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Abstract 

Background  Studying the composition and developmental mechanisms in mammary gland is crucial for healthy 
growth of newborns. The mammary gland is inherently heterogeneous, and its physiological function dependents 
on the gene expression of multiple cell types. Most studies focused on epithelial cells, disregarding the role of neigh-
boring adipocytes.

Results  Here, we constructed the largest transcriptomic dataset of porcine mammary gland cells thus far. The dataset 
captured 126,829 high-quality nuclei from physiological mammary glands across five developmental stages (d 90 
of gestation, G90; d 0 after lactation, L0; d 20 after lactation, L20; 2 d post natural involution, PI2; 7 d post natural 
involution, PI7). Seven cell types were identified, including epithelial cells, adipocytes, endothelial cells, fibroblasts 
cells, immune cells, myoepithelial cells and precursor cells. Our data indicate that mammary glands at different 
developmental stages have distinct phenotypic and transcriptional signatures. During late gestation (G90), the differ-
entiation and proliferation of adipocytes were inhibited. Meanwhile, partly epithelial cells were completely differenti-
ated. Pseudo-time analysis showed that epithelial cells undergo three stages to achieve lactation, including cellular 
differentiation, hormone sensing, and metabolic activation. During lactation (L0 and L20), adipocytes area accounts 
for less than 0.5% of mammary glands. To maintain their own survival, the adipocyte exhibited a poorly differentiated 
state and a proliferative capacity. Epithelial cells initiate lactation upon hormonal stimulation. After fulfilling lactation 
mission, their undergo physiological death under high intensity lactation. Interestingly, the physiological dead cells 
seem to be actively cleared by immune cells via CCL21-ACKR4 pathway. This biological process may be an important 
mechanism for maintaining homeostasis of the mammary gland. During natural involution (PI2 and PI7), epithelial 
cell populations dedifferentiate into mesenchymal stem cells to maintain the lactation potential of mammary glands 
for the next lactation cycle.

Conclusion  The molecular mechanisms of dedifferentiation, proliferation and redifferentiation of adipocytes and epithe-
lial cells were revealed from late pregnancy to natural involution. This cell transcriptomic profile constitutes an essential 
reference for future studies in the development and remodeling of the mammary gland at different stages.
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Background
The mammary gland is an exocrine gland of ectodermal 
origin, which develops to produce milk for the nourish-
ment of offspring. As a highly dynamic organ, the mam-
mary gland undergoes a limited embryonic development 
followed by extensive postnatal pubertal development, 
and further differentiation and tissue remodeling dur-
ing pregnancy and lactation. The mammary gland is 
inherently heterogeneous, with various cells perform-
ing different functions. The mammary epithelium con-
tains two major cell types, luminal and myoepithelial 
cells [1, 2], and they are the main components of acini. 
The lumen of each acinus is hollow with milk secretions 
during lactation. Milk ejection relies on the contractil-
ity of myoepithelial cells [3]. Fibroblasts actively par-
ticipate in tissue remodeling, synthesizing and secreting 
collagen, and organizing into bundles in the developing 
mammary gland [4]. Immune cells participate in and 
influence branching morphogenesis [5]. Another type 
of cell, adipocytes, comprise a large portion of the stro-
mal compartment in the adult non-lactating mammary 
gland, but gradually disappear during pregnancy, freeing 
up room for the expanding mammary glands [6]. In 2013, 
Gregor et  al. [7] selectively knocked out X-box binding 
protein 1 (Xbp1) of adipocyte in mice mammary gland 
during lactation, causing adipocytes proliferation and 
lower milk production. In 2014, Vapola et al. [8] knocked 
out the peroxisomal membrane protein 2 (Pxmp2) 
gene in adipocytes of the mice mammary gland, which 
restricts epithelial cells development and duct forma-
tion during pregnancy. In 2018, Wang et al. [6] reported 
that adipocytes from mammary gland can become 
PDGFRα+ preadipocytes and fibroblast-like preadipo-
cytes through dedifferentiation during lactation. In addi-
tion, the gene expression level is significantly different 
between the dedifferentiated cells and the adipocytes in 
the non-lactating mammary gland. During involution, 
PDGFRα+ preadipocytes will proliferate and differentiate 
into adipocytes. Although adipocytes play such a critical 
role in gland development, most studies focused on its 
epithelial component, leaving the role of the neighbor-
ing adipocytes largely unexplored in both physiologic and 
pathologic conditions [9].

Cell fate decisions are largely based on gene transcrip-
tion. Therefore, it is particularly critical to identity the 
cell-types and the gene transcription profile of individual 
cells to understand mammary gland physiology. Recently, 
single-cell RNA sequencing (scRNA-seq) emerged as a 
powerful technique to study complex biological systems 

at single-cell resolution. In 2017, Bach et  al. [10] sys-
tematically constructed cell transcriptomic atlas of the 
epithelial cells from mouse mammary gland across four 
developmental stages based on scRNA-seq data. The atlas 
indicated that mammary epithelial cells are not a group 
that performs a single function, and could be divided 
into four classes: basal, mature luminal, luminal progeni-
tor, and luminal intermediate cells. Subsequent studies 
identified immune cells, fibroblasts and endothelial cells 
in the mammary gland [11–14]. Individual cells display 
state-specific expression patterns. For instance, principal 
component analysis (PCA) exposed gene transcription 
differences in both basal and luminal cells in pregnant 
and nonpregnant mice mammary gland [15]. Moreover, 
Brugge and co-workers confirmed age-dependent altera-
tions in gene expression by analyzing epithelial, stromal, 
and immune cells in mice mammary gland [12]. Remark-
ably, mammary gland development and function depends 
on intricate interactions of the functional epithelial cells 
with local stromal cells [16, 17]. In other words, clarifica-
tion of cell–cell interaction is required.

Considering the lack of focus on adipocytes in mam-
mary glands and the limitations of scRNA-seq, it is not 
surprising they are rarely identified in the mammary 
gland. In detail, cells over 50 μm in diameter are difficult 
to capture by microfluidic droplet generators, hindering 
gene transcription profiling of tissue-derived adipocytes 
by scRNA-seq approaches. Furthermore, not all studies 
identify the same mammary cell types and most agree 
that cell subpopulations such as secretory alveolar cells 
during lactation have been incompletely profiled due to 
technical difficulties to isolate intact cells during disso-
ciation [10]. Notably, single-nucleus RNA-seq (snRNA-
seq) has become instrumental to interrogate oversized 
cells or in complex tissues that are not easily dissociated. 
This approach enabled the comprehensive mapping of 
mammary cell transcription in different physiological 
states. Regrettably, only one report identified adipocytes 
in mammary glands of adult human using snRNA-seq 
as of June 2023 [18], which means that, to date, no gene 
transcription data from adipocytes of porcine mammary 
glands is available.

The physiological function of a tissue is not only 
dependent on the gene expression of its individual cells. 
The internal spatial organization of these cells is also 
critically important [19]. However, spatial information 
of individual cells is lost during tissue dissociation for 
snRNA-seq sequencing [20, 21]. Contrastingly, spatial 
transcriptomics (ST), a more recent method, enables 
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the visualization and quantitation of the transcriptome 
in individual tissue sections, retaining spatial molecular 
information [22]. However, the spatial expression pat-
tern of adipocytes in healthy porcine mammary glands 
has not been reported. Thus, we describe the spatial tran-
scriptome profiles of adipocytes in non-lactation mam-
mary gland. Furthermore, this spatial expression profile 
validates the accuracy of the cell type annotation based 
on snRNA-seq data.

In this study, we constructed the largest transcriptomic 
dataset of the porcine mammary gland thus far to reveal 
its development at d 90 of gestation (G90), d 0 after lac-
tation (L0), d 20 after lactation (L20), 2  d post natural 
involution (PI2), 7 d post natural involution (PI7). Seven 
cell types were identified in this dataset, including epithe-
lial cells, adipocytes, endothelial cells, fibroblasts cells, 
immune cells, myoepithelial cells and precursor cells. 
Their gene transcription patterns were determined, and 
an interaction network between adipocytes and other cell 
groups was constructed at both snRNA-seq and spatial 
transcriptomics levels. To explore the impact of develop-
mental stages on milk composition, we identified the type 
and proportion of milk secreted during colostrum and 
mature milk using scRNA-seq. Cell phenotype analysis 
showed more abundant macrophages in colostrum than 
mature milk, which likely explains why colostrum possess 
innate immune activity. The swine cell atlas here reported 
will guide future studies in mammary physiology. It also 
provides insights into the development stage-specific 
gene expression profiles of epithelial cells and adipocytes.

Materials and methods
Sample collection and histological observation
Multiparous sows in second breeding cycle were divided 
into 5 groups [d 90 of gestation (G90); d 0 (L0), d 20 
(L20) after lactation; 2  d (PI2) and 7  d (PI7) post natu-
ral involution]. Each group has 4 independent biologi-
cal replicates. First parity sows usually face higher risk 
and stress response. Thus, we selected the multiparous 
sows as an experimental animal to ensure the reliabil-
ity and reproducibility of the results. All pigs were fed 
well-characterized normal diets, according to the nutri-
tional requirements outlined by the Feeding Standard of 
Swine (NY/T 65–2004) and published by the Ministry 
of Agriculture and Rural Affairs of the People’s Repub-
lic of China [23]. Sows were humanely euthanized at five 

developmental stages for collection of the mammary 
glands (approximately 3 cm3) from the third region on 
the right side (Fig. 1A). Part of fresh tissue was used to 
prepare frozen sections for histological observation (HE 
staining, n = 4) (G90, L0, L20, PI2 and PI7) and spatial 
transcriptome sequencing (n = 1) (G90 and PI2). Mean-
while, the remaining tissue (n = 2) (G90, L0, L20, PI2 and 
PI7) was collected, immediately snap-frozen in liquid 
nitrogen, and then transferred to −80  °C until further 
nuclei isolation. In addition, 15 mL fresh colostrum (L0) 
and mature milk (L20) were collected for scRNA-seq 
(n = 1) for cellular component analysis.

Single nuclei/cell RNA sequencing
The snRNA-seq and scRNA-seq were respectively per-
formed for the construction of the transcriptional atlas 
of the mammary glands and milk cellular components. 
Nuclei isolation was carried out using GEXSCOPE® 
Nucleus Separation Solution (Singleron Biotechnologies, 
Nanjing, China) according to the manufacturer’s product 
manual. Isolated nuclei were resuspended in PBSE to 106  
nuclei per 400 μL, filtered through a 40-μm cell strainer, 
and counted with Trypan blue. The concentration of single  
nuclei suspension was adjusted to 3–4 × 105 nuclei/mL 
in PBS. Subsequently, single nuclei/cell suspension was 
loaded onto a microfluidic chip (GEXSCOPE® Single  
NucleusRNA-seq Kit/GEXSCOPE™ Single-Cell RNA 
Library Kit, Singleron Biotechnologies) and snRNA-seq/
scRNA-seq libraries were constructed according to the 
manufacturer’s instructions (Singleron Biotechnologies). 
Finally, the resulting snRNA-seq/scRNA-seq libraries 
were sequenced on an Illumina HiSeq × 10 instrument 
with 150 bp paired end reads.

Data processing and cell‑type annotation
Sequencing reads were processed using the Cele-
Scope v1.1.7 pipeline (Singleron). Then, raw reads were 
aligned to the Sscrofa11.1 reference genome, generat-
ing count matrices. To remove low-quality droplets, 
we excluded any nuclei or cells expressing less than 300 
genes and more than 25% mitochondrial genes. After 
filtering, 126,829 nuclei were reserved and used for 
dimension-reduction and clustering. The normalization 
and scale of all gene expression values were performed 
by NormalizeData and ScaleData function. Princi-
pal component analysis (PCA) relied on the top 2000 

Fig. 1  Generation of a stage-specific single-cell atlas of the pig mammary gland. A Histological observations of the mammary gland at five 
developmental stages. B Statistical analysis of adipocytes area and size. C Schematic workflow for snRNA-seq sequencing. D UMAP visualization 
of all clusters colored by all cell types. Seven cell clusters were identified in the dataset. E The DEGs analysis shows upregulated genes (Adjusted 
P value < 0.01) across all seven clusters. F Cell type annotation for all clusters is provided in the bubble chart. G GO annotation and KEGG pathway 
analysis of differentially expressed genes in each cell-type. H UMAP illustration of cells colored by clusters in separate development stage. I Stacked 
bar plots represent the proportions of nuclei in the mammary gland

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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variable genes screed by FindVariableFeatures. Next, 
integration of snRNA-seq and scRNA-seq data was 
respectively done using the harmony package (https://​
github.​com/​immun​ogeno​mics/​harmo​ny) to control 
for batch effects when integrating data from different 
development samples. For dimensionality reduction, 
the top 15 principal components were selected to cal-
culate 2D dimensional reductions by Uniform Manifold 
Approximation and Projection for Dimension Reduc-
tion (UMAP) for all sequencing libraries based on an 
elbow approach. Finally, cell clusters were identified 
using the Louvain algorithm at a resolution of 0.3, 
implemented by the FindCluster function of Seurat 
(v4.3.0).

The clusters were partitioned into distinct cell types 
and annotated by the expression of known marker 
genes. The expression signatures of cell‐type‐specific 
genes were detected using the “FindAllMarkers” func-
tion. The criteria to identify cell‐type‐specific genes 
were set as follows: absolute log2 fold change (FC) ≥ 1 
and the minimum cell population fraction in either of 
the two populations was 0.25. The expression pattern of 
each marker gene was visualized by applying the “Dot-
Plot” function in Seurat.

Gene function analysis
To reveal gene transcription dynamics of adipocytes and 
epithelial cells, we detect time-series expression profiles 
of differentially expressed genes (DEGs) between adja-
cent development stages using Mfuzz algorithm. DEGs 
were identified using FindMarkers function in Seurat 
(log2FC > 1, P < 0.05). The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) enrich-
ments were conducted to identify the main function of 
the DEGs having the same expression trend using the 
ClusterProfiler v4.0.2 package.

In addition, we identified DEGs (log2FC > 1, P < 0.05) 
between any two adjacent developmental stages of the 
annotated seven cell types. To clarify their biological 
function, GO annotation and KEGG pathway analysis 
were performed, generating 28 sets of significant GO 
terms and KEGG pathways. We compared four sets of 
significant terms and pathways in each cell type, and vis-
ualized the results using Venn Diagrams. Another group 
of Venn diagrams displayed the intersection of GO terms 
or KEGG pathways and were annotated in the seven type 
cells in different physiological processes.

Pseudotimeanalysis
To characterize the physiological state of epithelial cells 
and adipocytes in G90 and PI2, we calculate their dif-
ferentiation trajectory based on default parameters of 

DDRTree method in Monocle2 package. In detail, nor-
malized unique molecular identifier (UMI) count was fed 
as the input for Monocle2. Genes with a residual greater 
than 1× the estimated mean–variance split, were identi-
fied as high-dispersion genes using the “estimateDisper-
sions” method. After running the “setOrderingFilter” 
function, dimensionality reduction was applied to the 
data with the default parameter of DDRTree method 
[24]. The trajectory was visualized by plot_cell_trajectory 
function. Furthermore, branch analysis was performed 
by branched expression analysis modeling (BEAM), and 
visualized via the plot_genes_branched_heatmap func-
tion [25].

Cell–cell interactions
The high-confidence ligand (L)—receptor (R) interac-
tions were performed to investigate the interaction 
between mammary gland cells in five development stages 
using the iTALK package [26]. Expressed genes were 
selected for L-R interaction analysis according to the fol-
lowing criteria: (1) the top 20 highly expressed genes and 
(2) marker genes in corresponding clusters.

Spatial transcriptome sequencing of mammary gland
Spatial expression of mammary gland during G90 and 
PI2 was performed to evaluate cell-type annotation accu-
racy. In detail, the 10  μm frozen tissue sections were 
placed on one of the Visium gene expression slide cap-
ture areas in a slide. The RNA quality of mammary glands 
was assessed by Agilent 2100, and RNA integrity num-
ber (RIN) of tissues greater than 7 were used for Visium 
spatial gene expression experiments. The Visium Spatial 
Gene Expression Slide & Reagent kit (10 × Genomics) 
was used to construct sequencing libraries accord-
ing to the Visium Spatial Gene Expression User Guide 
(CG000239, 10 × Genomics). Tissue permeabilization 
was optimized during the tissue optimization procedure. 
Reverse transcription experiment and sequencing librar-
ies were then prepared following the manufacturer’s pro-
tocol. Sequencing was performed with a Novaseq PE150 
platform according to the manufacturer’s instructions 
(Illumina) at an average depth of 300 million read-pairs 
per sample.

We used in-house script to perform basic statistics of 
raw data, and evaluate the data quality and GC content 
along the sequencing cycles. Raw FASTQ files and his-
tology images were processed by sample with the Space 
Ranger (version spaceranger-1.2.0, 10 × Genomics) soft-
ware with default parameters. The filtered gene-spots 
matrix and the fiducial-aligned low-resolution image was 
used for down-streaming data analyses.

https://github.com/immunogenomics/harmony
https://github.com/immunogenomics/harmony
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Reads were demultiplexed using Space Ranger software 
v.1.0.0 (10 × Genomics) and annotated with the reference 
genome Sscrofa11.1. Subsequently, the generated count 
matrices were loaded into Seurat environment, and the 
data were normalized (using the ‘SCTransform’ function 
in Seurat for independent tissue sections), reduced and 
visualized. SPOTlight analysis was performed for decon-
volution analysis as Elosua-Bayes et al. reported [27]. In 
brief, the proportion of signature of the selected snRNA-
seq cell type is equal to the sum of the proportions of 
each cell type in different regions, divided by the sum of 
the proportions of that cell type in all spots.

Statistical analysis
The statistical analysis of the area and diameter of adipo-
cytes were performed using GraphPad Prism 9 (Graph-
Pad, San Diego, CA, USA) and one-way ANOVA. Data 
were presented as the mean ± standard deviation (SD), 
and P < 0.05 (*) indicated a significant difference.

Data availability
Sequencing data were deposited in the Gene Expression 
Omnibus (GEO) with the accession code GSE227425.

Results
Generation of a development stage‑specific single‑cell 
atlas of mammary gland
We collected mammary glands of ten female pigs 
across five developmental stages, including d 90 of 
gestation (G90); d 0 (L0) and 20 (L20) after lactation; 
2 d (PI2) and 7 d (PI7) post natural involution for his-
tological observations (Fig.  1A). Mammary gland sec-
tions stained with HE indicated that acini appeared in 
late gestation (G90). In addition, the mammary gland 
went through remarkable morpho-functional changes 
in its adipocytic components, i.e., both area and size of 
adipocytes were greater in non-lactation than lactation 
stages (Fig. 1B and Table S1).

To understand the tissue composition and gene-expres-
sion dynamics, we generated snRNA-seq profiles from 
10 mammary glands across the five developmental stages 
(Fig.  1C). After quality control, a transcriptomic data-
set with 126,829 high-quality nuclei were retained, with 
numbers ranging from 18,693 in the d 90 gestation group 
to 9,331 in the 2 d post natural involution group (Fig. S1 
and Table S2). On average, we detected 2,542 UMIs and 
1,395 genes per nuclei. Upon batch effect correction, the 
126,829 nuclei separated into multiple clusters (Fig.  1D) 
using UMAP [28]. Seven cell clusters were defined accord-
ing to the expression levels of specific markers (Fig. 1E–F 
and Table S3) including adipocytes, epithelial, fibro-
blasts, endothelial, myoepithelial, immune and precursor 
cells (Fig.  1D). For instance, adiponectin (ADIPOQ) and 

epithelial cell adhesion molecule (EPCAM) expression 
subdivide adipocytes and epithelial cells from mammary 
glands, respectively. The assigned cell types were further 
confirmed by function analysis of gene sets identified by 
“FindAllMakers” function in Seurat [29] (Fig. 1G). Unsur-
prisingly, cellular functions derived from shared gene 
annotations were associated with phenotypic similarity. 
The biological functions of the gene sets were linked with 
the cell types, such as the gland development term, the 
epithelial cell development term and the lactation term 
which were only significantly enriched in the annotated 
epithelial cell. Similarly, the regulation of lipolysis in adi-
pocytes pathway, the PPAR signaling pathway and the adi-
pocytokine signaling pathway were significantly enriched 
in the annotated adipocytes. This provided further evi-
dence of cell type identification accuracy.

The total number of each cell type ranged from 61,211 
(48.26%) for epithelial cells, to 687 (0.54%) for adipocytes 
in the mammary gland (Fig. 1H and Table S4). In addition, 
cell-type composition dynamics changed in mammary 
glands during different developmental stages (Fig.  1I). 
Globally, adipocytes constituted between 0.34% and 0.09% 
of all cells present, with a higher proportion in non-lac-
tation period compared with lactation. This is consistent 
with our phenotypic results (Fig. 1B) and previous study 
[30]. Conversely, the proportion of epithelial cells, vary-
ing from 72.43% to 19.37%, was higher in lactation ver-
sus non-lactation period, gradually decreasing gradually 
with mammary gland remodeling. In addition, the ratio of 
fibroblasts, endothelial and myoepithelial cells was greater 
in non-lactation period rather than lactation.

Gene expression patterns of epithelial cells across five 
developmental stages
To unveil the gene transcription dynamics of epithelial 
cells across adjacent developmental stages, we identified 
differentially expressed genes (DEGs) using the Find-
Markers function in Seurat (Fig.  2A and Table S5). The 
time-series gene expression profiling of epithelial cells 
exhibits six time-dependent expression patterns (Fig. 2B). 
During late pregnancy (G90), the main functions of 
highly expressed genes (cluster 5) are regulation of cell 
division and cell differentiation. After deliver (L0), spe-
cific gene-expression (cluster 6) regulated by hormone 
stimulation initiate lactation. As the newborn grows 
(L20), the biosynthetic process (cluster 2) is activated 
in maternal mammary epithelial cells. Upon cessation 
of suckling by the offspring, the involution of the mam-
mary gland is initiated. In early natural involution (PI2), 
most of highly expressed genes in epithelial cells (cluster 
3) participated in apoptotic and cell proliferation inhibi-
tion to allow space for other cell types. At 7 d post natural 
involution (PI7), the immune mechanism is activated.
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Although epithelial cells are captured from the same 
developmental stage, they are still in different physiologi-
cal states. Monocle provides a convenient way to screen 
all pseudotime-dependent genes and identify genes fol-
lowing similar kinetic trends. In late pregnancy (G90), 
the pseudotime analysis shows three cell subsets with 
similar gene expression patterns (Fig.  2C). After func-
tion analysis, cells from the three subsets performed dif-
ferent functions according to pseudotime. In cell cluster 
1, highly expressed genes are mainly enriched in terms 
or pathways related to cell differentiation, development 
and morphogenesis. In cell cluster 2, genes partici-
pated in hormone signal and the development process 
of mammary gland, alveolus and lobules. In cell cluster 
3, high expression genes promoted lactation and sub-
stance synthesis in epithelial cells. Similarly, three cell 
clusters were identified in early natural involution (PI2) 
(Fig.  2D). The pseudotime series analysis reveals three 
physiological states of these cells: cessation of prolifera-
tion in response to hormone stimulation (Rap1 signaling 
pathway), programmed cell death (IL-17 signaling path-
way  and NF-kappa B signaling pathway), and dediffer-
entiation into mesenchymal-like cells (mesenchymal cell 
differentiation).

To characterize the physiological state of epithelial cells 
in G90 and PI2, we used Monocle2 package to calculate 
the differentiation trajectory of these cells. According 
to known marker genes [31–33], cells were classified as 
epithelial precursor cells (ALDH1A3, CD14  and KIT), 
luminal epithelial cells (CSN2  and LALBA) and hor-
mone-sensing epithelial cells (ESR1, PRLR and  PGR) 
(Fig. 3A and Fig. 3E). Cell differentiation trajectories indi-
cate that hormone-sensing cells and luminal cells origi-
nate from epithelial precursor cells (Fig. 3B and Fig. 3F).

In late pregnancy (G90), gene function analysis 
revealed hormone receptor genes are activated in hor-
mone-sensing epithelial cells, including erb-b2 receptor 
tyrosine kinase 4 (ERBB4), transforming growth factor 
alpha (TGFA) and estrogen receptor 1 (ESR1) (Fig. 3C–
D). Functional activation of luminal cells depended on 
Acetyl-CoA carboxylase (ACACA​), fatty acid synthase 
(FASN) and ACLY (Fig. 3C–D).

In early natural involution (PI2), the hormone-sensing 
epithelial cells received hormone stimulation [phos-
phoinositide-3-kinase regulatory subunit 1 (PIK3R1), 

mitogen-activated protein kinase 10 (MAPK10) and 
TGFA] and activate apoptosis related terms and path-
ways (BMPR1A, BMPR1B and STK3). At the same time, 
luminal epithelial cells activated the positive regulation 
of programmed cell death term [superoxide dismutase 
2 (SOD2), cathepsin C (CTSC) and beta-1,4-galac-
tosyltransferase 1 (B4GALT1) and the regulation of 
epithelial cell apoptotic process pathway (beta-2-mi-
croglobulin (B2M), nuclear protein 1, transcriptional reg-
ulator (NUPR1) and programmed cell death 4 (PDCD4)] 
(Fig. 3G–H).

Gene expression patterns of adipocytes across five 
developmental stages
To unveil gene transcription dynamics of adipocytes 
across adjacent developmental stages, we identify DEGs 
using the FindMarkers function in Seurat (Fig.  4A and 
Table S5). Based on DEGs identified from adipocytes, we 
employed Mfuzz algorithm to detect time-series expres-
sion profiles of genes across developmental stages. Six 
time-dependent expression patterns were characterized 
in adipocytes and investigated for their biological signifi-
cance (Fig. 4B). The DEGs of adipocytes in cluster 1 and 
5 show high expression levels during non-lactation. The 
function of these genes is significantly enriched in cellu-
lar development and macromolecule metabolic processes 
term. This is consistent with the results of both our phe-
notypic data (Fig. 1A–B) and previous research [6]. The 
DEGs in cluster 2 are specific expression at colostrum 
stage (L0) versus the other four stages. These DEGs are 
mainly involved in the response to hormone and adipo-
cytokine. In cluster 3 and cluster 4, the DEGs are highly 
expressed at L20, and sustain adipocytes survival. This 
correlates a compression of the adipocyte space during 
lactation. Highly expressed genes in cluster 6 are mostly 
involved in the response to hormone stimulus and cell 
proliferation during early natural involution (PI2).

In many biological processes, cell growth, differen-
tiation and development do not progress in perfect 
synchrony. Single-cell expression studies of cell differen-
tiation often capture cells distributed across the entire 
process. To understand the gene gradient expression at 
different developmental stages, we applied pseudotime 
and trajectory analysis for adipocytes using Monocle 2. 
In late pregnancy (G90), the majority of adipocytes are 

(See figure on next page.)
Fig. 2  Gene expression patterns of epithelial cells at different developmental stages. A Proportional Area Chart (Half Circle). Two groups of half 
circles indicate two DEGs sets of epithelial cells, and the areas represent the number of DEGs. B Fuzzy clustering of expression data at five 
developmental stages. Purple or red colored lines correspond to genes with high membership value, and y axis represents the normalized 
expression value from the Mfuzz result. C Monocle trajectory inference traces a path of pesudotime and group types. D The heatmap reveals 
the relative gene expression level of 3 clusters at 2 branches based on branched expression analysis modeling, combined with the GO/KEGG 
enriched items for each cluster
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Fig. 2  (See legend on previous page.)
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Fig. 3  Subtype classification of epithelial cells in G90 (A) and PI2 (E). Monocle trajectory inference traces a path of pseudotime of epithelial cells 
in G90 (B) and PI2 (F). The heatmap reveals the relative gene expression of 3 clusters at 2 branches based on branched expression analysis modeling 
in G90 (C) and PI2 (G), combined with the GO/KEGG enriched items of each cluster. Visualization of the transition of highly expressed genes 
in pseudotime ordering of epithelial cells in G90 (D) and PI2 (H)
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in a highly differentiated state. When the living space is 
occupied by other cell types (Fig. 1A), adipocytes gradu-
ally dedifferentiate during the onset and maintenance of 
lactation (Fig.  4C). During lactation, highly expressed 
genes regulate cell morphogenesis and keep adipocytes 
at undifferentiated state. These highly expressed genes 
are significantly enriched in the canonical insulin recep-
tor signaling pathway and AMPK signaling pathway 
(Fig. 4D). In the two pathways, we found three key genes, 
ZFP36 ring finger protein like 1 (ZFP36L1), forkhead box 
O1 (FOXO1), and lipid phosphate phosphohydrolase 1 
(LPIN1).

In natural involution, the highly expressed genes regu-
late adipocytes redifferentiation and lipid metabolism 
(the fat cell differentiation term and the triglyceride met-
abolic process term) (Fig.  4D). The pseudo time series 
analysis indicated that adipocytes displayed a mature 
state at the PI2 and PI7 stages, with terms related to adi-
pocyte substance synthesis, including the regulation of 
lipid storage term (CD36 molecule, CD36), the response 
to fatty acid term (lipoprotein lipase, LPL), and the tri-
glyceride metabolic process term (ATP binding cassette 
subfamily A member 1, ABCA1) (Fig. 4E).

Cell–cell interactions
Many cell types of the mammary gland contribute to 
its structure, development, and ultimate function in a 
dynamic and reciprocal fashion. As proof of principle of 
the application of this dataset for describing mammary 
gland cell–cell interactions, we next detected the distri-
bution of cytokine, growth factors and other receptors 
across the seven type cells. The number of paired ligand-
receptor (L-R) interactions showed in the network plots 
reveals the interactions between each two different cell 
types and within the same cell type. The Circos plots dis-
play the top 20 L-R pairs (Fig. 5 and Fig. S2). In terms of 
growth factors, the interactions between epithelial cells 
and other cells are most common during d 90 gestation 
than the other four stages. Aside from adipocytes, epi-
thelial cells strongly bind endogenous and exogenous 
growth factor ligands secreted by other cell types. Inter-
active networks displayed the L-R pairs of growth factors 
which promoted epithelial cell development, these were 
mainly driven by TGFB2-TGFBR3, TGFA-EGFR and 
TGFBR1-TGFBR3 pathways (Fig.  5 and Fig. S2). At the 

same time, endothelial cells promote the growth of other 
five cell types, except adipocytes, by secreting TGFB2 
and PDGFD ligand. Meanwhile adipocytes showed weak 
interactions with other cells. Interestingly, the top 20 cell 
interactions suggest that the interaction between precur-
sor cells and other cell populations only occurs in the 
transition state of non-lactation and lactation, that is, 
G90 and PI2 periods (Fig. 5A and D).

At the onset of lactation (L0), the cytokine-type L-R 
pairs (CXCL12-ITGB1) connects endothelial cells 
with other cells, except adipocytes and precursor cells. 
Another important feature of the L0 period, is that the 
epithelial, myoepithelial and immune cells communi-
cate with endothelial cells via PDGFC-KDR pathway 
(Fig. 5 and Fig. S2). Fibroblasts secret VEGFC ligand to 
combined with FLT1, FLT4, LYVE1, ITGA9 and ITGB1 
receptors from endothelial cells. At mature milk stage 
(L20), the cell–cell interactions show that the cytokine 
ligands secreted by endothelial cells (CCL5, CCL21) and 
myoepithelial cells (CCL2) activate the adipocyte surface 
receptor ACKR4 (Fig.  5C and Fig. S2). In addition, two 
autocrine pathways (FGF10-FGFR1 and ADIPOQ-ADI-
POR2) were activated during this period.

In 2  d post natural involution (PI2), adipocytes fre-
quently received cytokine signals from other cell types 
(Fig. 5D and Fig. S2). Notably, different from mature milk 
stage, the autocrine pathways maintained the adipocyte 
proliferation through FGF1-EGFR and IGFBP4-LRP6 
pairs at PI2, rather than FGF10-FGFR1 pairs (Fig. 5 and 
Fig. S2). In epithelial cells, the positive regulation of pro-
grammed cell death term was activated. All mammary 
cells sent out the demand for proliferation and differ-
entiation to immune cells via IL34-CSF1R pairs. In post 
natural involution (PI2 and PI7), epithelial cells stimu-
lated myoepithelial cell growth through the growth fac-
tor type ligand-receptor (TGFA-EGFR) pathway during 
early natural involution (Fig. 5 and Fig. S2). In PI7, TGFA 
regulated the proliferation of epithelial cells through an 
autocrine signaling pathway (TGFA-ERBB4).

Epithelial cells and adipocytes annotated in situ 
with precise spatial resolution
Mature acini, the basic unit of galactosis, are observed 
in the G90, whose main component is mammary epithe-
lial cells. Acinar maturation indicates that the mammary 

(See figure on next page.)
Fig. 4  Gene expression patterns of adipocytes at different developmental stages. A Proportional Area Chart (Half Circle). Two groups of half circles 
indicate two DEGs sets of adipocytes, and the areas represent the number of DEGs. B Fuzzy clustering of expression data at five developmental 
points. Purple or red colored lines correspond to genes with high membership value, and y axis represents the normalized expression value 
from the Mfuzz result. C–D The heatmap reveals the relative gene expression level of adipocytes in G90 (C) and PI2 (D), combined with the GO/
KEGG enriched items of each cluster. E Visualization of the transition of highly expressed genes in pseudotime ordering of adipocytes at different 
developmental stages
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Fig. 4  (See legend on previous page.)
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gland has been fully prepared for lactation during G90. 
Additionally, casein alpha s1 (CSN1S1) and casein beta 
(CSN2) are the key genes for mammary epithelial cells 
participation in lactation. However, snRNA-seq loses 
spatial information of the expression profiles of CSN1S1 
and CSN2. Thus, we verified that the two genes were 

specifically expressed in the acinar region using spatial 
transcription sequencing (Fig.  6A and Fig. S3). In detail, 
we integrated the snRNA-seq and spatial datasets based 
on SPOTlight with a deconvolutional procedure, generat-
ing the spatial distribution of sequenced cells. The spots 
with CSN1S1 and CSN2-specific expression are largely 

Fig. 5  The typical growth factor type ligand-receptor interactions predicted by iTALK between any two cell types. The network plot showed 
ligand-receptor interactions detected between each two different cell types. In the network, every node showed a cell type, and the thickness 
of the arrow lines represented the number of ligand-receptor interactions. The arrows labeled the forward (from signaling cell to target cell) 
and backward signals. The circos plot displayed the names of each ligand-receptor gene pair and the direction. The outside ring of circos plot 
exhibited cell types, and the inside ring of circos plot exhibited the details of each interaction ligand-receptor pair. The lines inside the circos plot 
indicated the relative signal strength of the ligand and receptor. The arrow indicated the receptor
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overlapping with the region annotated as epithelial cells. 
We found that EGFR expression was a specific expression 
marker in epithelial cells from G90 (Fig. 6A), and repopu-
lation of adipocytes a distinctive feature of natural involu-
tion (PI2) (Fig. 1A). The spatial distribution of adipocytes 
annotated by SPOTlight showed a consistent spatial colo-
calization of adipocytes in HE-stained section. ADIPOQ 
is a marker of adipocytes that encodes a protein hormone, 
adiponectin, involved in the regulation and inhibition of 
lipogenesis and the stimulation of fatty acid oxidation. Its 
spatial expression pattern also supports the annotation of 
snRNA-seq data (Fig. 6B and Fig. S3).

Single‑cell sequencing of milk cells from colostrum 
and mature milk
The lactation stage affects the cellular component of milk 
[34]. To explore this effect, we collected fresh colostrum 
(L0) and mature milk (L20) for scRNA-seq. A total of 
31,943 high-quality cells were captured from colostrum 
and mature milk, including endothelial cells, epithe-
lial cells, macrophages, monocytes and T cells (Fig. 7A). 
The cell-type classification showed a higher number of 
macrophages in colostrum (12.06%) versus mature milk 
(9.70%) (Fig. 7C and D).

Discussion
The mammary gland provides essential nutrients to the 
suckling infant [35, 36]. In most mammals, mammary 
gland morphogenesis begins at embryonic period. After 
birth, it undergoes three successive stages: puberty, preg-
nancy and lactation, and natural involution [31, 37, 38]. 
To date, the adipocyte’s transcriptome profile in swine 

mammary glands has not been reported. Therefore, 
the mechanisms by which adipocytes regulate porcine 
mammary developments and participate in remodeling 
remains to be elucidated. Here, we measured the gene 
expression of swine mammary glands across five develop-
ment stages using snRNA-seq, capturing porcine mam-
mary adipocytes. In this dataset, another six cell types 
were also annotated; epithelial, fibroblasts, endothelial, 
myoepithelial, immune and precursor cells. In addition, 
histological observations revealed a dynamic change in 
the area and size of the adipocytes through mammary 
gland development, and indicated that acini appeared 
in late gestation (G90), which implies cells in mammary 
gland are preparing for lactation at this developmental 
stage [39, 40].

In late pregnancy (G90), the majority of adipocytes are 
highly differentiated, with minimal communications with 
other cells. Such minimal communications means that 
adipocytes are less regulated by growth factors than the 
other six cell groups in G90. We believe this is the reason 
for the lower adipocyte proportion in the subsequent L0 
period. Functional analysis of gene clusters that control 
cell fate unveiled the activation of GO terms negatively 
regulated to cell morphogenesis and cell proliferation. 
This may be the driving force for decreased fat cell vol-
ume and number during lactation. In the activated terms 
and pathways, we found a key gene, IGF1R, which regu-
lates cell size through c-Myc family members and plays 
an important role in the process of cell dedifferentiation, 
consistent with previous studies [41–43].

Another characteristic event of G90 is that the lacta-
tion function of epithelial cells is improved, as specifically 

Fig. 6  Spatial transcriptome profiles of the mammary gland at G90 and PI2. The epithelial cells and adipocytes were annotated according 
to gene-makers. Spatial plots showing the expressions of CSN1S1, CSN2, EGFR and ADIPOQ genes
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shown by the activation of genes related to cell division 
and differentiation. Most epithelial cells undergo three 
stages to achieve lactation functions, namely, cellular dif-
ferentiation, hormone sensing, and metabolic activation. 
Functional gene analysis revealed that hormone-sensing 
epithelial cells promote mammary gland development by 
activated hormone receptor genes, such as ERBB4, TGFA 
and ESR1. ERBB4 is required for the differentiation of 
mouse mammary epithelial cells during pregnancy and 
promotes differentiation of murine and human mammary 
epithelial cells in cell culture [44]. However, other animal 
models demonstrated that TGFA promotes epithelium 
growth in mammary glands by binding to the EGF recep-
tor, activating its kinase cell signaling. Meanwhile, lumi-
nal cells perform essential functions in milk synthesis and 
secretion (Fig. 3G and H). ACACA​, FASN and ACLY are 
key genes to improving the lactation function of luminal 
epithelial cells. ACACA​ and FASN are two critical genes 
required for fatty acid synthesis in milk, mainly acting in 
the elongation of the fatty acid chain [45, 46]. ACLY con-
verts cytoplasmic citrate to acetyl-CoA and oxaloacetate 
and catalyzes the first step of the de novo lipogenesis 
pathway [47]. Epithelial cell maturity is marked by higher 
expression levels of genes associated with casein synthesis 
[48, 49], such as CSN1S1 and CSN2, whose expression are 
detected at single cell and spatial levels.

At the onset of lactation (L0), the proliferation of mam-
mary cells, except adipocytes and precursor cells, is 

strongly affected by the cytokine-type L-R pairs, CXCL12-
ITGB1. The team of Ryota Kawahara proved that the 
phenotype of ITGB1-KO mice is embryonic lethal [50]. 
In L0, the epithelial, myoepithelial and immune cells all 
promote growth, proliferation, migration of endothelial 
cells and vascular network formation through PDGFC-
KDR pathway (Fig. 5 and Fig. S2) [51]. Fibroblasts regulate 
endothelial cell differentiation and promote angiogenesis 
by secreting VEGFC ligand, one of the strongest modula-
tors of angiogenesis [52], via FLT1, FLT4, LYVE1, ITGA9 
and ITGB1 receptors [53–57]. These L-R pathways jointly 
promote angiogenesis and ensure the transportation of 
nutrients required for lactation [58, 59].

Epithelial cells initiate lactation (L0) through hor-
mone signals. As lactation progresses, epithelial cells 
actively synthesize milk to meet nutritional require-
ments for newborns. After fulfilling lactation mission, 
epithelial cells undergo programed cell death (L20). 
Cell–cell interaction analysis indicated that epithelial 
cells promoted the proliferation and differentiation of 
immune cells by secreting IL34 ligand and binding to 
CSF1R surface receptor [60, 61]. This suggests that epi-
thelial cells can be actively cleared by immune cells to 
eliminate dead cells under high intensity lactation. This 
biological process may be an important mechanism for 
maintaining homeostasis of the mammary gland. It has 
been established that immune cells including neutro-
phils, macrophages and lymphocytes are present in milk 

Fig. 7  The immune cellular composition of colostrum and mature milk. A UMAP plot of five clusters from all sequenced milk cells. B Maker genes 
of the five cell types. C UMAP plot of endothelial cells, epithelial cells, macrophages, monocytes and T cells in two samples. D The proportion 
of bar plot of five clusters originating from two samples
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[62]. Numerous data on animal studies have shown that 
maternal immune cells can be transferred to newborns 
through milk. Langel et  al. [63] suggests that these 
maternal immune cells contribute to the maturation of 
the innate immune system in the offspring. There are 
abundant macrophages in colostrum. With the lacta-
tion process, the number of macrophages in mature 
milk decreases [64, 65]. Importantly, these macrophages 
often elicit significant and non-homeostatic inflamma-
tory responses. In 2020, Zimmermann and Macpherson 
[66] demonstrated that T-regulatory cells (Treg) can be 
transmitted to the offspring via milk, and persist for a 
long time in a mechanism that provides microbial and 
pathogenic resistance to the offspring. These results 
suggest that Treg in milk can help newborns build an 
early immune barrier.

Our data indicates that the adipocytes area accounts 
for less than 0.5% during lactation (L0 and L20). This 
results from the dedifferentiation mechanism of adipo-
cytes. To assure survival in the extremely stressful living 
environment, the adipocyte maintains a poorly differen-
tiated state with high proliferative capacity, which may 
be driven by hormone inhibition of adipocyte differen-
tiation (the canonical insulin receptor signaling pathway 
and AMPK signaling pathway). In the two pathways, 
three key genes (ZFP36L1, FOXO1 and LPIN1) inhibit 
the differentiation of adipocytes. ZFP36L1 inhibits 
intracellular fat synthesis [67], while FOXO1 gene inhib-
its adipocyte differentiation [68]. Previous studies have 
shown that LPIN1 expression is higher in preadipocytes 
than in mature adipocytes [69, 70]. Similarly, LPIN1 dis-
plays a higher expression in L0 and L20 rather than G90. 
At mature milk stage (L20), the cell–cell interactions 
show that the cytokine ligands secreted by endothelial 
cells (CCL5, CCL21) and myoepithelial cells (CCL2) 
activate the adipocyte surface receptor ACKR4 (Fig. 5C 
and Fig. S2). After receiving CCL21 signals from other 
cells, adipocytes reportedly activate ACKR4 to remove 
chemokines and evade phagocytosis by inflamma-
tory cells [71–73]. A previous study confirms that the 
absence of FGFR1 gene leads to a delay in mammary 
gland development, with a short-term decrease in cell 
proliferation [74]. This may indicate that the autocrine 
FGF10-FGFR1 pathway is the required for prolifera-
tion potential of adipocytes during L20 (Fig. 5 and Fig. 
S2). Besides, adipocytes inhibit apoptosis via the ADI-
POQ-ADIPOR2 pathway [6, 75]. Overall, adipocytes are 
actively mobilizing their growth potential in the period 
of physiological lactation degradation and preparing for 
remodeling.

Previous research has confirmed that the mammary 
gland undergoes the epithelial programmed cell death 

during lactational involution [76]. Our latest work anato-
mizes this process in more detail. Epithelial cell popula-
tions first stop proliferating (Rap1 signaling pathway), 
then undergo programmed cell death (NF-kappa B sign-
aling pathway and IL-17 signaling pathway), and the 
last surviving cells dedifferentiate into mesenchymal 
stem cells (BMPR1A, TGFBR3  and WWTR1). In detail, 
the Rap1 signaling pathway plays an important role in 
cell proliferation [77], while the NF-kappa B signaling 
pathway and IL-17 signaling pathway drive apoptosis 
in epithelial cells [78, 79]. Non-apoptotic epithelial cells 
are dedifferentiated to mesenchymal cells as “seeds” for 
subsequent lactation cycles. The transforming growth 
factor beta receptor 3 (TGFBR3) and WW domain con-
taining transcription regulator 1 (WWTR1) induce the 
transformation of epithelial cells into mesenchymal cells 
[80, 81]. Additionally, the bone morphogenetic protein 
receptor type 1A (BMPR1A) plays an important role in 
maintaining the undifferentiated state of mammary epi-
thelial cells [82]. Volume reduction is a critical feature in 
mammary gland involution after weaning. To maintain 
gland homeostasis, immune cells are required to clear 
the programmed dead cells [81]. Surprisingly, these cells 
seem to be actively cleared by immune cells. This con-
clusion is based on the results of the gene transcription 
dynamics and cell–cell interaction analysis. At this stage, 
mammary cells signal the demand for proliferation and 
differentiation to immune cells via IL34-CSF1R pairs [31, 
82]. Similarly, epithelial cells stimulate myoepithelial cell 
growth through the growth factor type ligand-receptor 
(TGFA-EGFR) pathway during early natural involution 
(Fig. 5 and Fig. S2) [79]. We speculate that this dynamic 
transcription profile is related to epithelial cells role in 
ejection of milk in the acini through the myoepithelial 
cell contraction to reduce the inflammatory reaction in 
the mammary gland. In 7 d post natural involution (PI7), 
TGFA ligand activates the receptor ERBB4 on the surface 
of adjacent epithelial cells to maintain proliferation, so 
that the epithelial cells persist in an extremely narrow liv-
ing space [32]. This molecular mechanism maintains the 
lactation potential of the mammary gland and guarantees 
the next lactation cycle.

Adipocytes area increase by 22.85 percentage points at 
PI7 versus L20. The regulation of lipid storage and lipid 
biosynthetic process leads to extracellular lipid transport 
into the cytoplasm and fusion with other lipid droplets 
to increase the size of fat adipocytes, which is one of the 
important ways to hypertrophy [83]. This is consistent 
with a report from Zwick et  al. [84] that the regulatory 
mechanism of adipocyte hypertrophy and reoccupation 
during mammary gland remodeling in mice. In remod-
eling of mammary glands, the regulation of lipid storage 
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term (CD36), the response to fatty acid term (LPL), and 
the triglyceride metabolic process term (ABCA1) are 
activated. The ABCA1 can regulate adipocyte lipid 
metabolism by adjusting the lipid content of adipose tis-
sue, glucose tolerance, and insulin sensitivity [85, 86]. 
CD36 is a scavenger receptor that plays a role in adipose 
energy storage [87]. The LPL gene mainly participates in 
the uptake of lipids by adipocytes, and is a critical regula-
tory factor for lipid accumulation in adipocytes, as well 
as a marker for adipocyte differentiation [88, 89]. In sum-
mary, the lineage trajectory analysis revealed that adi-
pocytes underwent dedifferentiation, proliferation and 
redifferentiation from late pregnancy to natural involu-
tion (PI7) [6, 9]. Adipocytes frequently received cytokine 
signals from other cell types (Fig.  5D and Fig. S2). 
This phenotype was closely related to the active genes 
involved in proliferation and differentiation. In PI2, the 
surface cytokine receptor, ACKR4, participated in adipo-
cyte chemokine’s clearance [77, 78, 90]. Notably, different 
from mature milk stage, the autocrine pathways main-
tain adipocyte proliferation through FGF1-EGFR and 
IGFBP4-LRP6 pairs at PI2, rather than FGF10-FGFR1 
pairs (Fig.  5 and Fig. S2) [79, 80]. The above molecular 
mechanisms maintain the lactation potential of the mam-
mary gland and guarantee the next lactation cycle.

Conclusion
Taken together, this dataset is the largest cell transcrip-
tomic profile of porcine mammary gland across devel-
opment to date. Herein, we reveal the internal factors of 
proliferation, differentiation and apoptosis of epithelial 
cells and adipocytes across five development stages. A 
vital finding was that epithelial cells are converted into 
mesenchymal stem cells during the remodeling process. 
Of note, our data annotated adipocytes in the porcine 
mammary glands, and clarified the molecular mechanism 
of dedifferentiation, proliferation and redifferentiation in 
adipocytes, from late pregnancy to natural involution. 
Overall, our data provide novel and fundamental insights 
into the mammary gland development.
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