
Brantingham et al. Crime Sci             (2019) 8:7  
https://doi.org/10.1186/s40163-019-0102-3

THEORETICAL ARTICLE

Competitive dominance, gang size 
and the directionality of gang violence
P. Jeffrey Brantingham1*  , Matthew Valasik2 and George E. Tita3

Abstract 

Intergroup violence is assumed to play a key role in establishing and maintaining gang competitive dominance. How-
ever, it is not clear how competitive ability, gang size and reciprocal violence interact. Does competitive dominance 
lead to larger gangs, or allow them to remain small? Does competitive dominance lead gangs to mount more attacks 
against rivals, or expose them to more attacks? We explore a model developed in theoretical ecology to understand 
communities arranged in strict competitive hierarchies. The model is extended to generate expectations about gang 
size distributions and the directionality of gang violence. Model expectations are explored with twenty-three years of 
data on gang homicides from Los Angeles. Gangs may mitigate competitive pressure by quickly finding gaps in the 
spatial coverage of superior competitors. Competitively superior gangs can be larger or smaller than competitively 
inferior gangs and a disproportionate source or target of directional violence, depending upon where exactly they 
fall in the competitive hierarchy. A model specifying the mechanism of competitive dominance is needed to correctly 
interpret gang size and violence patterns.
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Introduction
Intergroup violence is common in communities with 
multiple criminal street gangs (Decker 1996; Glowacki 
et  al. 2016; Gravel et  al. 2018; Papachristos et  al. 2013; 
White 2013). Violence directed at rivals may satisfy cer-
tain instrumental goals of both individual gang mem-
bers and the gang as a whole, but it may also be central 
to the construction of individual and group identity 
(Bannister et al. 2013). In either case, it is reasonable to 
describe intergroup gang violence as a directional com-
petitive interaction that is meant to benefit one gang (the 
attacker) at the expense of its rival (the attacked). Direc-
tional competitive interactions between gangs are usu-
ally imbalanced. Gangs are either net exporters, or net 
importers of violence (Bichler et  al. 2017; Papachristos 
2009). Rarely are they perfectly balanced as targets and 
aggressors over a collection of violent crimes. This paper 

seeks to understand how and why imbalances exist in 
intergroup street gang violence.

A leading hypothesis is that imbalances in intergroup 
violence are tied to differences in competitive ranking 
between gangs. Papachristos (2009, p. 76), for example, 
starts with the observation that gang homicides are part 
of the process whereby individual gang members and 
gangs as social groups “jockey for positions of domi-
nance.” If the attacking gang does indeed benefit more 
than the attacked in a violent exchange, then gangs that 
are net exporters of violence should rank higher in a gang 
community “pecking order” as more influence (e.g., sta-
tus, reputation, supremacy) accrues to that gang. Street 
gangs that are net importers of violence should therefore 
rank lower. However, the direct evidence for competitive 
dominance hierarchies within communities of gangs is 
mixed (see Bichler et al. 2017; Gravel et al. 2018; Miller 
1958; Papachristos 2009; Randle and Bichler 2017). 
Papachristos et al. (2013), for example, find little evidence 
of the specific network topological structures that would 
be indicative of a strict competitive hierarchy in homi-
cides networks from Chicago and Boston, even though 
those gangs display large imbalances in the directionality 
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of violence. Randle and Bichler (2017), by contrast, see 
many local dominance relationships in homicide net-
works in Southern California. Gang size variation and 
its impact on the directionality of violence offers limited 
clarification. We might expect large gangs to use their 
size advantage to maintain a dominant community posi-
tion by directing more violence at smaller rivals (Vargas 
2016). However, large gangs may be just as likely to be 
net importers of violence as net exporters (Papachristos 
2009, pp. 112–113). Large gangs might simply present 
more abundant and accessible targets for smaller rivals. 
Of course, we might also conclude that gang size and the 
directionality of violence are not simple proxies for gang 
dominance.

A key problem is that we lack a formal theoretical 
framework that links competitive dominance to empirical 
patterning in gang size and the directionality of violence. 
The primary purpose of the present paper is to introduce 
one such a framework. Our approach builds on the work 
of ecologist Tilman (1994). Tilman sought to understand 
how inferior competitors could stably coexist in the face 
of pressure from superior competitors who possess an 
absolute ability to displace them from any contested site 
(see also Nee and May 1992). Tilman found that infe-
rior competitors could persist if they are able to find and 
exploit gaps in the spatial range occupied by superior 
competitors. We map Tilman’s ecological model to the 
study of spatial distribution of gang activities and, in the 
process, repeat many of Tilman’s key observations. Our 
primary contribution is to generate expectations about 
how gang size and the directionality of violence should 
vary given differences in the position of gangs within a 
competitive hierarchy as well as between-gang differ-
ences in the rate of spread and cessation of gang activity 
across space. We examine the model with data on gang 
size diversity and the directionality of gang homicides 
in a community of gangs in Los Angeles sampled over a 
twenty-three-year period from 1990 to 2012. We do not 
conduct explicit tests of the theory. Rather we identify 
broad points of empirical alignment and misalignment 
to suggest what a next round of theory building should 
include.

Gangs and competitive interactions
Gang members are well-known for making claims about 
both their individual competitive prowess and that of 
their gang (Horowitz and Schwartz 1974; Hughes and 
Short 2005; Short and Strodtbeck 1965; Densley et  al. 
2014). How such statements reflect actual competitive 
dominance on the ground is more difficult to deter-
mine. The claims themselves may be inflated, especially 
if they are perceived to have protective value (Bubolz and 

Lee 2018; Lauger 2012; Melde et  al. 2009), while objec-
tive criteria for what constitutes gang dominance are not 
obvious.

Here we take a first-principles approach and formally 
model the impact of competitive dominance from the 
bottom-up. We start by defining competitive dominance 
in terms of spatial displacement in dyadic contests. Spe-
cifically, in a dyadic contest, the superior competitor is 
always able to (1) displace an inferior competitor and (2) 
hold a site in the face of any attempted incursions by an 
inferior competitor (Tilman 1994). We assume that this 
absolute displacement ability exists regardless of where 
and when a dyadic encounter occurs and also that it is 
unchanged by the situational conditions of interaction. 
We therefore treat competitive superiority/inferiority as 
intrinsic characteristics of the gangs being modeled. Our 
definition of competitive dominance relies on extreme 
assumptions that are not likely to hold in the real world. 
However, they do allow us to ask a critical question: 
What would the world look like if gangs are arranged in a 
strict competitive hierarchy? To the extent that the real-
world is consistent with such expectations, we can say 
that the mechanisms captured in the model are plausible. 
Points of inconsistency allow us to reject certain mode-
ling assumptions and revise our expectations.

Here we rely on these modeling assumptions to derive 
expectations about the size distribution of gangs and the 
directionality of violence between them. We follow the 
general approach laid out in Brantingham et al. (2012) in 
extending ecological models to a consideration of street 
gangs. Whereas formal ecological models usually con-
sider dynamics in the number or density of individuals in 
one or more species, we focus on the density of activi-
ties assigned to different street gangs. Thus the “size of a 
gang” here is really a statement about the spatial distri-
bution of gang activities rather than gang members. We 
develop the models incrementally starting with the sim-
plest case of the activities of a single gang in isolation. We 
then study two gangs engaged in symmetric and asym-
metric competitive interactions. Only then do we turn 
to the study of a community of gangs arranged in a strict 
competitive hierarchy. The models are presented in full 
and then followed by a qualitative examination of empiri-
cal evidence.

Modeling competitive dominance
Dynamics of a single gang
Consider a simple model for a single gang in a bounded 
environment with s different discrete sites in which it 
might be active. These settings might be street corners 
(Taniguchi et al. 2011), street segments (Weisburd et al. 
2012), police beats (Papachristos 2009), neighborhoods 
(Grannis 2009), block groups (Tita and Radil 2011) or 
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even an arbitrary grid laid out over an urban landscape 
(Block 2000). Let p be the proportion of sites register-
ing activity by the single gang at any one point in time 
(see Papachristos 2007). Let c be the rate at which activ-
ity spreads to sites in the environment. Let m be the 
rate at which activity ceases at occupied sites. Given 
these components we can construct a simple dynami-
cal model describing the rate of change in the number of 
sites recording gang activity (Nee and May 1992; Tilman 
1994):

The interpretation of Eq. (1) is straightforward. The first 
term on the right-hand side states that the rate of spread 
of gang activities to different sites is dependent upon the 
current density of gang activity, captured by the product 
cp . For a fixed rate c > 0 , the proportion of sites occupied 
increases exponentially in the existing density of activity. 
However, gang activity can only spread to sites that are 
currently unoccupied, captured by the term (1− p) . If the 
availability of sites were the only constraint, then gang 
activity would grow logistically to fill the entire environ-
ment. That is, the growth in p slows as the environment 
fills up, but eventually p = 1.

Equation (1) goes one step further to assume that gang 
activity also ceases in locations currently occupied. This 
is captured by the second term on the right-hand side, 
mp . The rate of activity cessation is also dependent upon 
the current proportion of sites presenting gang activ-
ity. If more sites show gang activity, then more sites will 
see gang activity cease. Gang activity also grows over 
time under these conditions, but towards an equilib-
rium below full saturation of the environment, reflecting 
a balance between activity spread and cessation. Setting 
Eq. (1) to zero and solving gives the equilibrium propor-
tion of sites with gang activity (Tilman 1994).

Equation (2) merits brief discussion. Note that if m ≥ c , 
then the rate at which gang activity ceases matches or 
exceeds the rate at which it spreads. This implies p̂ < 0 
and ensures that gang activity will never take hold. Gang 
activity can only persist if m < c , meaning that once gang 
activity has spread to a site it at least has some limited 
tenure there. The theoretical case of m = 0 is intriguing 
(see also Tilman 1994). This implies gang activity never 
ceases once it is established at a site. This is the only cir-
cumstance under which an environment will be com-
pletely saturated with gang activity. Infinite persistence of 
gang activity at a site is theoretically possible if we allow 
the individuals to seamlessly replace one another over 

(1)
dp

dt
= cp(1− p)−mp.

(2)p̂ = 1−
m

c
.

time. However, whether gang activity is considered per-
sistence at a site depends substantially upon the scale of 
observation (see Mohler et al. 2019; Mohler et al. 2017). 
We assume that both c and m are intrinsic traits that do 
not vary through time, but may vary from one gang to 
another.

Competition among two symmetric gangs
The single gang model may be extended to consider the 
dynamics of two gangs with competitive interactions. The 
first case to consider is competitive interaction between 
two gangs that are equal, or symmetric in their ability 
to hold any setting that they currently control. That is, 
a gang currently active at site s cannot be displaced by 
a rival that attempts to engage in activity at the site. No 
competitive hierarchy exists among the gangs.

We now index model parameters for each gang so that 
p1 and p2 are the proportion of sites s with activity attrib-
uted to gangs 1 and 2, respectively. Similarly, c1 and c2 
reflect the rate of activity spread and m1 and m2 the rate 
of activity cessation for gangs 1 and 2, respectively. Put-
ting these together we arrive at:

Equations (3) and (4) are coupled ordinary differential 
equations describing the rate of change in the proportion 
of sites occupied by gang 1 and gang 2, respectively. They 
are coupled because the proportion of sites with activ-
ity attributed to gang 1 constrains the ability of gang 2 to 
occupy new sites and vice versa. Specifically, the propor-
tion of open sites for new gang activity at any one time 
is (1− p1 − p2) . At equilibrium, the proportions of space 
taken up by each gang are:

Equations (3) and (4) leads to outcomes similar to those 
presented in Brantingham et al. (2012). Depending upon 
the activity spread and cessation rate of each gang, at 
equilibrium gangs can occupy exactly equal proportions 
of the environment (Fig. 1a), unequal but stable propor-
tions (Fig. 1b), or one gang can eventually drive the other 
out of the environment (Fig. 1c). These outcomes are not 
about a gang’s ability to hold space in the face of direct 
challenges, since both gangs are equal in this regard. 

(3)
dp1

dt
= c1p1(1− p1 − p2)−mp1,

(4)
dp2

dt
= c2p2(1− p1 − p2)−mp2.

(5)p̂1 = 1−
m1

c1
− p̂2,

(6)p̂2 = 1−
m2

c2
− p̂1.
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Rather, the outcomes depend on whether a gang is able to 
capitalize on vacant space in the environment. Using eco-
logical terminology this would be a case of interference 
competition. Note then that a non-zero equilibrium den-
sity of gang activity p̂i > 0 for gang i requires mj/cj < 0.5 
for the other gang j. Each competitor must leave some 

space open for its rival if that rival is to persist (Tilman 
1994).

Competition among two asymmetric gangs
The second case to examine is two gangs with asym-
metric competitive abilities. Consider a strict competi-
tive hierarchy where gang 1 is always able to displace 
gang 2 at any site s , but gang 2 is never able to displace 
gang 1. In the dyadic contest, we call the gang that is 
always able to displace its rival the superior competitor, 
while the gang that is never able to displace its rival is 
the inferior competitor. Referring to them as superior 
or inferior only denotes their competitive abilities with 
respect to spatial displacement, not any other attribute 
of the gangs we might wish to study.

We can write equations governing the dynamics of 
these two gangs as (Tilman 1994):

Notice several key differences between Eqs.  (7) and 
(8) and their symmetrical counterparts. Equation  (7) 
describes the rate of change in the proportion of sites 
with activity attributed to gang 1. It is not coupled to 
the dynamics of gang 2, meaning that whatever the 
dynamics of gang 2 might be, it does not influence 
the dynamics of gang 1. This is a direct consequence 
of the strict competitive hierarchy. The equilibrium 
proportion of sites with gang 1 is  actually no differ-
ent than what would be the case if it were alone in the 
environment.

Equation  (8) reflects quite different dynamics. The 
dynamics of gang 2 are coupled to the dynamics of 
gang 1. The term (1− p1 − p2) suggests that the rate of 
spread of gang 2 activities is limited to those sites cur-
rently left open by gang 2 and gang 1. This is analogous 
to the symmetrical case given in Eq. (4). The strict com-
petitive hierarchy introduces another point of coupling, 
however. The term c1p1p2 captures the impact of com-
petitive displacement events, where gang 1 encounters 
and competitively excludes gang 2. In probabilistic 
terms, c1p1 is the probability that gang 1 spreads to a 
site and p2 is the probability that the site already hosts 
gang 2.

It is reasonable to suppose that the ecological condi-
tions modeled by Eqs.  (7) and (8) do not favor the per-
sistence of gang 2. However, Tilman (1994) demonstrated 
that the inferior competitor can persist if it is able to take 
advantage of the sites left unoccupied by the superior 
competitor (see also Nee and May 1992). At equilibrium, 

(7)
dp1

dt
= c1p1(1− p1)−m1p1,

(8)
dp2

dt
= c2p2(1− p1 − p2)−m2p2 − c1p1p2.

Fig. 1  Dynamics of competition with two gangs with inability to 
displace their rival. a Two gangs with equal activity spread rates 
c = 0.6 and equal activity cessation rates m = 0.1 . The two gangs 
control equal proportions of the environment at equilibrium 
p = 0.42 . b Two gangs with equal inability to displace, but different 
activity spread and cessation rates. The two gangs control different, 
but stable proportions of the environment at equilibrium. c Two 
gangs with equal inability to displace, but different activity spread 
and cessation rates. In this case, gang 2 is competitively excluded 
while gang 1 controls exactly p̂1 = 0.5 of the environment
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there will be 
(
1− p̂1

)
 sites left open by the superior com-

petitor at any one time. The inferior competitor must be 
able to find and exploit those sites before they are dis-
placed completely.

There are two distinct ways in which open sites can be 
exploited by inferior competitors. The inferior competi-
tor can persist if its rate of activity spread exceeds that of 
the superior competitor. Specifically, if

then the inferior gang will be able to invade the envi-
ronment and maintain activity over some equilibrium 
proportion of sites. If we assume that the superior and 
inferior gangs have the same activity cessation rate 
m1 = m2 = m , then Eq. (9) simplifies to (Tilman 1994):

Equation  (10) is revealing. As the equilibrium pro-
portion of sites occupied by the superior gang declines 

(9)c2 > c1

(
p̂1

1− p̂1
+

m2

m1

)
,

(10)c2 > c1

(
1

1− p̂1

)
.

towards zero (i.e., p̂1 → 0 ), the minimum spread rate 
needed to sustain the inferior gang approaches that of the 
superior one. Conversely, as the environment fills up with 
activity by the superior gang, the spread rate for the infe-
rior gang must increase nonlinearly to ensure persistence. 
For example, when the superior gang is present in a pro-
portion p̂1 = 0.25 of sites given an activity spread rate of 
c1 = 0.2 , the inferior gang must have an activity spread 
rate of at least c2 > 0.2667 to be able to persist, assuming 
equal activity cessation rates m . The inferior gang must 
maintain at least a 33% faster activity spread rate. When 
the superior gang is present in a proportion p̂1 = 0.75 of 
sites, given an activity spread rate of c1 = 0.2 , the inferior 
gang must have an activity spread rate of at least c2 > 0.8 . 
In this case, the inferior gang must spread at least 300% 
faster than the superior gang to capitalize on open space. 
In general, the greater the proportion of space occupied 
by a superior gang at equilibrium, the faster the inferior 
gang needs to spread to ensure survival.

The consequences of a faster rate of activity spread are 
shown in (Fig. 2a). Starting at low initial abundances, the 
inferior gang rapidly increases its presence, peaking at 

Fig. 2  Abundances of competitively superior (blue) and inferior (orange) gangs over time given different activity spread and cessation rates. a The 
inferior gang has a higher activity spread rate than the superior gang. b The inferior gang has a lower cessation rate than the superior gang. c The 
inferior gang has a lower activity spread rate and lower activity cessation rate than the superior gang. d The inferior competitor has a higher activity 
spread rate and lower activity cessation rate than the superior competitor
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p2 = 0.675 after about 57 time-steps. The higher activ-
ity spread rate allows it to capitalize on all of the empty 
space initially present. The inferior gang then starts 
to lose ground as the superior gang occupies more and 
more space. This reflects both the superior gang displac-
ing the inferior gang and the superior gang preempting 
the inferior gang at some sites. Eventually, the superior 
gang surpasses the inferior gang in the proportion of sites 
occupied, which happens around 173 time-steps into the 
simulation. At equilibrium, the superior gang holds a 
proportion p̂1 = 0.38 of the sites and the inferior gang a 
proportion p̂2 = 0.21 of the sites. The inferior competitor 
survives in spite of the absolute competitive superiority 
they face at each site.

The competitively inferior gang may also persist if it 
maintains a lower activity cessation rate relative to the 
superior gang. However, this strategy is more limited. 
Rearranging Eq. (9) to solve for m2 , and assuming that the 
two gangs have the same activity spread rate c1 = c2 = c , 
yields (Tilman 1994):

The inferior gang can persist only if it ceases activities 
at a rate slower than the superior gang. The activity cessa-
tion rate for the inferior gang can be very close to that of 
the superior gang when the superior gang occupies very 
few sites at equilibrium (i.e., when p̂1 ≈ 0 ). However, the 
activity cessation rate for the inferior gang must quickly 
approach zero as the equilibrium proportion of sites 
occupied by the superior gang approaches p̂1 = 0.5 . As 
the superior gang increases its hold on space, the inferior 
gang is put under more displacement pressure and there-
fore must hold on to any sites that it does occupy for as 
long as it can. If the superior gang occupies more than 
a proportion p̂1 > 0.5 of sites at equilibrium, the inferior 
gang cannot rely on reducing activity cessation rates to 
persist (Tilman 1994). To see why, notice that the term 
p̂1/

(
1− p̂1

)
 in Eq. (11) is analogous to the odds that any 

given site is occupied by the superior gang. The odds are 
greater than 1 when p̂1 > 0.5 , meaning that the inferior 
gang cannot be guaranteed to find any open space.

Persistence of the inferior gang as a result of lower 
activity cessation rates is illustrated in Fig. 2b. Here the 
two gangs have the same rate of activity spread, but dif-
ferent rates of activity cessation. Qualitatively the tra-
jectory towards equilibrium looks similar to the case of 
differential activity spread rates, even though the mech-
anism is very different. Starting at the same low initial 
abundances, the inferior gang early on comes to occupy 
a large fraction of the environment, holding approxi-
mately p2 = 0.70 of the sites only 14 time steps into the 
simulation. Eventually, however, the superior competitor 

(11)m2 < m1

(
1−

p̂1

1− p̂1

)
.

occupies a sufficient proportion of sites that it starts to 
competitively exclude the inferior competitor, driving 
down its abundance. At equilibrium, the superior com-
petitor occupies a proportion p̂1 = 0.33 of the site, while 
the inferior competitor occupies a proportion p̂2 = 0.25 
of sites.

The outcomes shown Fig.  2a and b are not the only 
ones possible. The inferior gang can be driven to extinc-
tion under a wide range of conditions (not shown). It is 
also possible for the inferior gang to persist with a lower 
activity spread rate than the superior gang as long as it 
has an activity cessation rate sufficiently below that of 
its competitor (Fig. 2c). It is also possible for the inferior 
gang to exist at a greater abundance than the superior 
gang. This seems counter intuitive, but is possible if the 
inferior gang has an activity spread rate that is higher 
than the superior competitor and an activity cessation 
rate that is lower than the superior competitor. Such a 
case is shown in Fig. 2d. Here the equilibrium proportion 
of the inferior competitor is p̂2 = 0.21 , while the propor-
tion of the superior competitor is p̂1 = 0.17.

Competition in a community of asymmetric gangs
Tilman (1994) illustrates how the two gang model can be 
extended to a community of street gangs. We start with 
the same environment consisting of s different discrete 
sites or settings in which gangs might be active. There is 
community of n total gangs present in the environment 
and they can be ranked into a strict competitive hierar-
chy i = 1, 2, . . . , n . The most competitive gang is posi-
tioned at the top ( i = 1 ) and the least competitive gang 
at the bottom ( i = 1 ) of the hierarchy.1 Gangs positioned 
higher in the hierarchy can displace all gangs lower in 
the hierarchy. Conversely, gangs positioned lower in the 
hierarchy are never able to displace gangs higher up. This 
is a strict “pecking order” consistent with the analyses in 
Papachristos (2009) and Randle and Bichler (2017).

To model the dynamics of this competitive hierarchy, 
let pi be the proportion of sites registering activity by the 
gang i . Let ci be the rate at which gang i ’s activity spreads 
to other sites in the environment. Let mi represent the 
rate at which gang i ’s activity ceases at sites with activ-
ity. The change in the fraction of sites occupied by gang i 
(Tilman 1994) is:

(12)

dpi

dt
= cipi



1− pi −

i−1�

j=1

pj



−mipi −

i−1�

j=1

cjpjpi.

1  Below we will also index gangs using k = 1, 2, . . . , n in decreasing order of 
the equilibrium proportion of space occupied, independent of where they fall 
in the competitive hierarchy i = 1, 2, . . . , n.
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The term in Eq.  (12) states that gang i cannot spread 
to any site that is currently held by any gang higher in 
the competitive hierarchy. That is, the available space is 
reduce by sites held by the highest ranked gang j = 1 , the 
second highest ranked gang j = 2 , and so on, through to 
the sites held by gang j = i − 1 , the gang immediately 
above i in the hierarchy. Gang i also interferes with its 
own spread. Gang i ceases activity at a rate mipi , a density 
dependent effect. Gang i is also displaced by all higher 
ranked gangs. This can be seen in the second summation, 
which takes into account the spread of the highest ranked 
gang j = 1 , the second highest ranked gang j = 2 , and 
so on, through to gang j = i − 1 , the gang immediately 
superior to gang i . Setting Eq. (12) to zero and solving for 
pi gives the equilibrium frequency of gang i within the 
strict competitive hierarchy (Tilman 1994):

The first two terms on the right-hand side of Eq.  13 
together reflect the how the activities of gang i influence 
its own equilibrium proportion, independent of com-
petitive effects. As in the two-gang case, gang i can only 
hold territory if mi < ci . The second term on the right-
hand side reflects the additional impact of competitive 
displacement by higher-ranked gangs. In general, the 
equilibrium proportion of gang i is reduced by the total 
proportion of space occupied by superior gangs, scaled 
by the ratio of activity spread rates for each superior gang 
relative to gang i.

The conditions under which any inferior gang i can sur-
vive in the face of competition from any number of supe-
rior gangs can be established by solving Eq. (13) for p̂i > 0 
and isolating either ci or mi . The mathematical results are 
conceptually the same as for the two-gang asymmetrical 
case so we do not detail them here (see Tilman 1994, p. 
7). In general, a gang i must have an activity spread rate 
ci that is faster than that of the next higher ranked gang 
ci−1 , scaled by the proportion of sites left open by higher 
ranked gangs. Alternatively, the activity cessation rate for 
gang i must be less than the cessation rate for the imme-
diately superior gang i − 1 scaled by the proportion of 
sites left open by superior gangs. Inferior competitors 
up and down the hierarchy can also mix different activity 
spread and cessation rates to ensure survival.

Equation  (12) leads to a range of outcomes (Fig.  3). 
Gangs may occupy space in proportions that are posi-
tively rank-order correlated with their competitive abili-
ties, although this outcome can result from different 
mechanisms. In Fig.  3a, for example, gangs ranked 1–4 
in the competitive hierarchy achieve equilibrium propor-
tions p̂i = {0.2, 0.16, 0.08, 0.05} , respectively, as a result 

(13)p̂i = 1−
mi

ci
−

i−1∑

j=1

p̂j

(
1+

cj

ci

)
.

of differing activity spread rates. In Fig. 3b, they occupy 
exactly the same proportions of space at equilibrium, 
but this time because of differing activity cessation rates. 
Most importantly, gangs may occupy space in propor-
tions that do not at all track their relative competitive 

Fig. 3  Dynamics of four competing gangs with a strict competitive 
hierarchy. a Gangs have equal activity spread rates c = 0.4, but 
different activity cessation rates m = {0.421, 0.176, 0.08, 0.028}. b 
Gangs have equal activity cessation rates m = 0.3, but different 
activity spread rates c = {0.375, 0.586, 0.837, 1.05}. c Gangs show a 
mixture of activity spread and cessation rates c = {0.526, 0.375, 0.22, 
0.278} and m = {0.5, 0.3, 0.1, 0.05}. The abundance of gang activity 
at equilibrium need not reflect gang ability to displace. However, it 
remains the case that any competitively inferior gang must maintain 
a higher activity spread rate and/or lower activity cessation rate than 
their immediate superior to be able to persist
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abilities. In Fig.  3c, for example, gangs ranked 1–4 
in the competitive hierarchy occupy proportions 
p̂i = {0.05, 0.08, 0.16, 0.2} , respectively, a perfect inver-
sion of the actual competitive ranking. This is achieved 
by gangs deploying a mixture of activity spread and ces-
sation rates. The key observation is that the proportion of 
space occupied by a gang (i.e., territory size) is alone not 
sufficient to infer competitive dominance.

Violence in a community of gangs
It this section we extend Tilman’s (1994) original model 
to help characterize patterns of violence between rival 
gangs. The hope is that patterns of violence may be a 
more faithful proxy of competitive ability since it is more 
directly related to between-gang interactions. There 
are two fundamental types of violence that might occur 
between rivals structured in a strict competitive hierar-
chy. The first arises from instances where a competitively 
superior gang encounters and successfully displaces a 
competitively inferior gang. This can be described as 
“top-down” violence since the competitive exchange is 
initiated by the superior competitor. The second arises 
from instances where an inferior gang attempts (but 
fails) to displace a superior gang. This can be described 
as “bottom-up” violence since the competitive exchange 
is initiated by the inferior competitor.

Focusing on the simplest case of an environment with 
only one superior and one inferior gang, labeled as gang 
1 and gang 2, respectively, the fraction of sites at which 
top-down interactions occur at equilibrium is c1p̂1p̂2 . 
This is simply the third term in Eq.  (8), substituting the 
equilibrium frequencies for gangs 1 and 2. While c1p̂1p̂2 
describes the top-down displacement rate, we expect 
only a fraction of those encounters will escalate to full-
blown violence (Decker 1996). We propose therefore 
that the actual frequency of top-down violence is only 
proportional to c1p̂1p̂2 . Similarly, the proportion of sites 
where an inferior competitor attempts (but fails) to take 
control of a site already occupied by a superior competi-
tor is given by c2p̂1p̂2 , for a system with only two gangs. 
This is found by expanding the first term Eq. (8). Here as 
well we assume that the actual frequency of bottom-up 
violence is only proportional to c2p̂1p̂2.

There are three basic patterns of top-down and bot-
tom-up violence over time (Fig.  4). When activity ces-
sation rates are the same, necessitating faster activity 
spread rates for inferior competitors to persist, bottom-
up violence occurs at a greater frequency than top-
down violence (Fig.  4a). When activity spread rates are 
the same, necessitating differences in activity cessation 
rates for inferior competitors to persist, top-down and 
bottom-up violence occur in equal proportions (Fig. 4b). 
Equilibrium conditions that mix different activity spread 

and cessation rates can produce patterns consistent with 
the two prior cases, but also situations where top-down 
violence exceeds bottom-up violence (Fig.  4c). The key 
observation is that the frequency of violence between 
rival gangs is alone not sufficient to infer competitive 
ranking of those gangs.

We therefore take a step back from the question 
whether violence is top-down or bottom-up and look 

Fig. 4  The proportion of activities with hypothesized “top-down” 
and “bottom-up” violence. a The inferior gang is numerically less 
abundant at equilibrium, but persists through a higher activity 
spread rate (see Fig. 2a). The inferior gang is also subject to a greater 
proportion of “top-down” violence. b The inferior gang is numerically 
less abundant, but persists through a lower activity cessation rate 
(see Fig. 2b). The amount of “top-down” violence equals the amount 
of “bottom-up” violence. c The inferior gang is numerically less 
abundant, which is achieved through a lower activity spread rate and 
lower activity cessation rate (see Fig. 2c). In this case, “bottom-up” 
violence exceeds “top-down” violence
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only at the direction of violence between the aggressor 
and the targeted gangs. In a network context, an out-
bound edge is drawn anytime an aggressor gang seeks to 
spread into an area that is already occupied, whether or 
not displacement is successful. An inbound edge is drawn 
to any gang that is the target of displacement, successful 
or not. At equilibrium, the sum of all outbound edges is 
the out-degree of a gang. The sum of all inbound edges at 
equilibrium is the in-degree of the gang. In formal terms, 
the in- and out degree for gang j at equilibrium are given 
as:

Index j identifies the focal gang, while rivals both 
higher and lower in the competitive hierarchy are labeled 
by index i. Note that Eqs.  (14) and (15) exclude self-
loops. If the in- and out-degree are equal, then gang j 

(14)
p̂j
∑

i  =j

cip̂i

︸ ︷︷ ︸
j’s in-degree

= p̂j

j−1∑

i=1

cip̂i

︸ ︷︷ ︸
i to j top-down

+ p̂j

n∑

i=j+1

cip̂i

︸ ︷︷ ︸
i to j bottom-up

(15)
cjp̂j

∑

i  =j

p̂i

︸ ︷︷ ︸
j’s out-degree

= cjp̂j

j−1∑

i=1

p̂i

︸ ︷︷ ︸
j to i bottom-up

+ cjp̂j

n∑

i=j+1

p̂i

︸ ︷︷ ︸
j to i top-down

.

has a balanced violence profile with respect to rivals (see 
Papachristos 2009). If the in-degree exceeds the out-
degree, gang j is a net importer of violence. If the out-
degree exceeds the in-degree, gang j is a net exporter of 
violence. It is important to note that Eqs.  (14) and (15) 
translate displacement rates into edges in a network. 
Since displacement rates are not whole numbers, while 
in- and out-degrees are necessarily so, we can think of the 
output of Eqs. (14) and (15) as generating expected values 
of the degree distributions.

Figure  5 shows the expected in- and out-degree at 
equilibrium for a community of ten gangs with equi-
librium territory proportions given by the formula 
p̂k = 0.31 ∗ e−0.5k , where k is a label tied to a gang’s 
equilibrium proportion, independent of its order in the 
competitive hierarchy. The red points in Fig.  5 corre-
spond to a baseline case where the equilibrium territory 
proportions decrease in rank order with competitive abil-
ity (i.e., k = i ). Thus, the gang at the top of the hierarchy 
(rank i = 1 ) has the largest equilibrium territory propor-
tion ( k = 1) , the gang in the second position (rank i = 2 ) 
has the second largest equilibrium territory proportion 
( k = 2 ), and so on (see Fig. 3a). Figure 5 is meant to be 
comparable to Papachristos (2009, p. Figure  2). The red 
points are obtained by explicitly solving Eq.  (12) for 
chosen values of ci or mi at equilibrium. The blue points 
transecting the one-to-one line in Fig. 5a correspond to 

Fig. 5  The expected in- and out-degree for ten gangs arranged in a competitive hierarchy. Gangs located below the diagonal are net importers 
of violence. Gangs located above the diagonal are net exporters of violence. Red points are for gangs where the equilibrium territory proportion 
decreases with decreasing rank. Blue points form a trajectory along which a gang’s in- and out-degree changes as rank in the competitive 
hierarchy changes. a Inferior gangs persist because of higher activity spread rates. b Inferior gangs persist because of lower activity cessation rates. 
Trajectories are generated in via simulations that randomly assign gangs to different rank positions
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alterative orderings of the competitive hierarchy (i.e., 
where k and i may be in different orders) (see below).

Figure  5a shows the case for competing gangs with 
equal activity cessation rates mi = m = 0.3 . Inferior 
gangs therefore must have faster activity spread rates to 
achieve the specified equilibrium territory proportion p̂k . 
Focusing first on the red points, save for the two gangs at 
the top of the competitive hierarchy, who are net import-
ers of violence (i.e., in-degree > out-degree), all other 
lower ranked gangs are net exporters of violence (i.e., 
out-degree > in-degree). The faster spread rates for lower 
ranked gangs drive interactions in areas already occupied 
by rivals, leading to a net exporting of violence by these 
lower ranked gangs. Note that the gangs in the middle of 
the hierarchy display the greatest imbalance between in- 
and out-degree. Farther down the competitive hierarchy, 
gangs approach a balance between in- and out-degree. 
In the middle of the competitive hierarchy faster spread 
rates combine with intermediate turf sizes to produce a 
large net exporting of violence. Farther down the hier-
archy, faster spread rates cannot overcome smaller turf 
sizes, leading to a greater balance between importing 
and exporting violence. In other words, the tendency for 
faster spread rates to export more violence is overridden 
by density dependent effects for gangs at the bottom of 
the competitive hierarchy.

Figure 5a also illustrates what happens if we relax the 
baseline assumption that equilibrium territory propor-
tions must track competitive ability. This relaxation is a 
theoretical possibility suggested by Fig. 3c. For example, 
the gang with the largest equilibrium territory proportion 
( k = 1) may appear at the top ( i = 1 ) or bottom ( i = 10 ) 
of the competitive hierarchy. A key mathematical chal-
lenge is that there are 10! = 3.6288× 106 unique compet-
itive hierarchies for this hypothetical community of ten 
gangs. We therefore use simulation to generate ten-thou-
sand communities with the position of each gang in the 
competitive hierarchy assigned randomly in each itera-
tion. Even though this is a small fraction of the total pos-
sible number of unique hierarchies there appears to be 
little qualitative difference in the results between simula-
tions with 100 and 10,000 iterations. There is a distinc-
tive pattern of interaction between equilibrium territorial 
proportion p̂k and competitive rank i for the case of fixed 
activity cessation rates mi = m = 0.3 and variable activity 
spread rates ci (Fig. 5a). Change in a gang’s rank position 
from the top to the bottom of the competitive hierarchy 
drives a shift in that gang from being a net importer of 
violence (i.e., in-degree > out-degree) to a net exporter 
(i.e., in-degree < out-degree). For example, the gang with 
the largest equilibrium territorial proportion (labeled 
k = 1 ) is maximally imbalanced towards net importa-
tion of violence when it is at the top of the competitive 

hierarchy. It is maximally imbalanced towards net expor-
tation of violence when it is at the bottom of the competi-
tive hierarchy. The transition follows a linear path that 
transects the one-to-one line. In this particular case, the 
gang with the largest territory is a net exporter of violence 
whenever it occupies a rank of seven or lower ( i ≥ 7 ) in 
the competitive hierarchy. The gang with the second larg-
est equilibrium proportion ( k = 2 ) occupies a position 
away from the two extremes when it is ranked second 
( i = 2 ) in the competitive hierarchy (red point). With this 
competitive rank the gang is a net importer of violence. 
It imports more violence when it occupies the top posi-
tion in the competitive hierarchy ( i = 1 ). It becomes a net 
exporter of violence when it drops down the competitive 
hierarchy. In general, each gang can swing from being 
a net importer of violence to a net exporter of violence 
with changes in its own rank position. However, there 
are also complex interactions between gangs that impact 
the directionality of violence. For example, shifting the 
top two gangs by size ( k = 1 and k = 2 ) from the top two 
rank positions ( i = 1 and i = 2 ) to the bottom two rank 
positions ( i = 10 and i = 9 ) not only drives these gangs 
to be net exporters of violence, but it also forces all of the 
other gangs to be net importers of violence. Fully explor-
ing such interactions is beyond the scope of the present 
paper.

Figure  5b shows two similar scenarios starting with 
the assumption that the ten gangs have equal activity 
spread rates ci = c = 0.6 . Under these conditions, the 
only way for inferior gangs to persist is to deploy lower 
activity cessation rates. As in Fig. 5a the red points cor-
respond to the baseline case where the equilibrium terri-
tory proportions are rank-order correlated with position 
in the competitive hierarchy. Unlike the case with equal 
activity cessation rates, all gangs line up in sequence 
along the diagonal. Each gang is perfectly balanced in the 
proportion of violence it imports and exports, though 
gangs with the larger equilibrium territory proportions 
experience higher rates of violence overall. This result 
was anticipated by Fig. 4b. Differences between gangs in 
activity cessation rates have no impact on the directional-
ity of violence. What is surprising perhaps is that change 
in the rank order position of gangs in the competitive 
hierarchy does not affect the balance of violence (Fig. 5b). 
In ten-thousand simulations with random ordering of 
the competitive hierarchy, gangs remain perfectly bal-
anced in their in- and out-degree and unchanged in the 
sequential order. The key observation from both of the 
simulations above is that equilibrium territory propor-
tion, particularly the ordering from large to small, in con-
junction with imbalances in the directionality of violence 
can sometimes be informative of differences in competi-
tive rank.
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Primary theoretical observations
The mathematical models of competition in a commu-
nity of gangs introduced above produce four main theo-
retical insights. First, closely following Tilman’s (1994) 
original conclusions, inferior gangs that are displaced in 
any dyadic contest by a superior gang, should be able to 
persist if they can quickly find and exploit open space in 
the environment. Second, because the ability to find and 
exploit open space can be achieved through a mixture of 
higher activity spread rates and lower activity cessation 
rates, it is possible for inferior gangs to exist at larger 
equilibrium sizes than their superior competitors. In 
other words, territory size alone is not necessarily a reli-
able proxy of competitive dominance. Third, variability 
in activity spread rates is a primary driver of imbalances 
in the directionality of gang violence. Variability in activ-
ity cessation rates has no impact on the directionality 
of violence. Finally, variability in the rank position of a 
gang in the competitive hierarchy can drive a gang from 
being a net importer of violence to being a net exporter 
of violence. Net importation of violence (high in-degree) 
occurs when a gang is ranked closer to the top of the 
competitive hierarchy, while net exportation of violence 
(high out-degree) occurs when a gang is ranked closer to 
the bottom of the competitive hierarchy. However, the 
rank of one gang in the competitive hierarchy can have 
an impact on the balance of violence among other gangs.

Gang size and violence in Hollenbeck
We now turn our attention to an empirical case study to 
further explore the theoretical observations developed 
above. The case study is focused on the Hollenbeck Com-
munity Policing Area of the Los Angeles Police Depart-
ment (LAPD), located on the eastern edge of the City of 
Los Angeles (Fig. 6). As of 2010, Hollenbeck has a resi-
dent population of approximately 186,960 people living in 
a 15.2 sq. mile area (39.4 km2). A quarter of the residents 
live below the poverty line (25.2%) and about a third live 
in owner-occupied residences (30.5%). The majority pop-
ulation is Hispanic (84.1%), with most individuals tracing 
their ancestry to Mexico (Manson et al. 2018).

Hollenbeck has a well-documented chronic gang prob-
lem stretching back over 70 years (Gustafson 1940; Val-
asik 2014). The overwhelming impression is a stable 
representation of gangs in the area (Valasik et al. 2017). 
As many as 40 gangs were identified in Hollenbeck as of 
1951 (Ranker 1957), including different age-based sets of 
the same gang. Many of the same gangs are still present 
on the street more than 50 years later. Tita et al. (2004) 
identified 29 street gangs active in Hollenbeck in the late 
1990s and early 2000s. More recent estimates identify 31 
gangs (see Brantingham et al. 2012; Valasik et al. 2017). 
Thirteen of these gangs present in recent surveys are tied 

to the Lincoln Heights, Montecito Heights and El Sereno 
neighborhoods, North of the 10 Freeway. The remain-
ing 18 gangs are tied to the Boyle Heights neighborhood, 
South of the 10 Freeway. The gangs of Hollenbeck are of 
dramatically different sizes (Table 1). For example, using 
LAPD gang maps compiled in 2010, the territory size 
attributed to El Sereno is two orders of magnitude larger 
than the turf attributed to the Clarence Street. Addition-
ally, the largest gang by estimated number of gang mem-
bers is an order of magnitude larger than the smallest 
gang. Hollenbeck may provide excellent example of gangs 
persisting in the face of competitive pressure.

Empirical challenges
It is premature to conduct a rigorous statistical test of 
model predictions given a number of outstanding empiri-
cal challenges. We seek only to identify broad points of 
alignment/misalignment between theory and data to 
reveal potential next steps in modeling. The least prob-
lematic point of articulation between theory and data is 
with the equilibrium proportion of space occupied by 
a gang i (but see below). The parameter p̂i may be esti-
mated either directly from turf maps, or indirectly via a 
census of gang members. The stability of named gangs in 
Hollenbeck over a long period of time suggests that both 
measures are in equilibrium; or at least as close as you 
could ever hope to get in a real-world setting. We use turf 
size as our preferred estimate. Note that the estimates in 
Table 1 are computed as the territory size divided by the 
total land area of Hollenbeck (15.2 sq. miles). Therefore, 
the sum of equilibrium proportions is less than one (i.e., ∑

p̂i < 1).
There is no easy way at this point to empirically meas-

ure the rate of activity spread ci , or rate of activity cessa-
tion mi for gangs. It is similarly difficult to measure the 
absolute competitive ability of gangs. In theory, each of 
these quantities could be estimated from field-based 
social observations (e.g., Weisburd et al. 2006). The rate 
of activity spread could be estimated from the fraction of 
street segments that transition from no recorded activity 
by gang i to some recorded activity by gang i during an 
observational period of time. Similarly, the rate of activity 
cessation could be estimated from the fraction of street 
segments that transition from having activity by gang i 
to no activity by gang i , but only where activity cessation 
was not the result of active displacement. Field interview 
cards, which record non-crime interactions between 
police and the public, could be used to make such infer-
ences, if the sampling frame for field interviews was 
well-understood (Faust and Tita 2009; Papachristos et al. 
2015; Valasik and Tita 2018; van Gennip et al. 2013). We 
do not seek to directly estimate activity spread or cessa-
tion rates.
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Ideally, the competitive rank of a gang could be 
inferred by observing instances where activity by gang i 
replaces the activity of gang j (i.e., a top-down instance 
of a superior gang replacing and inferior one), or where 
gang i attempts to engage in activity in a location where 
j is present, but is ultimately unsuccessful (i.e., a bot-
tom-up instance of an inferior gang trying to displace 

a superior one). Papachristos (2007) uses a coarse-
grained analog of this approach to examine competi-
tion over territory among gangs in Chicago (see also 
Papachristos 2009). Inferring a top-down displace-
ment event is confounded by the possibility that activ-
ity by gang j might have ceased anyway. What would 
appear to be competitive displacement might actually 

Fig. 6  Map of the LAPD Hollenbeck Policing Division with gang territories. The 10 Freeway traverses East–West across the middle of the map
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be activity spread into recently abandoned space. A 
bottom-up event might be more reliable for inferring 
competitive ranking, but the chance of observing such 
an event seems low. If activity spread is accompanied 
by some measure of conflict, then the case for inferring 
competitive displacement would be much better. Field 
interview data aligned with violent crime data could 
provide such insights.

We are potentially in a better position to meas-
ure competitive interactions through the record of 
crimes occurring between gangs. Figure  7 shows a 
homicide network for Hollenbeck gangs over a 23 year 
period between 1990 and 2012 (N = 395). Nodes in the 

network represent each of the 31 gangs in Hollenbeck 
with node size scaled according to estimated gang ter-
ritory size p̂k (Table  1). Edges are directed from the 
aggressor gang to the targeted gang, as identified in 
police records, and there is one edge drawn for each 
directional homicide recorded in the dataset (see Val-
asik et al. 2017). Homicides within the same gang (i.e., 
self-loops) are excluded from the analyses.

Empirical comparisons
Figure  8a shows that the neither the number of homi-
cides targeting a gang (in-degree, t = 3.17 , p = 0.004 , 
r2 = 0.26 ), nor the number of homicides perpetrated 

Table 1  Gang size estimates and the in-and out-degree for the Hollenbeck gang homicide network 1990–2012

Gang Gang turf size 
(106 square 
feet)

p̂i Total gang 
members 
(2003)

Total gang 
members 
(2010)

Observed 
in-degree

Observed 
out-degree

Expected 
in-degree

Expected 
out-degree

El Sereno 71.78 0.16939233 338 425 19 12 18.99 12.01

White Fence 32.27 0.076153392 675 611 10 10 9.18 9.89

Clover 25.71 0.060672566 289 245 15 10 7.42 9.18

Metro 13 16.2 0.038230088 66 50 1 2 5.15 2.27

KAM 13.54 0.031952802 289 240 8 15 3.87 10.23

Lincoln Heights 12.236 0.028875516 122 161 7 11 3.54 9.36

Primera Flats 10.4292 0.024611681 357 246 23 12 3.02 8.13

Big Hazard 8.482 0.020016519 289 352 8 6 2.58 5.84

Cuatro Flats 7.623 0.01798938 204 134 6 14 2.30 6.08

Breed Street 6.53 0.015410029 137 84 11 10 2.00 5.23

Evergreen 5.448 0.012856637 152 72 5 4 1.69 3.92

State Street 5.298 0.012502655 156 92 8 11 1.65 4.34

Rose Hills 5.292 0.012488496 48 37 5 7 1.63 4.31

Eastside 18th Street 5.037 0.011886726 566 364 5 8 1.56 4.11

Avenues 43 4.576 0.01079882 – – 2 3 1.43 2.99

8th Street 4.454 0.010510914 89 111 4 6 1.39 3.68

Happy Valley 4.35 0.010265487 46 36 3 0 1.41 0.53

Eastlake 3.096 0.007306195 168 145 11 14 0.98 2.59

VNE 2.868 0.006768142 619 378 7 8 0.90 2.39

Lil Eastside 2.52 0.005946903 60 48 3 2 0.80 1.98

Indiana Dukes 2.486 0.005866667 98 85 2 2 0.79 1.98

Lowell 2.315 0.005463127 58 27 4 11 0.73 1.93

Michigan Criminal Force 2.036 0.00480472 84 107 5 4 0.65 1.72

Opal Street 1.997 0.004712684 80 57 4 4 0.64 1.69

The Mob Crew 1.784 0.004210029 152 141 12 11 0.57 1.51

ELA 13 Dukes 1.63 0.003846608 317 191 7 10 0.52 1.37

Vicky’s Town 1.049 0.002475516 181 108 6 5 0.33 0.87

Tiny Boys 0.9621 0.002270442 127 115 16 7 0.30 0.80

Highlands 0.8886 0.002096991 31 21 1 1 0.28 0.73

Sentinel Boys 0.6466 0.0015259 57 90 2 1 0.21 0.55

Clarence Street 0.4487 0.001058879 117 64 4 4 0.14 0.36

Grand total 263982200 0.622966842 5972 4837 224 225 76.65 122.59
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by an aggressor gang (out-degree, t = 1.94 , p = 0.06 , 
r2 = 0.11 ) is strongly correlated with territory size. Com-
bined in- and out-degree is also not strongly correlated 
with combined in- and out-degree ( t = 2.91 , p = 0.007 , 
r2 = 0.22 ). Figure 8b suggests that homicide in- and out-
degree are more strongly correlated with one another 
( t = 4.52 , p < 0.001 , r2 = 0.41).

Visual inspection of Fig.  8b, prompts us to reject the 
hypothesis that a stable competitive hierarchy among 
Hollenbeck gangs could be the result of variable activ-
ity cessation rates mi with constant activity spread rates 
ci = c . The simple fact that the Hollenbeck gangs do not 
display perfect balance in their in- and out-degree, as 
seen in Fig.  5b, supports this conclusion. The observed 
data are visually more consistent with the hypothesis 
that Hollenbeck gangs emphasize variable activity spread 
rates to ensure survival as seen in Fig. 5a.

Figure  9 shows simulated competitive hierarchies 
for all thirty-one Hollenbeck gangs listed in Table 1. As 
above, simulation is necessary due to the large number 
of unknown parameters (i.e., competitive rank, spread 
and cessation rates). Our simulation procedure is equiva-
lent to that used to generate Fig. 5a: (1) randomly order 
the k Hollenbeck gangs into a hypothetical competi-
tive hierarchy; (2) assign a fixed activity cessation rate 

mi = m = 0.6 to each gang; (3) compute the value of ci 
sufficient to achieve the observed value of p̂k in Table 1, 
using a rearranged version of Eq.  (13); (3) compute the 
expected in- and out-degree using Eqs. (14) and (15); and 
(4) rescale the simulation results to reflect expected in- 
and out-degree in units of numbers of homicides.2 We 
repeat these four steps 5000 times to sample the space 
of possible competitive hierarchies. Table  2 provides a 
numerical example for a single iteration to use in verify-
ing computations. Table 1 list the expected in- and out-
degree for each gang obtained in simulation.

Figure 9a confirms the visual impression that homicide 
in- and out-degrees for Hollenbeck gangs generally fall 
within the expected range generated by theory under the 
assumed parameter values and scaling. The gangs that are 

Fig. 7  Homicide network for Hollenbeck gangs. Directed edges point to the targeted gang. Data includes all between-gang homicides from 1990 
to 2012. Network nodes are scaled by territory size (see Table 1)

2  The theoretical in- and out-degrees need to be scaled to compare with 
the observed in- and out-degrees. We use a fixed dilation constant of 
D = 140.9135 applied equally to simulated in- and out-degrees to produce 
expected in- and out-degrees in number of homicides. The dilation constant is 
chosen such that the observed in- and out-degree for the El Sereno gang, the 
largest by territory proportion, intersects with the theoretical curve computed 
for the El Sereno equilibrium territorial proportion. Note in Fig. 9a how the 
centroid for the El Sereno bubble falls exactly along the transecting curve gen-
erated by simulation. All other transecting curves use the El Sereno scaling.
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net importers of violence (e.g., El Sereno) are expected to 
rank towards the top of the community competitive hier-
archy. Those that are net exporters of violence (e.g., Cua-
tro Flats, KAM, East Lake) are expected to rank towards 
the bottom of the competitive hierarchy. The greater the 
deviation from a balanced degree distribution the more 
extreme a gang’s position in the competitive hierarchy. 
Table  1 shows that 16 of the 31 gangs (51.6%) display 
observed in- or out-degrees that are within three homi-
cides of the expected values. El Sereno is excluded from 
this count since the simulations are scaled to be consist-
ent with this gang.

There are some glaring mismatches between the theory 
and observed data (Table 1). First, there is poor numeri-
cal agreement between expected and observed in- and 
out-degrees. Table  1 shows that 13 of 31 gangs (41.9%) 
gangs display in- or out-degrees that are at least five 
homicides in error. Four gangs (12.9%) are at least 10 

homicides in error. Second, it is clear that the expected 
regular ordering of gangs by territory size does not hold. 
El Sereno is positioned where you would expect to see 
a high-ranked, large gang. By contrast, the position of 
Primera Flats, to the right of El Sereno, with a high in-
degree and moderately high out-degree, seems inconsist-
ent with its observed territory size. Theory would predict 
Primera Flats to have either a much larger territory size 
(larger than El Sereno), or a much lower in-degree that 
would place it closer to Lincoln Heights or Big Hazard 
(see Fig. 8b). The discrepancy is also glaring for the Tiny 
Boys gang. It appears to be a target of violence consistent 
with a gang with high competitive rank (high in-degree), 
but it displays a territory size that is at least an order of 
magnitude too small for such a status. On the other end 
of the spectrum, the Metro 13 gang appears to have a 
homicide degree distribution consistent with a small, 
low-ranked gang. However, it has a relatively large terri-
tory size that would anticipate it being both the aggressor 
in and target of much more violence.

To explore whether the models can plausibly generate 
such deviations in territory sizes we introduce a further 
simulation step. Rather than assigning a constant activity 
cessation rate to each gang in Step 2 of the simulation, we 
assign mi randomly to each gang over a range between 0.3 
and 0.8 for each iteration.3 The parameter range is arbi-
trary, but implies that a gang ceases activity at 30–80% 
of all sites in any instant in time. Figure  9b shows that 
introducing variation in activity cessation rates induces 
a wider range of homicide in- and out-degrees. But the 
added variation is not sufficient to encompass the most 
extreme outliers in territory size such as Primera Flats or 
Tiny Boys. It is possible that more complete exploration 
of parameter space would find somewhat better align-
ment between the models and observed data. It seems 
more appropriate, however, to suggest revisions to the 
model that take into account more realistic behavioral 
and environmental effects.

Discussion and conclusions
We started this paper by highlighting the fact that com-
petitive interactions between rival gangs often appear 
imbalanced. Some gangs are net exporters of violence 
(i.e., more often aggressors in homicides), while oth-
ers are net importers (i.e., more often targets in homi-
cides). It is reasonable to suppose that such imbalances 
in violence reflect imbalances in competitive ability since 

Fig. 8  The in-degree and out-degree for the Hollenbeck gang 
homicide network as a function of territory size. a Node degree 
plotted against territory size. b Out-degree plotted against in-degree 
with nodes scaled by territory size (Table 1)

3  A technical observation is that mixtures of activity cessation and spread 
rates produce viable solutions to Eq. 12, for the empirical array of p̂k , only if 
random cessation rates mi are chosen first and spread rates ci are computed 
after. If random activity spread rates are chosen first, then mi > 0 cannot be 
found for some significant fraction of gangs.
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violence appears central to how gangs “jockey for posi-
tions of dominance” (Papachristos 2009, p. 76). Exactly 
how these dynamics unfold remains an open question, 
however, since we do not have formal expectations about 
how competitive dominance, gang size and directionality 
of violence should be related.

To rectify this situation, we turned to mathematical 
models first developed to deal with analogous problems 
observed in plant ecology (Tilman 1994). The key advan-
tage of Tilman’s model is that it allows us to make strict 
assumptions about competitive dominance and follow 
those assumptions through to their empirical expecta-
tions. The key assumption is that a superior competi-
tor can always displace an inferior competitor wherever 
they are encountered and always hold a site against any 
incursion by an inferior competitor. Under such condi-
tions inferior competitors can persist if they can quickly 
exploit space as soon as it is vacated by superior com-
petitors and/or if they can hold onto empty space longer 
before they are displaced. In essence, inferior competitors 
are able to survive in the “interstices” between superior 
competitors. We mapped Tilman’s model onto the case 
of criminal street gangs by focusing on activity patterns. 
Many of our general observations parallel exactly those 
of Tilman. Our unique contribution was to extend the 

model to produce expectations about the relationships 
between competitive ability, gang size and the direction-
ality of violence.

The model suggests that gang size, when measured as 
the proportion of space used by a gang, is not a simple 
proxy for a gang’s competitive rank (see especially Figs. 2, 
3). Gang size and competitive rank are only positively 
correlated if all gangs in a competitive hierarchy adopt 
a pure strategy for coexistence. That is, all of the gangs 
must either have identical activity cessation rates and 
leverage variable activity spread rates, or have identical 
activity spread rates and leverage variable activity ces-
sation rates. If individual gangs adopt mixed strategies, 
then gang size fails to track competitive rank. The larg-
est gangs can be competitively inferior and the smallest 
competitive superior in terms of absolute displacement 
ability. The models also suggest that the directionality of 
violence, as measured by the homicide in- and out-degree 
per gang, is also not a simple proxy for competitive rank 
(see especially Fig.  5). Large gangs typically experience 
more overall violence (cumulative in- and out-degree), 
compared with small gangs. However, variation in com-
petitive rank (and random noise in activity cessation and 

Fig. 9  The distribution of in- and out-degree for Hollenbeck gangs superimposed upon 5000 simulated gang communities. a The competitive 
hierarchy is randomized in each simulation and the expected in- and out-degree at equilibrium is computed for each gang. Change in the rank 
position of a gang causes it to shift in- and out-degree, but the gangs remain distributed in order of their territory size. b The competitive hierarchy 
is randomized and then activity cessation rates over a range 0.3–0.8 are assigned randomly to each gang. In- and out-degree display more range 
over simulated communities, but not enough to explain the inversions in territory sizes. Simulation results are scaled so that observed and expected 
in- and out-degree for El Sereno intersect. Gangs: Clover (CL); Cuatro Flats (CF); Eastlake (EL); El Sereno (ES); Primera Flats (PF); Tiny Boys (TB); White 
Fence (WF)
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spread rates) can cause a gang to flip from being a net-
importer to a net exporter of violence.

We examined the implications of the models using 
homicide data from LAPD’s Hollenbeck Community 
Policing Area. Territory size is not strongly correlated 
with the directionality of violence between rivals, 
as measured by in- and out-degree over the homi-
cide network. Territory size is only marginally better 
at predicting the total volume of violence. The model 
presented here suggests that we should not be sur-
prised by this result as competitive ability, gang size 
and directionality of violence need not be strongly 
connected, even where absolute competitive domi-
nance exists. The observed in- and out-degrees for the 

Hollenbeck homicide network is perhaps more consist-
ent with gangs leveraging faster activity spread rates to 
circumvent competitive asymmetries than an alterna-
tive model of slower activity cessation rates. However, 
we have not performed rigorous model evaluation as 
there remain many unknowns that deserve further 
theoretical discussion (see below). Nevertheless, it is 
reasonable to hypothesize that gangs such as El Sereno, 
and perhaps Clover, are net importers of violence as a 
result of large size and relatively high-rank in competi-
tive ability. By contrast, gangs such as KAM and Lin-
coln Heights may be net-exporters of violence because 
of an intermediate size and relatively low competi-
tive rank. However, there are gangs that do not neatly 

Table 2  Numerical results for one simulated gang community

a  The notation p̂k is used to emphasize that the equilibrium proportions are in a random order independent of the competitive rank of the gang
b  A dilation constant D = 140.9135 may be used to convert unscaled to scaled expected degrees. See Note  2

Rank Gang name p̂k
a mi ci Unscaled in-degreeb Unscaled out-degree

1 Cuatro Flats 0.0179 0.6 0.610936 0.0174319 0.00659973

2 Eastlake 0.0073 0.6 0.626729 0.00715554 0.00280958

3 Breed Street 0.0154 0.6 0.641558 0.0150136 0.00598728

4 Happy Valley 0.0102 0.6 0.658861 0.00997627 0.0041075

5 MC Force 0.0048 0.6 0.669326 0.00471155 0.00198099

6 State Street 0.0125 0.6 0.681751 0.0122033 0.00518898

7 Metro 13 0.0382 0.6 0.720427 0.0365676 0.0160499

8 Eastside 18th Street 0.0118 0.6 0.761273 0.0115145 0.00547605

9 Big Hazard 0.02 0.6 0.78936 0.01938 0.00949442

10 White Fence 0.0761 0.6 0.885895 0.0698118 0.0367623

11 8th Street 0.0105 0.6 0.984849 0.0102317 0.00631726

12 Vicky’s Town 0.0024 0.6 1.00129 0.00235772 0.00148751

13 Lowell Street 0.0054 0.6 1.01146 0.00528835 0.00336453

14 Evergreen 0.0128 0.6 1.03585 0.0124355 0.00806938

15 ELA 13 Dukes 0.0038 0.6 1.05875 0.0037269 0.00248477

16 Indiana Dukes 0.0058 0.6 1.07239 0.00567568 0.00382896

17 Lincoln Heights 0.0288 0.6 1.1242 0.0274294 0.0191865

18 Rose Hills 0.0124 0.6 1.19 0.0120284 0.00898637

19 Opal Street 0.0047 0.6 1.2191 0.00460156 0.00353355

20 Sentinel Boys 0.0015 0.6 1.22993 0.00147441 0.00114365

21 El Sereno 0.1693 0.6 1.6275 0.120076 0.124569

22 Tiny Boys 0.0022 0.6 2.15793 0.00215608 0.00293962

23 Lil Eastside 0.0059 0.6 2.19153 0.00573395 0.00795842

24 Avenues 43 0.0107 0.6 2.26291 0.0102781 0.014787

25 Clover 0.0606 0.6 2.62226 0.0500482 0.0891161

26 VNE 0.0067 0.6 3.02126 0.00646244 0.012443

27 Highlands 0.002 0.6 3.08096 0.00195725 0.00381669

28 Clarence Street 0.001 0.6 3.102 0.00098168 0.00192448

29 KAM 0.0319 0.6 3.3525 0.0280031 0.063044

30 Primera Flats 0.0246 0.6 3.84732 0.0218975 0.0564836

31 TMC 0.0042 0.6 4.13998 0.00406307 0.0107318
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align with model expectations. These outliers either 
have observed in-degrees that are much larger than 
expected for the small territory size (e.g., Primera Flats, 
Tiny Boys), or much smaller than expected for their 
large territory size (e.g., Metro 13). Assuming that the 
in- and out-degree counts are accurate, alignment with 
model expectations would require that territory sizes 
be adjusted upwards or downwards.

Limitations
This study has several important limitations. First, 
the use of homicide data may not be the best metric 
to assess gang dominance given that these acts of vio-
lence are likely rare when compared to other less severe 
options that may accomplish much the same thing (e.g., 
aggravated or simple assault). However, since most acts 
of gang-related violence involve firearms (Huebner 
et al. 2016; Maxson et al. 1985; Maxson and Klein 1990; 
Pizarro 2017; Rosenfeld et  al. 1999; Valasik 2014), the 
only difference between a gang-related homicide and a 
gang-related aggravated assault may be random. Thus, 
more dominant gangs may attempt to utilize less severe 
acts of violence, however, the results may still be a homi-
cide. Furthermore, research has shown that the investiga-
tion of homicides by law enforcement is likely to be the 
most robust, given that there is almost always a victim, 
with a specialized police unit that dedicates substan-
tially more investigative time and effort to their resolu-
tion (Petersen 2017; Pizarro et al. 2018; Regoeczi 2018). 
In this study, the thoroughness of investigating gang-
related homicide is expected to provide a much more 
complete picture of the violent event including reliable 
data on gang affiliations of both the target and the aggres-
sor, two crucial pieces of information needed to the cur-
rent analyses. As such, the use of gang-related homicides 
as the sole metric of violence is likely to be conservative 
measure.

It is premature to conclude that territory size is not 
at all a useful predictor of competitive rank. Part of the 
problem may be with the way that gang territories are 
recognized and measured in real-world settings. Record-
ing gang territories as bounded, convex polygons may 
be pragmatic. However, there is good reason to question 
whether this is a realistic representation of the distribu-
tion of gang activity, gang areal control or gang competi-
tive position. It has long been recognized that gangs may 
claim a large swath of land, but that most hanging out 
occurs at only a handful of locations, termed ‘set spaces’ 
by Tita et al. (2005). In fact, Valasik (2018) finds that areas 
with high concentrations of gang member residences and 
gang set space locations are most at risk of experiencing 
a gang-related homicide. It might be more appropriate 
to think of gang territories as a network of placed-based 

activity nodes and corridors or pathways between them. 
This would be a group-level analog of crime pattern 
theory (Brantingham and Brantingham 1993). Some 
nodes and corridors might be common to the gang as a 
whole (i.e., set spaces), while others might be tied to the 
activities of single gang members (e.g., gang member 
residences). Gang territories seem to overlap quite sub-
stantially when drawn as convex polygons. For example, 
in the entire city of Los Angeles approximately 40% of all 
documented gang turfs overlap according to 2010 gang 
territory maps. However, if territories are really a “mesh” 
of shifting nodes and corridors between them, then the 
actual equilibrium size distribution of gangs may be quite 
different from (and lower) than that measured using ter-
ritory maps.

This concern over defining territories raises a related 
issue about modeling both spatial and temporal pat-
terns of gang behavior. The models presented above are 
spatially implicit. They deal only with the proportion of 
space occupied by a gang, not the actual spatial arrange-
ment of those gangs. The models do imply, however, that 
the spatial arrangements of gangs are subject to constant 
change. Even though gangs occupy a stable proportion 
of the landscape at equilibrium, there is regular turnover 
in which gangs occupy which sites. Such change is not 
consistent with the “turf-as-polygon” view of gang ter-
ritoriality. It may be more consistent with the idea that 
gang territories are a shifting mesh of nodes and corri-
dors. Spatially implicit models also do not take into con-
sideration any constraints of mobility (Hubbell 2005; 
Turchin 1998). How far people move plays an important 
role in the generation of crime patterns (Brantingham 
and Tita 2008) and presumably plays and important role 
in the formation and maintenance of gang territories 
(Brantingham et  al. 2012; Hegemann et  al. 2011; Val-
asik and Tita 2018). Including mobility in the current 
model would require a spatially explicit approach. Such 
models are much more challenging mathematically, but 
frequently lead to novel insights quite different from spa-
tially implicit models (Kareiva and Wennergren 1995; Til-
man et al. 1994). Thus, it is premature to claim that faster 
activity spread rates will be a decisive property in a spa-
tially explicit systems of gangs.

The models developed here offer only a limited view of 
competitive dynamics. We recognize that it is extreme 
to assume that gangs form a strict competitive hierar-
chy. This assumption is theoretically valuable as a form 
of counterfactual. It is much more likely, however, that 
competitive ability is context dependent (Hubbell 2005). 
Who has the upper hand in any one dyadic interaction 
may depend as much on where an interaction takes place, 
or who is present, as on some global competitive ability 
of the gang. A more detailed assessment of the costs and 
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benefits that arise in competitive interactions across con-
texts is needed. For example, it is perhaps unrealistic to 
assume that inferior gangs will continue to attack supe-
rior gangs if such attacks never yield successful displace-
ments. The contexts in which attacks are successful and 
unsuccessful may carry great importance for understand-
ing competitive dynamics.

A related concern is whether it is reasonable to model 
a community of gangs as a single competitive hierarchy. 
Competitive interactions may be restricted to smaller 
clusters of gangs that exist in close spatial proximity to 
one another. A broader community of gangs may in fact 
be best modeled as a multiscale system composed of 
several competitive hierarchies that sometimes interact. 
These concerns again point us in the direction of spatially 
explicit models where the competitive ranking of gangs 
may shift across the landscape. It also suggests a role for 
game theory in modeling competition as strategic inter-
actions that might include behavior other than acting as a 
superior (or inferior) competitor. Specifically, we believe 
it will be important to relax the assumption that activity 
spread and cessation rates for each gang are unchang-
ing in time. These traits, if important, presumably would 
be under heavy selection via some learning mechanism. 
Inferior gangs might be put at an even greater disadvan-
tage if superior gangs seek to close off spatial opportuni-
ties in response to competitive interactions by evolving 
their activity spread and cessation rates. These possibili-
ties will require further examination.
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