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Abstract 

Background  Domestic goose breeds are descended from either the Swan goose (Anser cygnoides) or the Greylag 
goose (Anser anser), exhibiting variations in body size, reproductive performance, egg production, feather color, 
and other phenotypic traits. Constructing a pan-genome facilitates a thorough identification of genetic variations, 
thereby deepening our comprehension of the molecular mechanisms underlying genetic diversity and phenotypic 
variability.

Results  To comprehensively facilitate population genomic and pan-genomic analyses in geese, we embarked 
on the task of 659 geese whole genome resequencing data and compiling a database of 155 RNA-seq samples. By 
constructing the pan-genome for geese, we generated non-reference contigs totaling 612 Mb, unveiling a collec-
tion of 2,813 novel genes and pinpointing 15,567 core genes, 1,324 softcore genes, 2,734 shell genes, and 878 cloud 
genes in goose genomes. Furthermore, we detected an 81.97 Mb genomic region showing signs of genome selec-
tion, encompassing the TGFBR2 gene correlated with variations in body weight among geese. Genome-wide associa-
tion studies utilizing single nucleotide polymorphisms (SNPs) and presence-absence variation revealed significant 
genomic associations with various goose meat quality, reproductive, and body composition traits. For instance, 
a gene encoding the SVEP1 protein was linked to carcass oblique length, and a distinct gene-CDS haplotype 
of the SVEP1 gene exhibited an association with carcass oblique length. Notably, the pan-genome analysis revealed 
enrichment of variable genes in the “hair follicle maturation” Gene Ontology term, potentially linked to the selection 
of feather-related traits in geese. A gene presence-absence variation analysis suggested a reduced frequency of genes 
associated with “regulation of heart contraction” in domesticated geese compared to their wild counterparts. Our 
study provided novel insights into gene expression features and functions by integrating gene expression patterns 
across multiple organs and tissues in geese and analyzing population variation.

†Guangliang Gao and Hongmei Zhang contributed equally to this work.

*Correspondence:
Xiangdong Kong
xdkong@zju.edu.cn
Qigui Wang
wangqigui@hotmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40104-023-00944-y&domain=pdf


Page 2 of 20Gao et al. Journal of Animal Science and Biotechnology          (2023) 14:150 

Conclusion  This accomplishment originates from the discernment of a multitude of selection signals and candidate 
genes associated with a wide array of traits, thereby markedly enhancing our understanding of the processes under-
lying domestication and breeding in geese. Moreover, assembling the pan-genome for geese has yielded a com-
prehensive apprehension of the goose genome, establishing it as an indispensable asset poised to offer innovative 
viewpoints and make substantial contributions to future geese breeding initiatives.

Keywords  Gene-CDS haplotype, Goose, GWAS, Pan-genome, Presence-absence variation, Selection signal

Background
Domestic goose is a highly valued waterfowl widely 
raised because of its economic benefits. Previous stud-
ies on fossils and genomic sequences have indicated that 
Chinese indigenous geese, except the Yili goose, were 
primarily domesticated from Swan geese (Anser cyg-
noides) [1]. In contrast, European geese were predomi-
nantly domesticated from Greylag geese (Anser anser). 
The domestication process of geese can be traced back to 
over 7,000  years ago [2–4]. Goose eggs, liver, and meat 
are nutritious and favored by humans. Goose feathers 
are valuable raw materials for industrial production [5]. 
Due to these features, humans have domesticated geese 
for various purposes, which has led to the development 
of many indigenous goose breeds. During domestica-
tion, the migratory Swan and Greylag goose were devel-
oped into domestic geese with accelerated growth rates, 
extended laying periods, and increased reproductive 
capacity. For instance, Swan geese typically lay 5 to 8 eggs 
annually, weigh between 2.8 to 3.5 kg, and possess white 
feathers [6], while Chinese goose breeds domesticated 
from Swan geese display significant variations in egg pro-
duction, body weight, and feather coloration, with note-
worthy examples being the Zi goose breed, which boasts 
an average annual egg yield of 93 eggs per individual, 
and the Lion head goose, with an average body weight of 
13.55 kg, along with pure white-feathered breeds like the 
Sichuan white goose [6, 7].

The advances in sequencing technology and bioinfor-
matics have facilitated the genetic study of various traits 
in geese. Over the years, reference genomes for numer-
ous goose breeds have been assembled and published. 
Following the successful assembly of the Zhedong white 
goose genome [8], genomes of several other goose breeds, 
including the Sichuan white goose, Tianfu goose, wild 
Swan goose, Xingguo gray goose, and Lion  head goose, 
have also been published [7–14]. The availability of these 
genome sequences allows the analysis of the genetic basis 
of differences in traits (such as the variation in reproduc-
tive capacity and body weight). For example, the genomic 
analysis of Xingguo gray geese and Gang geese revealed 
a natural genetic mutation: a 14-bp insertion in the 
endothelin receptor B subtype 2 (EDNRB2) gene respon-
sible for white feathers in Chinese indigenous goose [11, 

15]. Previous studies have identified SNPs near or within 
genes associated with geese reproductive ability [16, 17].

Because of the availability of high-quality reference 
genomes, large-scale whole-genome sequencing (WGS) 
and transcriptome sequencing have become essential 
approaches to studying the evolution and domestication 
of geese. The WGS data from wild and domestic geese 
revealed that many modern European goose breeds share 
a significant (> 10%) ancestry with Chinese indigenous 
goose, and the frequent gene exchange has been con-
firmed since domestic and wild geese divergence 5,300 
generations ago [18]. In a previous study, the WGS data 
from 990 geese were analyzed, which revealed that the 
genetic diversity of Chinese geese was higher than that 
of European geese, and a specific haplotype cluster was 
identified that distinguished white and grey geese [11]. 
A combination of morphological, transcriptomic, and 
genomic resequencing studies on Chinese indigenous 
goose identified 17 and 21 candidate genes associated 
with knob formation in the skin and bones, respectively, 
including iodothyronine deiodinase 2 (DIO2), that play a 
crucial role in determining goose knob phenotype [19]. 
Chinese indigenous goose breeds from different regions 
exhibit distinct traits in body weight, reproduction ability 
and feather color. For instance, Wen et al. [20] reported 
that an 18-bp deletion in Receptor tyrosine kinase (KIT) 
is strongly associated with white feathers in 18 Chinese 
indigenous white and grey geese. Moreover, the WGS 
data from diverse populations exhibiting variations in 
meat quality, growth traits, and reproduction traits have 
revealed a set of candidate genes associated with a wide 
range of characteristics, including the gene DEAH-box 
polypeptide 15 (DHX15) related to meat quality, LIM 
domain binding 2 (LDB2), Slit guidance ligand 2 (SLIT2), 
and recombination signal binding protein for immuno-
globulin kappa J region (RBPJ) are associated with growth 
traits, and the gene potassium voltage-gated channel 
interacting protein 4 (KCNIP4) is implicated in reproduc-
tion traits [21]. These results are of great significance for 
understanding the domestication process of geese and 
providing guidance for breeding.

With appropriate experimental designs, RNA-seq 
of various organs or growth stages of various goose 
breeds can further reveal the occurrence and regulation 
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of various goose traits. The Lion head goose is a large-
bodied goose in China. Transcriptome analysis of myo-
blast proliferation and differentiation in Lion head geese 
revealed that differentially expressed genes at vari-
ous developmental stages were mainly involved in the 
Wnt signaling pathway, revealing the potential regula-
tory role of this pathway in muscle growth in Lion head 
geese [22]. Light significantly influences both the growth 
rate and quality of poultry; an RNA-seq analysis of Zhe-
dong white geese’s leg muscle subjected to extended and 
abbreviated light cycles over 60 d unveiled the prominent 
impact of light on the PI3K-Akt signaling pathway [23]. 
Reproductive ability is one of the crucial traits of geese. 
Transcriptome analysis comparing geese with high and 
low reproductive ability revealed that members of the 
5-hydroxytryptamine gene family regulate ovarian meta-
bolic function to affect reproductive ability [24]. These 
extensive genomic and transcriptomic studies provided 
a vital reference for a deeper understanding of various 
molecular mechanisms of geese.

Relying solely on a single reference genome is inad-
equate for fully representing the diverse range of genetic 
sequences within a species; however, constructing a 
pan-genome consisting of multiple individuals from 
the same species has proven highly effective in address-
ing this limitation [25]. Recent pan-genomic studies 
have revealed the substantial impact of genome-wide 
structural variations (SV) or presence-absence varia-
tion (PAV) on animal traits [25–28]. In chicken, the pan-
genomic study identified 66.5  Mb of novel sequences 
not present in the reference genome and predicted 4,063 
highly credible, new protein-coding genes; more impor-
tantly, through population-level PAV analysis, this study 
identified a deletion variant in the insulin-like growth 
factor 2 mRNA-binding protein 1 (IGF2BP1) gene pro-
moter region that affects chicken body size [29]. This 
highlighted the critical role of pan-genomic analysis 
in genomic research and breeding of domestic poul-
try. Apart from poultry, pan-genomic analysis of other 
domestic animals has provided important information on 
breeding. In a study involving 12 pig genomes, research-
ers identified 72.5 Mb of novel sequences absent from the 
reference genome and discovered a Chinese pig-specific 
gene known as tazarotene-induced gene 3 (TIG3), which 
plays a crucial role in regulating fatty acid metabolism 
[30]. Cattle are an important livestock worldwide. After 
assembling and aligning the resequencing sequences of 
898 cattle from 57 accessions, 83 Mb of the sequence was 
missing from the reference genome, and in some of the 
variants with nucleotide insertion, essential functional 
genes were affected [31].

To comprehensively understand the genetic diver-
sity and molecular mechanisms underlying phenotypic 

variations in geese, this study conducted comprehensive 
pan-genome using multiple reference goose genomes 
(Tianfu goose, Sichuan white goose, and Zhedong white 
goose) on  659 WGS data from 647 individual geese 
and 155 RNA-seq datasets. Based on the Tianfu goose 
genome sequence, we performed a comparative genomic 
analysis between Chinese and European geese to reveal 
genomic distinctions and identify genes exhibiting signif-
icant frequency differences related to economic traits and 
feather color. To identify molecular markers associated 
with economic traits (meat quality, body size, reproduc-
tion, and egg quality traits), we conducted genome-wide 
association studies based on SNPs and gene PAV data 
from Sichuan white goose population (a Chinese indig-
enous goose renowned for its dual-purpose role in both 
meat and egg production). This work will provide insight 
into the molecular mechanisms underlying genetic diver-
sity and phenotypic variability in geese during domestica-
tion and breeding, offering valuable resources to facilitate 
genetic research and breeding in geese.

Methods
Experimental animals
In this study, a total of 659 WGS datasets were utilized 
to construct the goose pan-genome. Within this dataset, 
378 WGS datasets were generated as part of our study, 
including 9 goose breeds (Table S1 for the list of included 
breeds: 25 Huoyan geese, 20 Lion head geese, 24 Magang 
geese, 215 Sichuan white geese, 20 Taihu geese, 15 Xupu 
geese, 24 Zi geese, 20 Landes geese and 15 White Roman 
geese). Additionally, we downloaded an additional 281 
WGS datasets from a publicly accessible database (Table 
S2, which includes data on the 209 Sichuan white goose 
and 72 individuals from wild goose breeds) [16, 32–34]. 
In conclusion, there are 7 Chinese indigenous goose 
breeds (Anser cygnoides domestica, including Huoyan 
geese, Lion head geese, Magang geese, Sichuan white 
geese, Taihu geese, Xupu geese, and Zi geese), two Euro-
pean domestic goose breeds (Anser anser domestica, 
including Landes geese and White Roman geese) and 
wild goose species.

We collected 378 blood samples from the medial 
pterygoid vein of the geese using vacuum tubes contain-
ing EDTA to prevent coagulation. These samples were 
sourced from two primary locations: the AnFu Water-
fowl Breeding Base in Chongqing City and the National 
Waterfowl Germplasm Resource Gene Pool in Taizhou, 
China. These collected samples were then preserved 
at −20  °C in a freezer. Genomic DNA extraction was 
performed by isolating it from the whole blood using a 
DNA extraction kit (DP332; Tiangen Biotech, Beijing, 
China). Subsequently, the concentration and quality 
of the extracted DNA were assessed using a Nano Vue 
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spectrophotometer (Cytiva Life Sciences, Marlborough, 
MA, USA) and agarose gel electrophoresis. The WGS 
libraries for these 378 individuals were prepared in 
accordance with the standard Illumina library prepara-
tion kit protocol (Illumina, San Diego, CA, USA). After 
library preparation, we conducted WGS on the Illumina 
HiSeq X Ten platform at Novogene Biotechnology Cor-
poration in Beijing, China.

The classification of the 7 Chinese indigenous goose 
breeds was determined based on factors including body 
weight, reproductive capacity, and feather color. This 
classification was derived from data provided by the 
China Goose Genetic Resources Database, accessible at 
http://​www.​yzcom.​com/​webde​mo/​goose. According to 
the previous study [35], the Chinese indigenous geese 
were categorized according to their reproductive ability, 
classify into high (Huoyan and Zi goose), middle (Sichuan 
white and Taihu goose), and low (Lion head, Magang, and 
Xupu goose) groups. Additionally, the geese were further 
categorized based on their body weight: heavy (Lion head 
goose), middle (Sichuan white and Xupu goose), and low 
(Huoyan, Taihu, and Zi goose) groups. Furthermore, the 
feather color of the geese was classified as either white 
(Sichuan white, Huoyan, Xupu, Zi, and Taihu goose) or 
gray (Magang and Lion head goose) groups.

Phenotypic traits in Sichuan white geese (Anser cygnoides 
domestica)
In this study, we obtained body size and meat quality 
traits from 70-day-old male Sichuan white geese popula-
tion (215 individuals), while reproductive and egg quality 
phenotype data from 1-year-old female geese  popula-
tion (209 individuals), which were provided by the AnFu 
Waterfowl Breeding Base in Chongqing City. All of the 
collected phenotypic data were subsequently utilized in 
SNP-GWAS and PAV-GWAS analyses. For body size and 
meat quality traits, 215 70-day-old male Sichuan white 
geese were randomly selected from a shared incubation 
batch and reared under controlled conditions for the 
study. After blood sampling, we conducted assessments 
encompassing a range of morphometric measurements, 
including body length, carcass femur length, carcass keel 
bone length, chest depth, chest width, feet weight, keel 
bone length, keel length, leg circumference, neck length, 
and tibia length. Subsequently, carcass characteristics, 
such as the weight of semi-eviscerated carcass, eviscer-
ated carcass, subcutaneous fat, as well as meat quality of 
thigh muscle and breast muscle, were evaluated. Addi-
tionally, the weight of visceral organs, including heart, 
liver, kidney, lung, spleen, pancreas, gizzard, and proven-
triculus was quantified. After slaughter, breast muscle 
samples from the right side were collected precisely 2 h 
later. Furthermore, a portable pH meter (pHCore-kit, 

Sartorius Lab Instruments GmbH, Goettingen, Ger-
many) was employed with its glass electrode inserted 
directly into the muscle following calibration using buff-
ers (pH 4.01), and the pH values were calculated from the 
average of three measurement points. The study involved 
the analysis of various meat quality parameters, includ-
ing lightness (L*), redness (a*), yellowness (b*) of meat 
color, pH value, shear force, cooking loss rate, and crude 
fat content.

For egg-laying and reproduction traits, our previ-
ous study involved the individual rearing of each female 
Sichuan white goose within the population, starting from 
birth and continuing until the non-laying period, which 
extended for 66 weeks [16]. These geese were housed in 
separate cages (600 mm × 800  mm × 900  mm) through-
out their egg-laying period, spanning weeks 28 to 66. We 
diligently collected and marked eggs from each goose 
daily. Detailed records were kept for various parameters 
of each individual, including birth body weight, 70-day 
body weight, body weight at first egg laying, egg num-
ber at 48  weeks [16]. Additionally, during weeks 35 to 
40, we collected three consecutive eggs from each goose 
and determined egg weight, egg yolk color, egg relative 
density, egg shell strength, egg shell thickness, egg shell 
weight, egg yolk weight, egg index traits. Moreover, we 
introduced healthy male geese from a separate colony 
at a 1:4 male-to-female ratio for mating with the female 
geese. Finally, daily candling was performed on all eggs to 
determine the fertility, qualified egg rate, plasma concen-
trations of progesterone (P), follicle-stimulating hormone 
(FSH), prolactin (PRL) and oestrogen (E2) [36].

SNP calling and population genomic analysis
For all of the 659 WGS data, regardless of whether it 
was generated in our laboratory or obtained from public 
databases, we conducted quality control, trimming, and 
filtering of raw sequencing data using the methodologies 
detailed in a previous study [16]. Subsequently, the fil-
tered WGS data from all geese were meticulously aligned 
to the goose reference genome (version ASM1303099v1) 
using the Burrows-Wheeler Alignment (BWA) soft-
ware [37]. Potential PCR duplicates were identified and 
marked using the “MarkDuplicates” tool in GATK soft-
ware (version 4.2.6.1). SNP calling was conducted on the 
GVCF file using HaplotypeCaller in GATK. The called 
SNPs then underwent quality filtering using VariantFil-
tration, applying the following parameters: –filter-expres-
sion “QD < 2.0 || FS > 60.0 || MQ < 40.0 || SOR > 3.0 || 
MQRankSum <  − 12.5 || ReadPosRankSum <  − 8.0” –fil-
ter-name “snp_filter” –genotype-filter-expression “DP < 2 
|| DP > 50” –genotype-filter-name “dp_fail”. Finally, 
VCFtools [38] was used to remove sites with missing 
rate > 90% and allele frequency < 5%. SNP annotation 

http://www.yzcom.com/webdemo/goose
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was performed using variant SnpEff [39]. The fixation 
index (Fst) between different populations was calculated 
through VCFtools. An IQ-TREE analysis (default param-
eters) was employed to construct the phylogenetic tree 
of geese based on SNP data [40]. ADMIXTURE (default 
parameters) was utilized to analyze the population struc-
ture of geese using SNP data [41]. Investigating gene flow 
among distinct populations was achieved using Tree-
mix (default parameters) [42]. Nucleotide diversity (Pi) 
for different populations was computed using VCFtools 
(default parameters) [43].

Selective signal analysis between geese groups
We identified selective sweep regions on chromosomes 
using the Tianfu goose genome as a reference. An XP-
CLR test (updated Python version released on https://​
github.​com/​hardi​ngnj/​xpclr) was performed to detect 
selective signals between various goose populations 
[44]. Each chromosome was independently analyzed and 
divided into nonoverlapping windows of 10 kb. The aver-
age XP-CLR likelihood scores of each window were cal-
culated. Regions with XP-CLR, a likelihood score average 
in the top 5% of the entire genome, were defined as hav-
ing strong selective signals. For the regions with XP-
CLR likelihood scores in the top 20%, adjacent regions 
or regions separated by one window were merged into a 
new window. The maximum average XP-CLR likelihood 
score among these regions was taken as the XP-CLR 
likelihood score for the new window, and the maximum 
average XP-CLR likelihood score was used as the XP-
CLR likelihood score of this new window. In the regions 
of candidate genes and their 5  kb upstream and down-
stream, the Fst values between various goose populations 
were calculated.

Pan‑genome construction
Based on the previous step, unmapped reads or low-
quality mapping sequences were extracted using SAM-
tools v1.9 (SAMtools fastq -f 12, SAMtools fastq -f 68 -F 
8, and SAMtools fastq -f 132 -F 8) [45]. The unmapped 
reads of each individual were assembled using MaSuRCA 
[46], and contigs smaller than 500  bp were removed. 
However, poorly mapped reads might have been still pre-
sent in the unmapped reads extracted using SAMtools, 
and contigs identical to the reference genome might still 
have been present in the assembled contigs. Therefore, 
the remaining contigs were aligned to the goose refer-
ence genome and mitochondrial genome using nucmer 
[47] from the Mummer software package. If a contig had 
a region larger than 300 bp that could be aligned to the 
reference genome with over 90% similarity, this region 

was considered a reliable alignment region. Contigs that 
did not have such reliable alignment regions were defined 
as unaligned contigs or fully unaligned contigs. In the 
sequences that could be aligned to the reference genome, 
if there were regions larger than 500  bp with less than 
90% similarity to the reference genome, these regions 
were extracted as partially unaligned contigs.

The sequences of fully unaligned contigs and partially 
unaligned contigs were merged and subjected to redun-
dancy removal using CD-HIT-EST software [48]. To fur-
ther eliminate redundancy, the resulting nonredundant 
sequences were subjected to all-vs-all comparison using 
blastn and nucmer, and the comparison results were 
processed using an in-house Perl script, with a thresh-
old of 90% similarity over 90% of the region for further 
redundancy removal. The final nonredundant sequences 
were compared with the NT database using blastn, and 
sequences belonging to archaea, viruses, bacteria, fungi, 
and Viridiplantae were removed based on the spe-
cies information in the comparison results. In addition, 
Kraken2 was used to annotate the new sequences against 
the Kraken2-microbial database, and sequences anno-
tated as microorganisms were removed [49]. Finally, the 
sequences obtained in the previous step were compared 
to the reference genome using blastn to ensure that these 
new sequences were not present in the reference genome. 
Nucmer was used to compare the reference genome and 
filter the sequences using the same criteria as above, 
resulting in nonredundant, uncontaminated, and non-
reference sequences.

Considering the differences between the reference 
genome of the Tianfu goose used in this study and other 
versions of reference genomes, Zhedong white goose 
[8] and Sichuan white goose [9] were downloaded and 
compared with the reference genome. ppsPCP [50] was 
used to extract PAV sequences in the genomes of the 
Zhedong white goose and Sichuan white goose but not 
in the Tianfu genome. PAV genes were defined as those 
with more than 80% overlap with the corresponding 
genomic regions in the two genomes, as per the standard 
set by a pan-genome study on Brassica napus [51]. Fur-
ther, the non-reference sequences constructed based on 
the second-generation resequencing data were compared 
with the PAV sequences obtained from inter-genome 
comparisons using blastn. The get_coverage_filter.pl 
script in ppsPCP was used to remove non-reference 
sequences highly similar to the identified PAV sequences. 
Finally, the PAV sequences obtained from multi-genome 
comparisons (Tianfu goose, Sichuan white goose, and 
Zhedong white goose), and non-reference sequences 
assembled from WGS data were merged to form the pan-
genome of geese.

https://github.com/hardingnj/xpclr
https://github.com/hardingnj/xpclr
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Pan‑genome annotation
For pan-genome annotation, we downloaded 155 RNA-
seq datasets from the GEO or SRA database spanning 
ten distinct tissue types [52, 53]. Based on the Rep-
Base (v17.01, http://​www.​girin​st.​org/​repba​se) transpo-
son repeat sequence library, RepeatMasker was used 
to annotate repetitive sequences in the novel con-
tigs of geese [54]. Additionally, RepeatModeler was 
used to construct a de novo repeat sequence library 
for the new goose sequences, which was further used 
by RepeatMasker for further annotation [55]. Tandem 
Repeats Finder was used to annotate tandem repeat 
sequences in the novel contigs of geese [56]. Hisat2 
[57] was used to map RNA-seq data to the novel con-
tigs, and unmapped reads were extracted using SAM-
tools. Trinity [58] was used for the de novo assembly of 
these unmapped reads, followed by redundancy reduc-
tion using cd-hit-est. Finally, maker2 [59] was used to 
integrate gene structure predictions from Augustus 
[60] (trained on the reference genome), transcripts 
assembled from RNA-seq, and protein sequences from 
the reference genome to predict gene structures in the 
novel contigs. Gene annotations were compared with 
repeat sequence annotations, and genes with over-
lap > 50% with repeat regions were removed.

PAV selection analysis
The resequencing data of geese were mapped to the 
pan-genome sequence using bowtie2 [61]. The presence 
and absence of genes in the pan-genome were identi-
fied using SGSGeneLossv0.1 software [62], with the 
parameters minCov = 2 and lostCutoff = 0.2 (that is, a 
gene was considered present if at least 2 reads covered 
at least 20% of the region covered by its exons). Based 
on the binary gene PAV data, a maximum-likelihood 
phylogenetic tree (1,000 bootstraps) was constructed 
using iqtree [63]. Moreover, the population structure of 
geese was analyzed using STRU​CTU​RE [64] based on 
the PAV data. In addition, 1, 1–2, and 2–3 kb upstream 
regions were used as the gene promoter regions in 
geese. The PAV in the promoter regions was detected 
using the same criteria for identifying PAV in the genes.

This study categorized the geese based on distinct 
ancestors (Swan and Greylag goose) and various phe-
notypic traits, including body weight, egg produc-
tion, and feather color characteristics. We employed 
Fisher’s exact test to identify differences in gene fre-
quencies among the different goose populations. The 
resulting P-values were then adjusted using the Ben-
jamini–Hochberg method, with the threshold set at 
FDR < 0.001 and a frequency difference > 2. We con-
ducted hypergeometric tests to analyze the genes with 

different frequencies for enrichment in both GO and 
KEGG categories, utilizing an adjusted P-value thresh-
old of 0.05 for significance.

SNP‑GWAS and PAV‑GWAS in Sichuan white geese (Anser 
cygnoides domestica)
We used binary PAV data and SNP to analyze GWAS 
using FarmCPU (default parameters) [65]. Since the 
number of PAVs is smaller than that of SNPs, we per-
formed principal component analysis (PCA) analysis 
based on SNP information using GCTA [66]. The PCA 
results were used as covariates for SNP and gene PAV-
GWAS analysis. The significance threshold was set at 
0.05/SNP and 0.05/PAV numbers. Using the CandiHap 
software package [67] with default settings, haplotypes 
were derived from SNPs within each candidate gene’s 
1-kb upstream to 500-bp downstream regions. Subse-
quently, the associations between these haplotypes and 
phenotypes were analyzed.

Retrieval of RNA‑seq data and expression analysis
RNA-seq data was downloaded from several organs 
or tissues of geese, including abdominal adipose tis-
sue, granulosa cells, hypothalamus, liver, ovarian 
stroma, ovary, pituitary, skin, and subcutaneous adi-
pose tissue (NCBI bioproject numbers PRJNA489234, 
PRJNA549469, PRJNA552525, PRJNA598883, 
PRJNA615385, PRJNA674406, PRJNA699919, 
PRJNA705645, and PRJNA825140, respectively). Clean 
data were mapped to the genome using Hisat2, and the 
reads of each gene were counted using featureCounts 
[68]. FPKM (Fragments per kilobase of transcript 
per million mapped reads) values and CPM (counts 
per million) values were calculated to assess the gene 
expression. We performed PCA analysis based on the 
expression values. We employed DESeq2 software to 
identify the differential expression analysis of genes [69, 
70]; Q-values < 0.05 were considered significantly differ-
entially expressed genes. For the RNA-seq data, which 
were sampled and sequenced at multiple time points, 
differential expression analysis was performed using 
maSigPro [69], a software designed for time series 
data. The threshold for differential expression was set 
at FDR < 0.05. The variation types of the differentially 
expressed genes identified were analyzed using vep 
[71]. The tissue specificity index (TAU) was calculated 
using the following formula.

tau =
n

n− 1
−

n

i=1
xi

(n− 1)× max
1≤i≤n

(xi)

http://www.girinst.org/repbase
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where n represents the number of groups, x represents 
the mean expression value of genes in various groups, 
and i represents one of the groups. The TAU ranges from 
0 (broad expression) to 1 (specific expression). A hyper-
geometric distribution test was used for genes with spe-
cific expressions to perform enrichment analysis of GO 
terms.

Results
Population structure analysis across nine goose 
populations
In this study, we generated 378 WGS datasets of 9 
Chinese or European domestic geese breeds with 
sequencing depths ranging from 8.95× to 43.24× , repre-
senting 9 breeds cultivated in diverse regions (Fig.  1A). 

Fig. 1  Sampling and population analysis of geese using whole-genome sequencing (WGS) data. A Distribution of the goose breeds used in this 
study (It is important to emphasize that all goose samples, including those of the Landes goose and White Roman goose, were exclusively collected 
in China). The color of the dots indicates the name of the goose breed. B The phylogenetic tree and population structure analysis of geese based 
on the whole genome SNP sites. The colors of the phylogenetic tree correspond to the annotations on the right side



Page 8 of 20Gao et al. Journal of Animal Science and Biotechnology          (2023) 14:150 

By employing the BWA-GATK SNP calling pipeline, 
we detected a total of 10,072,006 high-quality SNPs. 
Based on the SNP data, the analysis of population struc-
ture demonstrated the most pronounced concordance 
between the ADMIXTURE analysis and the phyloge-
netic tree at K = 8. The phylogenetic tree reveals that geo-
graphically adjacent breeds share close genetic affinities, 
as exemplified by the Huoyan goose and Zi goose, as well 
as the Xupu goose and Lion head goose (Fig. 1A and B). 
However, a noteworthy distinction emerges in the 1-year-
old female Sichuan white goose population compared 
to the 70-day-old male Sichuan white goose population 
(Fig.  1B), which could be attributed to the influence of 
sex chromosome sequence. Additionally, the gene flow 
analysis conducted among distinct breeds, including Zi 

goose and White Roman goose, unveiled the evidence 
of genetic interchange (Fig. 2A), suggesting the potential 
occurrence of hybridization among these distinct breeds.

To investigate the process of domestication and trait 
improvement in geese, we examined the nucleotide 
diversity within domesticated populations resulting from 
the selective pressures of specific traits. The analysis of 
nucleotide diversity (π) indicated that Landes and White 
Roman geese displayed the lowest π values (Fig.  2B). 
Whereas, the Sichuan white geese exhibited the highest π 
value (2.827 × 10–3), which may be related to the hybridi-
zation with other breeds. Comparative analysis of Fst 
values across the entire genome revealed marked genetic 
differentiation between all domesticated goose breeds 
and all the wild geese (0.2207 to 0.2467), which was 

Fig. 2  Analysis of gene flow and genetic diversity across diverse populations of geese. A Analysis of gene flow between various populations 
of geese. Colored arrows in the figure represent migration events, with the color intensity indicating the migration weight. B The nucleotide 
diversity (π) values of wild geese and various domestic goose breeds were calculated, along with their fixation index (Fst) compared with wild 
geese. The numbers inside the ellipses represent the π value, and the values on the lines between the ellipses indicate the fixation index
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higher than the genetic differentiation observed between 
domesticated goose and wild populations.

Artificial selection pressure shaping the economic traits 
of domestic geese
To explore the genetic foundations of goose reproduction 
and body weight traits, we conducted a cross-population 
analysis involving Sichuan white geese (exhibiting mod-
erate reproductive ability and medium body weight) and 
other breeds, including those with high reproductive 
ability (Huoyan and Zi goose), low reproductive abil-
ity (Xupu, Magang, and Lion  head goose), heavy body 
weight (Lion head goose), and low body weight (Huoyan, 

Zi, Magang goose, and Taihu goose). For detail, we uti-
lized the cross-population composite likelihood ratio 
(XP-CLR) and Fst method to explore variations in allele 
frequencies among a range of domesticated goose breeds 
that display distinct characteristics. The XP-CLR and 
Fst analysis was conducted on the population with high 
reproductive ability geese breeds and Sichuan white 
geese. A total of 4,093 strong selection signal regions 
were identified, covering 79.31 Mb and containing 2,311 
genes between populations with strong reproductive abil-
ity and Sichuan white geese (Fig. 3A, Table S3). Through 
Fst calculations, significant genetic differences were 
observed between populations with high reproductive 

Fig. 3  The analysis of selection signals during the domestication process of geese involving populations of geese with various characteristics 
and interpopulation selection signal analyses. A Geese with high reproductive ability versus Sichuan white geese; to identify the selection signals 
between goose breeds with high reproductive ability and Sichuan white geese. B Geese with low reproductive ability versus Sichuan white 
geese; to identify the selection signals between goose breeds with low reproductive ability and Sichuan white geese. Sichuan white geese are 
medium-weight geese. C Geese with heavy body weight versus Sichuan white geese; to identify the selection signals between breeds of high body 
weight and Sichuan white geese. D Geese with low body weight versus Sichuan white geese; to identify the selection signals between breeds 
of low body weight and Sichuan white geese. HCFC2 Host cell factor C2, PSD3 Pleckstrin and Sec7 domain containing 3, TGIF1 TGFB-induced 
factor homeobox 1, TTL Tubulin-tyrosine ligase family, TGFBR2 Transforming growth factor beta receptor 2, MAPKAPK2 Mitogen-activated protein 
kinase-activated protein kinase 2, RXRG Retinoid X receptor gamma. The breeds with high body weight include Lion head goose. The breeds 
with low body weight include Huoyan goose, Zi goose, Magang goose, and Taihu goose. The breeds with high-reproductive-ability include Huoyan 
goose and Zi goose, while the breeds with low-reproductive-ability include Xupu goose, Magang goose, and Lion head goose
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ability breeds and Sichuan white geese, particularly in the 
genes HCFC2 on chromosome 3 and PSD3 on chromo-
some 23. The XP-CLR and Fst analysis was conducted 
on the population with the low reproductive ability 
breeds and Sichuan white geese; strong selection signal 
regions of 80.03  Mb containing 2,370 genes were iden-
tified (Fig.  3B). The upstream 4  kb and first half of the 
tubulin-tyrosine ligase family gene exhibited little genetic 
difference between the populations with low reproduc-
tive ability and Sichuan white geese; however, the second 
half of the gene and downstream 4 kb exhibited signifi-
cant genetic differences. In this study, the XP-CLR analy-
sis was conducted using Sichuan white goose to identify 
selection signals related to body weight via comparison 
with large- and small-body weight geese. The strong 
selection signal region between Sichuan white goose and 
breeds with heavy and low body weight was 81.97  Mb 
(Fig. 3C) and 80.08 Mb (Fig. 3D), respectively.

SNP‑GWAS and haplotype analysis for the economic traits
To gain further insight into the impact of artificial 
selection on goose traits, this study conducted GWAS 
to analyze critical traits, such as 70-day body weight, 

egg index, fertility, etc. Specifically, body weight was 
identified as an essential breeding trait for geese, and 
these traits were examined in a cohort of 432 geese in 
this investigation (Table S4). Employing a significance 
threshold of 5.63 × 10–9, the GWAS study uncovered a 
significant or highly significant correlation between 44 
SNPs and seven phenotypic traits (Fig. S1, Table S5). A 
total of 203 Sichuan male white geese at the age of 70 d 
were examined to measure their oblique carcass length, 
which ranged from 22.5 to 28.5  cm (Fig.  4A). The 
GWAS analysis of this trait identified three SNP loci 
(chr3:6,498,019, chr15:16,559,494 and chr23:5,451,006) 
significantly associated with the phenotype (Fig. 4B).

Linkage disequilibrium (LD) regions indicate that sig-
nificant SNP sites may not necessarily be causal variants. 
Analyzing the relationship between haplotypes (combi-
nations of SNPs in a gene or promoter region) and phe-
notypes associated with GWAS signals is a good way to 
determine the relationship between the variation and 
phenotype. Using pentraxin domain-containing protein 
1 (SVEP1) (at position 5,442,314–5,487,460 on chro-
mosome 23) associated with carcass oblique length as 
an example, 287 nucleotide polymorphism sites were 

Fig. 4  GWAS and haplotype analysis for carcass oblique length in geese. A Frequency distribution of carcass oblique length in 209 Sichuan white 
geese. B Manhattan plot of GWAS results for carcass oblique length in Sichuan white geese with SNP markers; the threshold is 5.63 × 10−9. The color 
scale (green to red) represents the density of SNPs in various regions of the genome. C Phenotypic distribution of various haplotypes of SVEP1, 
which was identified by GWAS to be associated with the carcass oblique length. C Frequency distribution of carcass oblique length in 209 Sichuan 
white geese. D SNP distribution of four different haplotypes of SVEP1, including the gene region and 1-kb upstream and 500-bp downstream 
of the gene. The SNP in red font is located within the intronic region of the gene



Page 11 of 20Gao et al. Journal of Animal Science and Biotechnology          (2023) 14:150 	

identified in the CDS region, 1-kb upstream and 500-bp 
downstream of this gene. Based on these sites, 182 hap-
lotypes were identified in 209 Sichuan white geese, with 
Hap1 being the most common (10 samples). The sample 
with the most extended carcass oblique length had Hap4 
as the haplotype for SVEP (Fig.  4C). It is worth noting 
that the difference between Hap4 and Hap2 of SVEP is 
only in the upstream region (at position 5,488,275 on 
chromosome 23) of the gene (Fig.  4D), indicating that 
variations in the gene’s cis-regulatory region may affect 
the phenotype by regulating gene expression.

Construction of goose pan‑genome
To investigate genomic sequences beyond the single ref-
erence genome sequence, we conducted pan-genome 
estimation for gene PAV detection construction analysis 
by comparing various genome versions (Tianfu goose, 
Sichuan white goose, and Zhedong while goose). Despite 
limitations in the assembly of contigs using second-gen-
eration sequencing data, including shorter contig lengths, 
this strategy still proved valuable in obtaining 612 Mb of 
a new sequence, 2,813 new genes, and a total of 20,503 

genes across the pan-genome. Mapping the WGS  data 
to the pan-genome allowed the identification of gene 
PAV, with the identification of 15,567 core genes, 1,324 
softcore genes, 2,734 shell genes, and 878 cloud genes 
(Fig.  5A). Core genes refer to the set of genes present 
in all accessions, while softcore genes are those found 
in 99% to 100% of accessions. Shell genes encompass 
the group of genes present in 1% to 99% of accessions, 
whereas cloud genes are defined as those with occurrence 
in less than 1% of accessions. The core genes comprised 
75.9% of the total genes of geese; based on data simula-
tions, as the goose population size reached 100, the pan-
genome tended to saturation, while the number of core 
genes exhibited a consistent decline (Fig. 5B).

The phylogenetic tree constructed based on gene PAV 
revealed population relationships and structures that dif-
fered from the tree constructed based on SNPs (Fig. 5C). 
For example, the Sichuan white goose population shows 
almost no admixture with other breeds in the SNP-based 
phylogenetic tree. However, in the gene PAV-based phy-
logenetic tree, some breeds, such as the Magang goose, 
Huoyan goose, and Zi Goose, exhibit admixture with the 

Fig. 5  The construction of the goose pan-genome and the gene PAV analysis of the population. A The distribution of the number of core, softcore, 
shell, and cloud genes. B Simulation of the core gene number and total number of genes in the pan-genome was performed as a function 
of increasing sample size using the pan-genome constructed from the resequencing data of all geese as a reference. The process was repeated 100 
times by randomly subsampling each sample size. C The phylogenetic tree and population structure of geese based on binary gene PAV data



Page 12 of 20Gao et al. Journal of Animal Science and Biotechnology          (2023) 14:150 

Sichuan white goose population. Furthermore, the wild 
species are clustered closely together on the phyloge-
netic tree (Fig. 1B), indicating the absence of significant 
hybridization events. However, the phylogenetic tree 
constructed based on gene PAV suggests that there might 
be certain hybridization events between wild and domes-
ticated geese. This provided further insights into geese 
breeds’ genetic relatedness and hybridization processes. 
Due to the hybridization of two breeds, their unique 
genes are inherited jointly by the offspring, which can 
influence gene PAV.

Calculating the frequency of genes in each population 
revealed that many breeds have unique genes (Fig. 6). All 
the wild goose species has the unique gene GDPD5 (glyc-
erophosphodiester phosphodiesterase domain-contain-
ing protein 5-like). The discovery of unique genes is vital 
for goose breeding and breed identification. The forma-
tion of shell genes in geese could be partly attributed to 
genetic differences between all the wild goose, selective 
breeding, and genetic drift. The functional enrichment 
analysis of shell genes revealed interesting associations 

with various economic traits of geese (Fig. S2, Table S6), 
such as “hair follicle maturation”, which is involved in the 
complex and long-term physiological process of regulat-
ing the growth and development of feathers. Since feath-
ers and down are important products of the light industry 
in geese, the abundance of PAV in genes associated with 
“hair follicle maturation” GO term may be related to the 
differences in feather characteristics among various geese 
breeds.

Selection of gene PAVs and gene PAV‑based GWAS 
in Sichuan white geese
Humans’ domestication process of geese can be analyzed 
through SNP analysis and gene PAV analysis, revealing 
novel insights into genomic selective pressures. Using 
the binary PAV of shell genes as genotypes, GWAS was 
performed with various phenotypes, including 70-day 
body weight, chest meat pH, egg index, egg number at 
48 weeks, femur length, fertility, egg relative density, and 
tibia circumference in geese. In this study, we identified 
1,906 shell genes as non-reference novel genes. Among 

Fig. 6  Gene PAV analysis in the goose pan-genome. The PAV heatmap of shell genes, revealing some genes specific to certain breeds. The color 
of the dashed box in the heatmap corresponds to the color of the box surrounding the photo of the geese
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Fig. 7  PAV-GWAS and gene frequencies between geese breeds. A Manhattan plot of gene PAV-GWAS for shell genes located outside the reference 
genome. The analysis was conducted for eight different phenotypes, and significantly associated genes were labeled with the abbreviations 
of proteins as follows: RCVRN: Recoverin, FOXRED1: FAD-dependent oxidoreductase domain-containing protein 1, RPL18: Large subunit ribosomal 
protein L18e, MKK7: Mitogen-activated protein kinase kinase 7, NIT1: Nitrilase homolog 1, GANAB: Mannosyl-oligosaccharide alpha-1,3-glucosidase, 
and PDE4: cAMP-specific phosphodiesterase 4. B Comparison analysis of gene frequencies between domestic geese in China and domestic 
geese in Europe, as well as GO enrichment analysis results of genes with frequency differences. The domestic geese from China include Sichuan 
white goose, Huoyan goose, Xupu goose, Zi goose, Magang goose, Lion head goose, and Taihu goose, while the domestic geese from Europe 
include White Roman goose and Landes goose. C Comparison analysis of gene frequencies between domestic geese in China and wild geese, 
as well as GO enrichment analysis results of genes with frequency differences. The wild geese species include Bar-headed goose, Barnacle goose, 
Black Brent goose, Cackling goose, Dark-bellied Brent goose, Emperor goose, Greater White-fronted goose, Greylag goose, Lesser White-fronted 
goose, Pink-footed goose, Red-breasted goose, Wan goose, Taiga Bean goose, and Tundra Bean goose. D Comparison analysis of gene frequencies 
between domestic geese in Europe and wild geese, as well as GO enrichment analysis results of genes with frequency differences. E Comparison 
analysis of gene frequencies between domestic geese with high body weight and medium body weight, as well as GO enrichment analysis 
results of genes with frequency differences. The breeds with medium body weight include Sichuan white goose and Xupu goose. F Comparison 
analysis of gene frequencies between domestic geese with high body weight and low body weight, as well as GO enrichment analysis results 
of genes with frequency differences. G Comparison analysis of gene frequencies between domestic geese with high-reproductive-ability 
and low-reproductive-ability, as well as GO enrichment analysis results of genes with frequency differences. H Comparison analysis of gene 
frequencies between domestic geese with medium-reproductive-ability and low-reproductive-ability, as well as GO enrichment analysis results 
of genes with frequency differences. The breeds with medium-reproductive-ability include Taihu goose and Sichuan white goose. The threshold 
for significantly different gene frequencies was set at a fold change > 2 and Padj < 0.001
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them, ten novel genes (e.g., FOXRED1, GANAB, and 
RCVRN) were found to be associated with these phe-
notypes (Fig.  7A, Table S7). Two genes were associated 
with egg number at 48 weeks and egg relative density-the 
association of these novel gene PAVs with phenotypes 
allowed identifying new candidate genes.

The animal breeding process involves hybridization, 
selection, and other factors that can cause changes in 
gene frequency across populations. Comparing gene fre-
quency between populations, particularly those with dif-
ferent phenotypic characteristics, can help identify gene 
PAVs under selection (Table S8). The ancestral lineages 
of geese between Central Europe and China are differ-
ent, which may result in genetic background differences 
between these two populations. Comparative analysis 
revealed 118 high- and 167 low-frequency genes in Chi-
nese geese (Fig.  7B). In Chinese geese, 17 genes have a 
higher frequency than in European geese. Compared 
with wild geese, 696 low-frequency genes and only 13 
high-frequency genes are present in Chinese indigenous 
geese (Fig. 7C). This indicates that some genes were lost 
during domestication and breeding, which may have par-
ticipated in the regulation of important traits. For exam-
ple, 33 genes belonging to the GO term “regulation of 
heart contraction” in the pan-genome are low-frequency 
genes in Chinese indigenous goose (out of 25 genes). 
Similarly, European domesticated geese have lost many 
genes (19 high- and 662 low-frequency genes) compared 
with the wild geese (Fig. 7D). The GO terms enriched in 
the low-frequency genes in European geese were similar 
to those in Chinese geese, such as “regulation of heart 
contraction” and “UV protection".

Similarly, we conducted PAV-GWAS using the meas-
ured phenotypes of Sichuan white geese. The body 
weight of geese is an important economic trait. A com-
parison of the body size of geese from three groups 
(high body weight, medium body weight, and low body 
weight) revealed a significant difference in the frequency 
of genes. Notably, geese with high body weight had 320 
high-frequency genes and only one low-frequency gene 
compared with the geese with medium body weight 
(Fig. 7E) and 338 low-frequency genes and only one high-
frequency gene compared with the geese with low body 
weight (Fig. 7F). Genes related to muscle adaptation are 
affected by various drivers during evolution, such as the 
number of oxidative fibers in flight muscles or distance of 
oxygen diffusion through cells, which can affect muscle 
growth. Among the GO terms related to muscle adapta-
tion, five GO terms exhibited lower frequency in geese 
with high body weight than those with medium body 
weight. This observation suggests a potential association 
between genes related to these five GO terms and body 
weight. Comparative analysis of gene frequency between 

geese with high and low reproductive ability (Fig.  7G) 
revealed that geese with high reproductive ability exhib-
ited more high-frequency genes (24) than low-frequency 
genes (4). High-frequency genes in geese with high 
reproductive ability were enriched in many metabolic 
pathways, such as the “cellular aromatic compound meta-
bolic process” and “aromatic compound biosynthetic 
process”, which may be involved in regulating biological 
activities. Analysis of gene frequency between geese with 
low and medium reproductive ability revealed differ-
ences in the frequency of only 11 genes, and all exhibited 
high frequency in geese with medium reproductive abil-
ity (Fig.  7H). This suggested that gene variants may not 
cause the difference between these two groups.

Gene expression atlas of multiple organs and tissues 
in geese
While previous studies have revealed various variations 
and genes associated with domestication and selec-
tion through population genomics and pan-genomics 
analyses, a more comprehensive understanding of gene 
functions has been limited due to the need for more 
integration with gene expression information. Transcrip-
tome analysis is essential for studying animal growth, 
development, and environmental adaptation. Therefore, 
this study aims to advance the investigation of the goose 
genome by conducting a large-scale integrated analysis 
of transcriptomic data. We downloaded transcriptomes 
from 9 organs and tissues of geese, including abdominal 
adipose tissue, granulosa cells, hypothalamus, liver, ovar-
ian stroma, ovary, pituitary, skin, and subcutaneous adi-
pose tissue (Table S9). The core genes exhibited higher 
expression levels in all samples. In contrast, low-fre-
quency genes exhibited lower expression levels (Fig. 8A). 
Highly conserved genes play fundamental and essen-
tial roles in various life activities of geese. Although the 
expression levels of cloud genes were low, their impor-
tance should not be ignored as they may be related to 
various phenotypes in various goose breeds. PCA analy-
sis revealed the specificity of gene expression in various 
organs and tissues of geese (Fig.  8B). Genes with organ 
specificity may be related to various functions of differ-
ent organs of geese. TAU value calculation revealed that 
all organs and tissues had genes with specific expression 
levels (Table S10). The liver and ovary had the highest 
and lowest specificity index, respectively, for specifically 
expressed genes (Fig.  8C). In the hypothalamus, these 
specifically expressed genes were enriched in some spe-
cific functions, such as synapse part, neuron part, and 
neuron projection (Fig. 8D, Table S11). Gene PAV analy-
sis revealed that although the core specifically expressed 
genes had the highest proportion in all organs of geese, 
the proportion of variable genes differed in various 
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organs. The proportion of variable genes was the high-
est and lowest in subcutaneous adipose tissue (7.9%) and 
abdominal adipose tissue (2.5%), respectively (Fig.  8E). 
However, the distribution of gene frequency did not cor-
respond to the proportion of variable genes (Fig. 8F). For 
example, the specifically expressed genes in the liver had 
the highest median gene frequency; however, they did 
not have the lowest proportion of variable genes.

Reproductive ability is an essential indicator for meas-
uring goose breeds’ production capacity and economic 
benefits, which is significant for the breeding and ani-
mal husbandry industry. This study analyzed the ovaries’ 
temporal differential expression during various egg-lay-
ing periods, and 30 differentially expressed genes were 
identified. These differentially expressed genes’ mutation 
load was analyzed, revealing a diverse range of muta-
tion loads and types among various genes (Fig. 8G, Table 
S12). The DNA polymerase subunit gamma-2 (DPOG2) 
gene exhibited low variability in the population, and its 
primary type of mutation was the intron variant, indi-
cating that it was unlikely to be involved in shaping the 
reproductive ability trait in geese. Meanwhile, other 
genes, such as Sjoegren syndrome nuclear autoantigen 
1 (SSNA1), underwent gene loss in one Lion head goose. 
Notably, many splice region variants were discovered 
in the gene region of low-density lipoprotein receptor-
related protein 1 (LRP1). These mutations primarily 
caused gene splicing, affecting the protein product and 
leading to further phenotype changes. In summary, these 
results enhanced the understanding of the variation of 
these genes in the goose population.

Discussion
Genetic diversity and gene flow in goose population
In this study, our findings are in accordance with previ-
ous research, supporting the domestication of geese from 
either the Swan or Greylag goose [3, 4, 72]. Furthermore, 

the gene flow analysis presents compelling evidence of 
genetic exchange between the Zi goose and the shared 
ancestor of the Landes and White Roman goose breeds 
(Fig.  2A). This suggests the possibility of hybridization 
among these distinct breeds, akin to the hybridization 
observed in species mated in their natural environments 
and captivity [4, 18, 32, 73], which consistent the previ-
ous study [18]. A comparison analysis of Fst values across 
the whole genome revealed that significant genetic differ-
entiation existed between all domesticated goose breeds 
and wild geese (0.2207 to 0.2467), which was higher than 
the genetic differentiation observed between domesti-
cated and wild populations of other poultry species, such 
as chicken [74].

Genomic selection regions for reproduction and body 
weight traits
The analysis of Chinese indigenous goose populations 
with varying reproductive abilities or body weight traits 
revealed that genomic regions under selection were 
associated with reproductive capability (HCFC2, PSD3, 
TGIF1, and TTL), as well as body weight (TGFBR2, 
MAPKAPK2, and RXRG). The TGIF1 gene serves as a 
transcription factor, repressing TGF-β signaling and 
exerting a substantial influence on various processes, 
including embryonic development, mammalian repro-
duction, adipocyte differentiation, vascularization, and 
embryonic and gonadal development [75]. Additionally, 
TGIF1 polymorphisms have been linked to litter size in 
sheep [76]. Furthermore, there are indications of an inter-
action between TGIF1 and SMAD2, a well-established 
participant in reproductive processes [75]. The TTL gene 
encodes a vital cytosolic enzyme responsible for catalyz-
ing the post-translational retyrosination of detyrosinated 
α-tubulin, a process critical to cell and organism devel-
opment [77]. Previous studies have established connec-
tions between this gene and factors such as the weight of 

Fig. 8  Transcriptional profiling analysis of multiple organs and tissues in geese. A Expression level distribution of core, softcore, shell, and cloud 
genes in the reference genome. B PCA analysis of gene expression levels in all organs and tissues. C Distribution of the tissue-specificity index (TAU) 
of gene expression in various organs and tissues. D GO enrichment analysis results of tissue-specific genes. E Proportions of tissue-specific genes 
classified into core, softcore, shell, and cloud genes based on the classification information of genes. F Gene frequency distribution of tissue-specific 
genes in the population of geese based on PAV information. G Waterfall plot of the variation burden of differentially expressed genes in the ovary 
during egg-production process in the population of geese. LRP1: Low-density lipoprotein receptor-related protein 1, NFYC: Nuclear transcription 
factor Y subunit gamma, CD11B: Cyclin-dependent kinase 11B, SCN2B: Sodium channel subunit beta-2, PRP8: Pre-mRNA-processing-splicing factor 
8, SSNA1: Sjoegren syndrome nuclear autoantigen 1, HLF: Hepatic leukemia factor, MAML1: Mastermind-like protein 1, HDAC8: Histone deacetylase 
8, DLG3: Disks large homolog 3, DIAP2: Protein diaphanous homolog 2, MEF2A: Myocyte-specific enhancer factor 2A homolog, GRIP2: Glutamate 
receptor-interacting protein 2, GPC1: Glypican-1, EMSY: BRCA2-interacting transcriptional repressor EMSY, KATL2: Katanin p60 ATPase-containing 
subunit A-like 2, E2F5: Transcription factor E2F5, XPO5: Exportin-5, SAR1A: GTP-binding protein SAR1a, CCAR1: Cell division cycle and apoptosis 
regulator protein 1, CDKL2: Cyclin-dependent kinase-like 2, RBM33: RNA-binding protein 33, AT1B1: Sodium/potassium-transporting ATPase 
subunit beta-1, CAPR1: Caprin-1, SVIP: Small VCP/p97-interacting protein, TRAM2: Translocating chain-associated membrane protein 2, RTJK: 
RNA-directed DNA polymerase from mobile element jockey, MGAP: MAX gene-associated protein, and DPOG2: DNA polymerase subunit gamma-2, 
mitochondrial

(See figure on next page.)
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the egg at first oviposition, eggshell color, and egg quality 
[78–80], underscoring the need for additional inquiries 
to enhance our comprehension of how this gene impacts 
the egg-laying process in geese. For the body weight 
trait, the candidate gene MAPKAPK2 (Fig.  3C), identi-
fied through XP-CLR within various body weight selec-
tion signal regions, demonstrates a strong association 
with chicken enteritis induced by Salmonella [81] and is 

also implicated in cell proliferation [82]. This suggested 
that this gene may have diverse roles in regulating geese’s 
growth and immune processes. This observation suggests 
a potential multifaceted role for this gene in governing 
the growth and immune processes of geese. Similarly, 
transforming growth factor beta receptor 2 (TGFBR2), a 
vital initiator of the TGF-β signaling pathway that over-
sees cell growth and organ development [83], resides 

Fig. 8  (See legend on previous page.)
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within the selection signal region distinguishing breeds 
with high body weight from Sichuan white geese. In addi-
tion, SVEP1 obtained from GWAS based on the phe-
notype of carcass oblique length is mentioned in many 
reports related to human tumor research and is related to 
the immune process [84, 85]. Further studies are needed 
to elucidate how this gene functions in geese and its 
impact on carcass oblique length.

Missing sequence in goose genome
Interesting, our investigation revealed 612  Mb of previ-
ously undiscovered sequence within the goose genome, 
accomplished through a comprehensive pan-genome 
analysis that integrated various reference goose genomes 
(Tianfu goose, Sichuan white goose, and Zhedong white 
goose), while the total goose genome size being 1.1 to 
1.2 Gb. However, in avian species with genomes of simi-
lar sizes, such as chickens and ducks, 159 Mb and 33 Mb 
of missing sequences were identified, respectively [86, 
87]. Several studies across multiple species have dem-
onstrated that long-term domestication can lead to 
differences in the number of genes among various pop-
ulations [88, 89]. Goose has a domestication history of 
7,000  years, with European and Chinese geese having 
different ancestors, abundant variation among differ-
ent breeds, which could potentially explain why geese, 
in contrast to other monophyletic domesticated poultry, 
demonstrate a higher prevalence of missing sequences. 
In our pan-genome analysis, we found over 3,000 missing 
genes out of a total of 20,503 genes when compared to a 
single goose genome (Tianfu goose, Sichuan white goose, 
or Zhedong white goose), consistent with similar findings 
in pan-genome analyses of chickens and ducks, and these 
missing genes demonstrated tissue-specific expression 
patterns [86, 87].

Conclusions
In conclusion, our study offers a comprehensive grasp 
of the domestication and breeding evolution of geese. It 
delves into crucial trait-associated genetic loci and sheds 
light on physiological attributes through sequencing 
analyses across diverse goose breeds. This investigation 
encompasses pan-genome construction, PAV analysis, 
and RNA expression profiling. These insights establish 
a robust groundwork for advancing goose research and 
breeding endeavors.
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