous study [14].

Cell culture
The L02 cell line is a human hepatocyte cell line. MHCC-
97H, MHCC-97L, Huh7, HepG2, PLC, HCCLM3, and 
SMMC7721 cell lines are different human HCC cell lines 
[15, 16]. All these cell lines were obtained from the Liver 
Cancer Institute of Fudan University (Shanghai, China). 
All cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM; Invitrogen, Carlsbad, CA) supple-
mented with 10% fetal bovine serum (FBS; Gibco, Grand 
Island, NY) and 1% streptomycin/penicillin.

Lentivirus transfection
Lentiviruses containing PCSK9-overexpressed or 
PCSK9-downregulated nucleic acid sequences and 
their corresponding control lentiviruses (Lv-PCSK9, 
Lv-Vector, Lv-shPCSK9, Lv-shVector) were constructed 
by Genomeditech (Shanghai, China). Before transfec-
tion, approximately 3 × 105 tumor cells were seeded in 
each well of 6-well plates. Lentiviruses were added to 
the respective HCC cells with 1.5  ml of DMEM con-
taining no FBS and 5  μg/ml Polybrene (Sigma, USA). 
Twenty-four hours later, the medium was replaced with 
DMEM containing 10% FBS. The efficiency of transfec-
tion was detected by qPCR and western blotting.

Western blotting and quantitative real‑time PCR assays
We extracted 30 μg of total protein from cultured cells, 
separated the proteins using 10% SDS-PAGE and trans-
ferred proteins onto polyvinylidene difluoride mem-
branes. Then, we blocked proteins with 5% skim milk 
for 30  min and incubated them with diluted primary 
antibody. Primary antibodies for GAPDH, PCSK9, 
FASN, Bax, Bcl-2, Caspase9, and Caspase3 were pur-
chased from Abcam (Cambridge, UK). Specific steps 
were performed as previously described [17]. The prim-
ers used for qRT-PCR are as follows: PCSK9, 5′-GCT​
GAG​CTG​CTC​CAG​TTT​CT-3′ (forward) and 5′-AAT​
GGC​GTA​GAC​ACC​CTC​AC-3′ (reverse); GAPDH, 
5′-AAG​GTG​AAG​GTC​GGA​GTC​AAC-3′ (forward) and 
5′-GGG​GTC​ATT​GAT​GGC​AAC​AATA-3′ (reverse).

Clone formation assay
Approximately 500 individual HCCLM3 cells or 800 
individual HepG2 cells were isolated and then seeded 
in one well of a 6-well plate. Approximately two weeks 
later, when colonies visible to the naked eye appeared, 
we fixed the cells with formalin for 30  min, stained 
them with 0.1% crystal violet for 15  min and then 
counted the colonies under a microscope (Olympus, 
Tokyo, Japan).

Apoptosis assay
Flow cytometry was used to detect the apoptosis rate 
of HCC cells in vitro. For the TUNEL assays, a TUNEL 
reaction mixture (Roche, Pleasanton, CA, USA) and 
DAPI (ProteinTech Group) were used. Apoptotic cells 
appeared as red-stained cells under a fluorescence 
microscope (Olympus, Tokyo, Japan).

Tumor xenograft model of nude mice
As described in the previous literature, an orthotopic 
tumor xenograft model was set up with 5-week-old 
male BALB/c nude mice obtained from the Beijing Vital 
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River Laboratory Animal Technologies Co. Ltd and kept 
under specific pathogen-free conditions [18]. The mice 
were randomly grouped, and each group contained six 
mice. About 6 × 106 HCCLM3 or HepG2 cells dissolved 
in 200  μl PBS were subcutaneously seeded in 5-week-
old male BALB/c nude mice. Four weeks later, subcu-
taneous tumor nodules were removed from the nude 
mice as xenograft sources. We cut the xenograft sources 
into small nodules (2.0 × 2.0 × 2.0 mm3) and inoculated 
these dissected subcutaneous tumor nodules into the 
liver capsules of male BALB/c nude mice to establish an 
orthotopic transplantation model. Four weeks later, we 
executed the mice and removed the xenografts for fur-
ther study. The calculation of tumor volume adopts the 
classic calculation formula V = (length × width2)/2.

Statistical analysis
Continuous variables were expressed as the 
mean ± standard deviation or median (range) and were 
compared using Student’s t-test or the Mann–Whitney 
U-test. Categorical variables were compared using the 
χ2 test or Fisher’s exact test. Univariate survival analy-
sis was performed using the Kaplan–Meier method. The 
significance of each variable for predicting OS and DFS 
was analyzed using Cox proportional hazards regression 
models. All statistical tests were two-tailed, and p < 0.05 

was defined as a significant difference. SPSS v19.0 (IBM 
Inc, USA) was used as the statistical analysis software.

Results
High expression of PCSK9 in HCC cells correlated with poor 
prognosis of HCC patients
We selected 105 consecutive patients who underwent 
radical resection of HCC at Zhongshan Hospital from 
December 2009 to December 2010 and constructed a 
tissue microarray (TMA) with their tumor tissues. The 
expression level of PCSK9 in different HCC patient tis-
sues varies greatly (Fig. 1a). The distribution of IOD val-
ues among this cohort of patients is normally distributed 
(lnIOD = 16.74 ± 1.59). Cutoff Finder [19] was used to 
find an ideal cutoff value to stratify patients with differ-
ent prognoses. Then, we divided the patients into a high-
PCSK9 group (n = 41) and low-PCSK9 group (n = 64). 
The expression of PCSK9 in tumor tissues of HCC 
patients was associated with large tumor size (p = 0.001) 
and microvascular invasion (p = 0.036). The expression 
of PCSK9 was not associated with patient age, gender, 
serum AFP level, number of tumors, or tumor cell differ-
entiation (p > 0.05 for all) (Table 1).

Univariate analysis showed that OS was associated 
with serum AFP levels (p = 0.001), tumor size (p < 0.001), 
tumor cell differentiation (p = 0.008), microvascular 

Fig. 1  Intratumoral PCSK9 expression was associated with prognosis in HCC patients who underwent curative resection. a Immunohistochemistry 
staining of liver cancer tissues from different HCC patients. Typical cases with low or high PCSK9 expression are shown. Kaplan–Meier analysis 
showed that patients with high PCSK9 expression had poor overall survival (p = 0.035) (b) and poor disease-free survival (p = 0.007) (c)
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invasion (p = 0.018) and PCSK9 expression (p = 0.035) 
(Table  2, Fig.  1b); DFS was associated with serum AFP 
levels (p = 0.005), number of tumors (p = 0.037), tumor 
size (p = 0.002), and PCSK9 expression (p = 0.007) 
(Table  2, Fig.  1c). The median OS in the low PCSK9 
group was longer than that in the high PCSK9 group 
(80.15 vs. 30.03 months), and the median DFS in the low 
PCSK9 group was longer than that in the high PCSK9 
group (33.67 vs. 10.37 months). Cox multivariate regres-
sion analysis indicated that serum AFP levels (p < 0.001), 
tumor size (p = 0.001), and PCSK9 levels (p = 0.049) were 
independently associated with OS, and serum AFP lev-
els (p = 0.001), tumor number (p = 0.041), tumor size 
(p = 0.017), and PCSK9 expression level (p = 0.007) were 
independently associated with DFS (Table  2). Overall, 
high PCSK9 expression in HCC tissues is an independ-
ent risk factor for both OS and DFS in patients with HCC 
who underwent curative resection.

PCSK9 promoted cell proliferation in vitro
Because the expression of PCSK9 was low in HCCLM3 
cells and high in HepG2 cells (Fig.  2a), we chose these 
two cell lines for further study. Stable overexpression of 
PCSK9 in HCCLM3 cells, downregulation of PCSK9 in 
HepG2 cells, and the corresponding vector control were 
established. Lv-Vector, Lv-PCSK9, Lv-shVector and Lv-
shPCSK9 with green fluorescent protein (GFP) were 
used for transfection of lentivirus. After transfection, 
strong GFP expression was observed in HCC cells under 
an inverted fluorescence microscope, and the efficiency 

Table 1  Relationship between intratumoral PCSK9 expression 
and clinicopathological features of HCC patients

Variable PCSK9 expression p

Low High

Age (years)

 ≤ 50 23 14 0.851

 > 50 41 27

Gender

 Female 10 5 0.624

 Male 54 36

AFP (ng/ml)

 ≤ 20 25 19 0.461

 > 20 39 22

Number of tumors

 Single 44 28 0.961

 Multiple 20 13

Tumor size (cm)

 ≤ 5 43 14 0.001

 > 5 21 27

Tumor cell differentiation

 I–II 45 30 0.752

 III–IV 19 11

Microvascular invasion

 No 32 12 0.036

 Yes 32 29

Table 2  Univariate and multivariate analyses of factors associated with survival and recurrence

NA: not applicable

Factor Overall survival Disease-free survival

Univariate Multivariate Univariate Multivariate

p Hazard ratio 95% CI p p Hazard Ratio 95% CI p

Age (years)
 ≤ 50 vs > 50

0.664 NA 0.381 NA

Gender
 Female vs Male

0.982 NA 0.972 NA

AFP (ng/ml)
 > 20 vs ≤ 20

0.001 2.94 1.644
−5.258

0.000 0.005 2.292 1.410
−3.724

0.001

Number of tumors
 Multiple vs single

0.079 NA 0.037 1.668 1.021
−2.723

0.041

Tumor size (cm)
 > 5 vs ≤ 5

0.000 2.572 1.460
−4.529

0.001 0.002 1.812 1.115
−2.946

0.017

Tumor cell
differentiation
 III–IV vs I–II

0.008 1.699 0.975
–2.961

0.061 0.248 NA

Microvascular invasion
 Yes vs No

0.018 1.246 0.690
–2.251

0.465 0.057 NA

PCSK9 0.035 1.788 1.003
–3.185

0.049 0.007 1.956 1.199
−3.192

0.007

 High vs Low
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of lentiviral transfection was over 90% (Fig. 2b, c). Then, 
qRT-PCR and Western blotting were used to verify the 
efficiency of PCSK9 overexpression or downregulation 
(Fig. 2d–g).

To clarify the role of PCSK9 in HCC proliferation, 
CCK8 proliferation assay was used. In the HCCLM3 
cell line, compared with the control (HCCLM3-
Vector), the proliferation of PCSK9-overexpressing 
cells (HCCLM3-PCSK9) was significantly enhanced 
(p < 0.001), and in the HepG2 cell line, the proliferation 

of PCSK9-downregulated (HepG2-shPCSK9) cells was 
significantly decreased compared with that of the con-
trol cells (HepG2-shVector) (p < 0.01) (Fig. 3a). The plate 
cloning experiment revealed that the clone formation 
ability of HCCLM3-PCSK9 cells was stronger than that 
of HCCLM3-Vector cells (p = 0.005), and the clone for-
mation ability of HepG2-shPCSK9 cells was weaker than 
that of HepG2-shVector cells (p = 0.001) (Fig. 3b).

To further explore the mechanisms underlying 
the effects of PCSK9 on HCC cell proliferation, we 

Fig. 2  Construction of HCC cell lines with overexpression or downregulation of PCSK9. a Relative mRNA expression level of PCSK9 in HCC cell lines 
and a normal hepatocyte cell line (L02). b Transfection efficiency of PCSK9-overexpressing virus in the HCCLM3 cell line. c Transfection efficiency of 
PCSK9-knockdown virus in the HepG2 cell line. d Relative mRNA expression level of PCSK9 in the HCCLM3 cell line (p < 0.001). e Western blot images 
and summarized data showing that PCSK9 was successfully overexpressed in the HCCLM3 cell line (p = 0.014). f Relative mRNA expression level of 
PCSK9 in the HepG2 cell line (p = 0.004). g Western blot images and summarized data showing that PCSK9 was successfully downregulated in the 
HepG2 cell line (p = 0.001). *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 3  PCSK9 inhibited apoptosis and promoted the proliferation of HCC cells in vitro. a CCK8 assay for cell proliferation of HCCLM3-PCSK9 cells 
and HepG2-shPCSK9 cells compared with their vector control. PCSK9 promoted HCC cell proliferation. b Clone formation and summarized data 
for HCCLM3-PCSK9 cells (p = 0.005) and HepG2-shPCSK9 cells (p = 0.001) compared with their vector controls. PCSK9 promoted clone formation. 
c Flow cytometry detection of the cell cycle distribution of HCCLM3-PCSK9 cells and HepG2-shPCSK9 cells compared with their vector controls. 
PCSK9 had no significant influence on the G2/M phase in cell cycle distribution (p > 0.05). d Flow cytometry apoptosis detection to determine the 
cell apoptosis rates of HCCLM3-PCSK9 cells (p < 0.001) and HepG2-shPCSK9 cells (p < 0.001) compared with their vector controls. PCSK9 decreased 
the apoptosis rate of HCC cells in vitro. **p < 0.01, ***p < 0.001
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analyzed the cell cycle distribution and apoptosis in cul-
tured cells. In the cell cycle analysis, the G2/M phase 
ratio of HCCLM3-PCSK9 cells was similar to that of 
HCCLM3-Vector cells (16.51 ± 2.81% vs. 16.93 ± 0.93%, 
p = 0.82). Additionally, the G2/M phase ratio of HepG2-
shPCSK9 cells was similar to that of HepG2-shVector 
cells (17.52 ± 1.18% vs. 15.23 ± 0.80%, p = 0.06) (Fig. 3c). 
In the cell apoptosis analysis, the proportion of apop-
totic HCCLM3-PCSK9 cells was significantly lower 
than that of HCCLM3-Vector cells (6.96 ± 0.39% vs. 
13.43 ± 0.86%, p < 0.001), and the proportion of apoptotic 
HepG2-shPCSK9 cells was significantly higher than that 
of HepG2-shVector cells (7.77 ± 0.31% vs. 3.47 ± 0.31% 
p < 0.001) (Fig.  3d). These data indicated that PCSK9 
promoted the proliferation of tumor cells by preventing 
apoptosis rather than by directly promoting cell division.

PCSK9 promoted HCC progression in vivo
To study the effects of PCSK9 on tumor growth in vivo, 
we constructed orthotopic human HCC xenograft 
mouse models using HCC cell lines with PCSK9 over-
expression or downregulation. In the HCCLM3-PCSK9 
group, the volume and weight of xenografts were sig-
nificantly greater than those in the control group (vol-
ume: 1.13 ± 0.43 vs. 0.29 ± 0.26 cm3, p = 0.001, weight: 
1.59 ± 0.25. 0.61 ± 0.35  g, p < 0.001) (Fig.  4a). In the 
HepG2-shPCSK9 group, tumor volume and tumor 
weight were significantly lower than those in the control 
group (volume: 0.18 ± 0.12 vs. 0.34 ± 0.13 cm3, p = 0.045, 
weight: 0.33 ± 0.15 vs. 0.61 ± 0.17 g, p = 0.013) (Fig. 4b). 
TUNEL staining of formalin-fixed paraffin-embedded 
xenograft tumors confirmed that the apoptosis of tumor 
cells was inhibited after overexpression of PCSK9 and 
increased after downregulation of PCSK9 (Fig.  4c). The 
results of in  vivo experiments confirmed that PCSK9 
promoted the growth of HCC and was associated with 
tumor cell apoptosis.

PCSK9 inhibits apoptosis of HCC cells via the FASN/Bax/
Bcl‑2/Caspase9/Caspase3 pathway
Fatty acid synthase (FASN) is one of the key enzymes 
in the de novo synthesis of fatty acids, and it also plays 
an important role in cell apoptosis in various kinds of 
tumors [20–23]. A FASN-specific inhibitor can effectively 
promote apoptosis of tumor cells [24]. Previous reports 
confirmed that FASN has a “coexpression” relationship 
with PCSK9 in HCC [25]. We verified the expression 
level of FASN in our PCSK9-overexpressing and PCSK9-
downregulated cell lines with western blotting and found 
that overexpression of PCSK9 promoted the expression 
of FASN in HCC cell lines (p = 0.001) (Fig. 5a) and that 
downregulation of PCSK9 reduced the expression levels 
of FASN (p = 0.008) (Fig. 5b).

To further determine the mechanism by which PCSK9 
inhibits HCC cell apoptosis, we examined the changes 
of key molecules in the apoptosis pathway. Bcl-2, which 
inhibits apoptosis, was upregulated in HCCLM3 cells 
with PCSK9 overexpression in comparison with the con-
trol cells, whereas Bax, cleaved Caspase 9, and cleaved 
Caspase 3, which promote apoptosis, were downregu-
lated (p < 0.05 for all) (Fig.  5c). In HepG2 cells with 
PCSK9 downregulation, Bcl-2 was downregulated, and 
Bax, cleaved Caspase-9 and cleaved Caspase-3 were 
upregulated (p < 0.05 for all) (Fig. 5d).

Finally, the HCCLM3-PCSK9 cell line was treated with 
a specific inhibitor of FASN (C75), and C75 reversed the 
inhibitory effect of PCSK9. In HCCLM3-PCSK9 cells, 
after treatment with C75, the expression of Bcl-2 was 
downregulated, and the expression of Bax, cleaved Cas-
pase-9, and cleaved Caspase-3 was upregulated (p < 0.05 
for all), but between HCCLM3-Vector and HCCLM3-
PCSK9 cells treated with C75, no significant difference 
was detected in the apoptotic pathway (Fig.  5e). These 
data suggested that PCSK9 inhibited apoptosis of HCC 
cells through the FASN/Bax/Bcl-2/Caspase9/Caspase3 
pathway.

Discussion
In this study, we found that high expression of PCSK9 
in HCC is related to microvascular invasion and large 
tumor size and is an independent risk factor for both OS 
and DFS in patients with HCC who underwent curative 
resection. In  vivo and in vitro experiments showed that 
PCSK9 promoted the growth of HCC by inhibiting cell 
apoptosis via the FASN/Bax/Bcl-2/Caspase9/Caspase3 
pathway.

HCC is a malignant tumor with rapid proliferation, 
and the majority of HCC patients are diagnosed with 
advanced stage disease. Some researchers have found 
that HCC patients with hyperlipidemia have faster HCC 
progression and poorer prognosis [26–28]. As a criti-
cal regulatory molecule in the lipid transport process, 
PCSK9 interferes with the utilization of LDL and triglyc-
erides by degrading LDLR [2, 3]. In addition to regulat-
ing lipid transport, PCSK9 has many other effects on 
cell functions, such as in the processes of viral infection 
[29–31], insulin resistance [8, 32], development of the 
central nervous system [5], tumor apoptosis [9, 10] and 
tumor immunity [33, 34]. Therefore, we hypothesized 
that PCSK9 might play a role in the progression of HCC. 
We found that a high level of PCSK9 expression is associ-
ated with poor prognosis in HCC, which coincides with 
the relationship between hyperlipidemia and HCC.

The tumor growth rate is a function of both cell pro-
liferation and apoptosis. To investigate the relationships 
between PCSK9 and cell proliferation and apoptosis, 
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we constructed HCC cell lines with overexpression or 
downregulation of PCSK9. Upon analyzing the results of 
the CCK8 proliferation assay and plate cloning experi-
ment, we found that PCSK9 promoted the proliferation 

of HCC cells. However, in the cell cycle analysis, G2/M 
phase arrest was not found after overexpressing or down-
regulating PCSK9, which means that PCSK9 has no sig-
nificant effect on cell division in HCC cells. Therefore, 

Fig. 4  PCSK9 promoted HCC growth in vivo. We constructed orthotopic human HCC xenograft mouse models with HCC cell lines with 
overexpression or downregulation of PCSK9. a Comparison of tumor volume (0.29 ± 0.26 vs. 1.13 ± 0.43 cm3, n = 6, p = 0.001) and tumor mass 
(0.61 ± 0.35 vs. 1.59 ± 0.25 g, n = 6, p < 0.001) of the HCCLM3-Vector and HCCLM3-PCSK9 groups. b Comparison of tumor volume (0.34 ± 0.13 vs. 
0.18 ± 0.12 cm3, n = 6, p = 0.045) and tumor mass (0.61 ± 0.17 vs. 0.33 ± 0.15 g, n = 6, p = 0.013) of the HepG2-shVector and HepG2-shPCSK9 groups. 
c TUNEL fluorescence of liver cancer from BALB/c nude mice orthotopically implanted with HCCLM3 or HepG2 cells and their control groups. The 
apoptosis rate was lower in the HCCLM3-PCSK9 group than in the control group (p = 0.001). The apoptosis rate was higher in the HepG2-shPCSK9 
group than in the control group (p = 0.006). *p < 0.05, **p < 0.01, ***p < 0.001
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we next explored the effect of PCSK9 on apoptosis and 
found an inhibitory effect. Not only in HCC, researchers 
have confirmed that PCSK9 can influence the apoptosis 
of other tumors, such as neuroglioma [9], lung adenocar-
cinoma [10], melanoma [11], and neuroendocrine neo-
plasms [12]. To verify the promotion of PCSK9 on tumor 
growth in  vivo, we established liver orthotopic human 

liver cancer xenograft model in BALB/c nude mice and 
obtained a consistent conclusion.

FASN is a key enzyme in the de novo synthesis pro-
cess of fatty acids. Additionally, it plays an important role 
in the apoptosis of many kinds of tumors. For example, 
FASN can promote the growth of breast cancer [21] and 
prostate cancer cells [22]. It can also inhibit the apoptosis 

Fig. 5  The FASN/Bax/Bcl-2/Caspase9/Caspase3 pathway is involved in the regulation of PCSK9 on HCC cell apoptosis. a Western blot images and 
summarized data showing that FASN is overexpressed in the HCCLM3-PCSK9 cell line compared with its control group (p = 0.001). b Western blot 
images and summarized data showing that FASN is downregulated in the HepG2-shPCSK9 cell line compared with its control group (p < 0.001). c 
The Bax/Bcl-2/Caspase9/Caspase3 apoptosis signaling pathway-associated proteins were detected by Western blot in HCCLM3-PCSK9 cells and 
controls. d The Bax/Bcl-2/Caspase9/Caspase3 apoptotic signaling pathway-associated proteins were detected by Western blot in HepG2-shPCSK9 
cells and controls. e Specifically blocking FASN with C75 altered the expression of Bax/Bcl-2/Caspase9/Caspase3 apoptotic signaling 
pathway-associated proteins in the HCCLM3-PCSK9 cell line. *p < 0.05, **p < 0.01, ***p < 0.001
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of HCC cell lines [23], and its inhibitors can promote the 
apoptosis of breast cancer cells and slow the growth of 
breast cancer [24]. Lee and colleagues found that FASN 
and PCSK9 have a “coexpression” relationship in HCC 
[25]. Maria found that PCSK9 mRNA is positively corre-
lated with FASN mRNA [35]. We evaluated the expres-
sion of PCSK9 and FASN in our experimental system 
and found that PCSK9 promotes the expression of FASN. 
Blocking of FASN can reduce the anti-apoptotic effect 
but does not affect PCSK9 expression. These findings 
suggest that FASN is downstream of PCSK9 in the apop-
tosis regulatory pathway.

The Bax/Bcl-2/Caspase9/Caspase3 pathway is a clas-
sic apoptosis pathway. Bcl-2 is considered to be a key 
molecule that inhibits apoptosis. Bax, cleaved Caspase9, 
and cleaved Caspase3 are deemed to be key molecules 
that promote apoptosis. After overexpression or down-
regulation of PCSK9, the expression of certain molecules 
involved in the Bax/Bcl-2/Caspase9/Caspase3 apoptosis 
pathway changed significantly, which is consistent with 
the conclusion that PCSK9 inhibits HCC cell apopto-
sis in vitro and in vivo. After treatment with C75, Bcl-2 
was downregulated, and Bax, cleaved Caspase9 and 
cleaved Caspase3 were upregulated in HCCLM3-PCSK9 
cell lines, but no significant difference was detected in 
this apoptotic pathway between HCCLM3-Vector and 
HCCLM3-PCSK9 cells treated with C75, indicating that 
the FASN/Bax/Bcl-2/Caspase9/Caspase3 apoptosis path-
way plays an important role in the regulation of HCC 
apoptosis by PCSK9.

However, our research has some aspects worth fur-
ther exploring. In the process of hyperlipidemia, PCSK9 
acts mainly through extracellular pathways, but in these 
experiments, we studied the role of PCSK9 in inhibit-
ing the apoptosis of HCC cells through intracellular 
pathways. We will explore whether PCSK9 affects HCC 
through extracellular pathways in the next stage of our 
research. To date, two kinds of monoclonal antibodies 
against PCSK9 are in clinical use as lipid-lowering drugs: 
evolocumab and alirocumab. They have remarkable lipid-
lowering effects [36, 37], long intervals of administration 
[38, 39], few adverse reactions [40, 41] and generally tol-
erable [42]. We suspect that these drugs may be useful 
adjuvants in the treatment of HCC, and this will be fur-
ther explored in our future research.

Conclusions
This study demonstrated that PCSK9 promoted the 
growth of HCC, and FASN-mediated anti-apoptosis 
played an important role in this process. The expres-
sion of PCSK9 in tumors correlated with poor progno-
sis in HCC patients after curative resection and was an 

independent risk factor for OS and DFS, which indicates 
the potential of PCSK9 as a prognostic marker for HCC.
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