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Abstract 

Background  Inflammation of the mammary tissue (mastitis) is one of the most detrimental health conditions in 
dairy ruminants and is considered the most economically important infectious disease of the dairy sector. Improv-
ing mastitis resistance is becoming an important goal in dairy ruminant breeding programmes. However, mastitis 
resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult. Currently, the only 
applicable approach to identify candidate loci for complex traits in large farm animals is to combine different informa-
tion that supports the functionality of the identified genomic regions with respect to a complex trait.

Methods  To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data 
from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate 
loci. Mastitis-associated candidate genes reported in association, expression, and mouse model studies were col-
lected by searching the relevant literature and databases. The collected data were integrated into a single database, 
screened for overlaps, and used for gene set enrichment analysis.

Results  The database contains candidate genes from association and expression studies and relevant transgenic 
mouse models. The 2448 collected candidate loci are evenly distributed across bovine chromosomes. Data integra-
tion and analysis revealed overlaps between different studies and/or with mastitis-associated QTL, revealing promis-
ing candidate genes for mastitis resistance.

Conclusion  Mastitis resistance is a complex trait influenced by numerous alleles. Based on the number of independ-
ent studies, we were able to prioritise candidate genes and propose a list of the 22 most promising. To our knowledge 
this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting 
genes for functional validation studies.
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Introduction
Inflammation of the mammary tissue is one of the most 
common harmful health issues in dairy ruminants and 
is considered the most economically important infec-
tious disease of the dairy sector. The major consequences 

of mastitis are reduced milk production and veterinary 
costs [1], animal welfare concerns [2, 3], extensive use 
of antibiotics contributing to increasing antimicrobial 
resistance [4], and impact on the safety and quality of 
milk and dairy products [5, 6]. The improvement in milk 
yield has been tremendous in the last decades, doubling 
milk production in the last fifty years [7]. However, inten-
sive selection focused on milk yield led to deterioration of 
animal fertility and mammary health traits [8, 9]. Selec-
tion for high milk flow, preferred due to machine milk-
ing, resulted in weakening of the mammary streak canal 
sphincter that represents a physical barrier for pathogen 
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entry [10]. Characteristics of milk flow were clearly 
associated with mammary health status and correlated 
indicators (e.g., somatic cell score – SCC) [11–13]. Unfa-
vourable correlations between milk production traits and 
mastitis can be offset to some extent by appropriate herd 
management [14], but mammary infections and fertility 
problems are generally more common in high producing 
herds [15–17]. The situation is somewhat different in the 
Nordic countries, where direct and indirect mastitis indi-
cators (such as clinical mastitis and somatic cell count) 
are routinely measured and have been used in breeding 
programmes to select for mastitis resistance since the 
1990s [18]. Despite the low heritability of the traits, such 
phenotype-based selection has been shown to be ben-
eficial in improving mastitis resistance [19], but causal 
genetic mechanisms behind the traits remain unknown.

The conventional method of treating mastitis is 
intramammary administration of antibiotics, which is not 
always effective [20], and has other adverse effects (e.g., 
antimicrobial resistance, contamination of dairy prod-
ucts). In addition, the relative efficacy of intramammary 
therapies using different antimicrobials to treat mastitis is 
difficult to assess and remains inconclusive [21]. Improv-
ing disease resistance is therefore considered a priority 
goal in modern breeding programmes [22, 23]. There is 
an increasing trend towards monitoring the physiological 
status and welfare of farm animals in real-time by record-
ing parameters directly on the animal using electronic 
devices (so called “indicator traits”) [24], which could 
also be used for early detection of mammary infections.

The discovery of candidate (causative) genes for com-
plex traits in large livestock is difficult because of the 
high breeding costs of experimental herds, long genera-
tion intervals, inefficient genetic engineering techniques, 
and the heterogeneous genetic background of outbred 
ruminant populations that exhibit population-specific 
genetic interactions between loci. The situation is quite 
different in model organisms (e.g., mice) where inbred 
lines and well-established genetic manipulation tech-
niques (targeted gene disruptions/alterations) are avail-
able that can directly reveal phenotypes associated loci. 
Genetically modified mouse models are therefore a valu-
able source of data on traits of interest in all mammalian 
species. The mouse model has been used extensively as 
a tool to identify gene functions. Despite some anatomi-
cal and physiological differences between mice and rumi-
nants, mouse models provide a cost-effective alternative 
for studying intramammary infections [25]. On the other 
hand, in large farm animals, as suggested by Mackay [26], 
the only applicable approach for identifying and prior-
itising quantitative trait loci (QTL) and candidate genes 
is to integrate diverse information that all together dem-
onstrate the involvement of identified candidate genomic 

regions in a complex phenotype. However, despite the 
efforts invested in candidate gene discovery in large farm 
animals over the past decades, the success of the classical 
QTL-to-candidate gene approach has been limited. Suc-
cessful examples of quantitative trait nucleotide (QTN) 
identification in dairy cattle include single nucleotide 
polymorphisms (SNPs) associated with milk composi-
tion and yield in DGAT1 [27], GHR [28] and ABCG2 [29]. 
To our knowledge, no causative gene/QTN for mastitis 
resistance has yet been validated due to the complexity of 
the trait, specific host-pathogen interactions, and other 
factors that complicate identification and validation of 
candidate genes.

In this study, we performed an extensive literature data 
mining and collected heterogeneous mastitis-associated 
data from various sources, including different ruminant 
species (sheep, goat, and cattle) and mastitis associ-
ated mouse models. The relevant information has been 
integrated into a database of bovine candidate genes 
for mastitis resistance, which we hope will be useful to 
researchers investigating the genetic background of mas-
titis resistance. The database represents a collection of 
known candidate genes for mastitis resistance, which can 
be prioritised according to different criteria and validated 
in functional studies for possible detection of mastitis-
associated QTN.

Materials and methods
Data collection
Mastitis-associated loci were collected by manual review 
of the relevant literature and extraction of data from 
various sources. Mastitis-associated candidate genes 
reported in association and expression studies were col-
lected by searching for relevant publications in PubMed 
[30] (using combinations of keywords: “mastitis”, “somatic 
cells”, “mammary”, “infection”, “QTL”, “SNP”, “associa-
tion”, “expression”, and “candidate genes”). For association 
studies, all relevant articles on ruminants were manually 
reviewed and candidate genes with reported associa-
tions to mastitis were included in the database. Regarding 
expression studies in ruminants, it is impossible to extract 
all relevant information from the literature because of the 
large amount of experimental data available. Therefore, 
we have attempted to provide a representative sample of 
the available transcriptomic data indicative of expression 
changes during mastitis with the most common mastitis-
causing pathogens (e.g., Escherichia coli and Staphylococ-
cus aureus). In the present database, we included mastitis 
associated expression data from a database published in 
2009 [31] and updated the collection of candidate genes 
with more recent expression data obtained from studies 
combining heterogeneous transcriptomic information 
(meta-analyses) and studies selected as most relevant, 
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based on our review and meeting specific criteria (pub-
lished after 2009, reported differentially expressed in 
controlled infections, performed on ruminant in  vitro 
or in vivo challenge systems, studying immune response 
against the most common mastitis pathogens – including 
E. coli or S. aureus or their virulence factors, and using 
microarrays or RNA sequencing methods) (e.g.,  [32–
39]). The genes reported differentially expressed in the 
selected studies were included to the database.

Mouse knockout and transgene model data were 
retrieved from the Mouse Genome Informatics (MGI) 
database 6.13 [40] using the phenotype ontology term 
“mastitis”. The availability of well-annotated mouse 
and bovine genomes allows identification of orthologs 
between the species, enabling use of a comparative 
approach. Therefore, for candidate genes associated with 
mastitis phenotype in mouse models, cattle orthologs 
were included in the database.

QTL in cattle were examined at Animal QTL Database 
[41], specifically in the Cattle QTL database [42] using 
traits view “Cattle QTLdb trait hierarchies”, selecting 
“mastitis” in “health traits” category and considering 
all mastitis-associated traits; that is “somatic cell score” 
(SCS), “somatic cell count” (SCC), and “clinical mastitis” 
(CM).

Data analysis
Candidate genes reported by multiple independent stud-
ies, regardless of study approach, were considered the 
most promising. The most promising candidates were 
screened for positional overlaps with mastitis associ-
ated QTL (CM, SCS, and SCC). Physical positions of 
mastitis associated QTL were extracted from the Cattle 
QTLdb using “QTL/associations analysis tool” that ena-
bles data download and QTL locations compared with 
the genomic positions of candidate genes extracted from 
GenBank [43], using annotations from bovine genome 
assembly ARS-UCD1.2 [44]. In case candidate gene 
shared at least part of its sequence with QTL of interest 
we considered the QTL as overlapping.

Pathway enrichment analysis of all the collected can-
didate genes was performed using g:Profiler [45]. The 
standard analysis implemented in g:Profiler searched 
for pathways, biological processes (BP), molecular func-
tions (MF), and cellular components (CC) in which 
genes from the collected candidate gene list were sig-
nificantly enriched compared to all genes in the genome. 
For the most promising genes pathway redundancy was 
addressed with EnrichmentMap [46] and visualised in 
Cytoscape [47]. The list of the most promising candidate 
genes was analysed for protein-protein interactions using 
STRING database [48]. Lists of candidate genes obtained 

by different approaches in ruminants were compared 
using an interactive tool for comparing lists with Venn’s 
diagrams [49].

Results
We collected 157 candidate genes from association stud-
ies, 2300 candidate genes from expression studies, and 
six genes from mouse models yielding a total of 2448 
candidate genes that are likely to represent a genetic 
background for mastitis resistance. In addition, there are 
currently 668 QTL directly associated with mastitis or 
correlated traits (i.e., clinical mastitis, somatic cell score, 
and somatic cell count) reported in Cattle QTLdb. The 
identified candidate genes and QTL show an even distri-
bution across all bovine autosomes and chromosome X 
(Fig. 1).

Transgenic and knockout models in mice
In the MGI database, we found one gene disruption 
(Mfge8) and five transgenic mouse models for Lao1, 
Enpp2, Lpar1, Lpar2, and Lpar3 that resulted in abnor-
mal mammary gland physiology and were also associ-
ated with mastitis (Additional file  1: Table  S1). Bovine 
orthologs of the Mfge8 [50] and Lpar3 [51] associated 
with mastitis phenotypes in knockout and transgenic 
mouse models were also reported differentially expressed 
during mammary infection in cattle.

Association studies
Associations between genotypes (mainly SNPs) and 
mastitis-associated phenotypes (mainly SCS) have been 
demonstrated for 157 candidate genes in ruminants 
(Additional file 1: Table S2), several of which have been 
reported in multiple independent association studies 
(e.g., CXCL8, CXCR1, TLR4). Polymorphisms in genes 
associated with mastitis resistance represent potential 
causative mutations (QTNs).

Transcriptomic studies
We found 2300 candidate genes differentially expressed 
during mastitis in transcriptomic studies (Additional 
file 1: Table S3). When considering the pathogen-specific 
response [52], there were 1825 genes reported differen-
tially expressed during Escherichia coli (E.coli) infection, 
480 during Staphylococcus aureus (S. aureus) infection, 
of which 231 were differentially regulated in response to 
both pathogens, while the rest are associated with other 
pathogens. Some of the genes differentially regulated 
during mastitis have been reported in multiple independ-
ent expression studies (e.g., CXCL8, CXCR1, LTF, TLR4).
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QTL
The list of QTL associated with mastitis-related traits 
(CM, SCC, and SCS) currently includes 668 QTL in Cat-
tle QTLdb. The number of mastitis associated QTL per 
different bovine chromosomes ranged from 4 (BTA17 
and 24) to 49 (BTA9). The highest density of mastitis-
associated QTL is located on chromosomes 9 (49 QTL), 
14 (45), 5 (43), and 10 (42).

The most promising candidate genes
Candidate genes associated with mastitis in multiple 
independent studies represent candidate genes of par-
ticular interest (Table  1). Candidates found by a high 
number of independent studies and/or in studies using 
different research approaches (e.g., CXCL8, CXCR1) 
could be considered of the highest priority for validation 
studies.

Enrichment analysis
The g:Profiler search for the collected candidate genes, 
revealed the most enriched pathways from KEGG and 
REACTOME databases (Table 2). Functional enrichment 

analysis mapped our gene list to known sources of func-
tional information and identified statistically significant 
enriched biological processes (BP), molecular func-
tions (MF) and cellular components (CC), which clearly 
show the association of the candidate genes to immune 
response related activities (Table 3; Fig. 2).

Discussion
The database created provides a comprehensive overview 
of the current knowledge on the genetic background of 
mastitis resistance in dairy cattle and could be extrapo-
lated to other dairy ruminant species. The database is a 
practical example of genetic dissection of a complex trait 
that could serve as an example for other quantitative phe-
notypes in different animal species. A similar database for 
milk- and mastitis-related traits has already been created 
[31]. This study focuses exclusively on mastitis-related 
traits and is updated with the newly acquired knowledge.

Over the past decades, numerous experiments (in 
vivo and in  vitro) have been performed to search 
for mastitis resistance candidate genes at the DNA/
RNA level using high-throughput technologies (e.g., 

Fig. 1  Schematic overview of the chromosomal arrangement of the collected mastitis-associated candidate genes (left – physical map) and 
QTL (right – linkage map) from Cattle QTLdb. Candidate genes involved in the immune response to Escherichia coli infection are highlighted in 
green, those involved in Staphylococcus aureus infection are highlighted in orange, whereas red indicates candidate genes associated with other 
pathogens. Red colour in linkage maps represents significant QTL and blue represents suggestive
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RNA-Seq, microarrays). Whole genome/transcriptome 
studies have generated a tremendous amount of data. 
Consequently, many loci have been proposed as can-
didates for mastitis resistance. Large lists of candidate 
genes present a challenge for researchers in analysing 

and interpreting data from expression and association 
experiments. Integration of data and enrichment analy-
ses are needed to gain better mechanistic insight into 
the genetic background of mastitis resistance. However, 
the problem with these studies is that they are difficult 

Table 1  List of the most promising (associated with mastitis in multiple independent studies, regardless of study approach) candidate 
genes for mastitis resistance

Chr. Chromosome, QTL Quantitative trait locus, SCS Somatic cell score, CM Clinical mastitis, Tg Transgenic, KO Knockout
a QTL genomic location that overlaps with candidate gene genomic location

Gene Gene name Chr. Ensembl ID
(Bos Taurus)

Association 
studies (n)

Expression 
studies (n)

Mouse models Overlapping 
QTLa

References

BoLA-DRB3 Major histocompat-
ibility complex, class 
II, DRB3

23 ENSBTAG00000013919 13 / SCS [31, 53–64]

C6 Complement C6 20 ENSBTAG00000014177 3 2 / [65–69]

C9 Complement C9 20 ENSBTAG00000016149 4 1 / [66–68, 70, 71]

CACNA2D1 Calcium voltage-gated 
channel auxiliary subu-
nit alpha2delta 1

4 ENSBTAG00000020569 4 2 / [60, 72–76]

CARD6 Caspase recruit-
ment domain family 
member 6

20 ENSBTAG00000014374 3 / / [66, 68, 77]

CD14 CD14 molecule 7 ENSBTAG00000015032 4 3 / [31, 34, 37, 78–81]

CXCL8 C-X-C motif 
chemokine ligand 8 
(interleukin 8)

6 ENSBTAG00000019716 18 10 CM [31, 32, 35, 82–105]

CXCR1 Chemokine (C-X-C 
motif ) receptor 1

2 ENSBTAG00000026753 21 4 / [31, 82, 83, 106–126]

CXCR2 C-X-C motif 
chemokine receptor 2

2 ENSBTAG00000038042 3 / / [127–129]

DCK Deoxycytidine kinase 6 ENSBTAG00000012397 4 1 / [70, 118, 130, 131]

DGAT1 Diacylglycerol 
O-acyltransferase 1

14 ENSBTAG00000026356 5 1 / [70, 130, 132–135]

GC GC vitamin D binding 
protein

6 ENSBTAG00000013718 7 / SCS [71, 131, 132, 134, 
136–138]

LTF Lactotransferrin 22 ENSBTAG00000001292 11 7 / [31, 33, 35, 37, 38, 66, 
124, 139–149]

LPAR3 Lysophosphatidic acid 
receptor 3

3 ENSBTAG00000003791 / 1 Tg / [32, 51]

MBL1 Mannose binding 
lectin, liver (A)

28 ENSBTAG00000054761 6 / / [118, 150–154]

MBL2 Mannose binding 
lectin 2

26 ENSBTAG00000007049 3 / / [118, 153, 155]

MFGE8 Milk fat globule EGF 
and factor V/VIII 
domain containing

21 ENSBTAG00000003300 / 1 KO / [37, 50]

NPFFR2 Neuropeptide FF 
receptor 2

6 ENSBTAG00000009070 4 / SCS [130, 132, 136, 156]

SOCS2 Suppressor of cytokine 
signaling 2

5 ENSBTAG00000012007 4 4 / [35, 68, 157–162]

STAT5A Signal transducer and 
activator of transcrip-
tion 5 A

19 ENSBTAG00000009496 3 / CM [163–165]

TLR2 Toll like receptor 2 17 ENSBTAG00000008008 7 10 / [31, 34, 35, 37, 97, 105, 
120, 166–175]

TLR4 Toll like receptor 4 8 ENSBTAG00000006240 11 17 / [31, 34, 38, 76, 104, 105, 
140, 147, 149, 166, 168, 
170, 173, 175–188]
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to integrate and combine because they use different 
methodological approaches, experimental designs, 
incubation periods, and pathogen/virulence factors 

for immune challenges that elicit pathogen-specific 
immune responses [105]. As a result, studies often 
show conflicting results, making it difficult to combine 

Table 2  Significantly enriched pathways for the input list of the collected candidate genes obtained from KEGG and REACTOME

KEGG Kyoto encyclopedia of genes and genomes, Padj adjusted enrichment P-values

KEGG: Term name Term ID Padj Genes in pathway
ABC transporters KEGG:02010 6.115 × 10−12 ABCA4, ABCA7, ABCB1, ABCC2, ABCD4, ABCG2, ABCG5

Viral protein interaction with cytokine and cytokine 
receptor

KEGG:04061 3.263 × 10−8 ACKR3, CCL11, CCL16, CCL19, CCL2, CCL20, CCL28, CCL3, 
CCL4, CCL5, CCR1, CCR2, CCR5, CCR7, CXCL1, CXCL10, 
CXCL11, CXCL2, CXCL5, CXCL8, CXCR1, CXCR2, CXCR4, 
GRO1, IL10RA, IL10RB, IL18, IL18RAP, IL2, IL20RA, IL20RB, 
IL2RG, IL34, IL6

Bile secretion KEGG:04976 3.718 × 10−4 ABCB1, ABCC2, ABCG2, ABCG5

Cytokine-cytokine receptor interaction KEGG:04060 6.366 × 10−4 ACKR3, AMH, BMP7, CCL11, CCL16, CCL19, CCL2, CCL20, 
CCL28, CCL3, CCL4, CCL5, CCR1, CCR2, CCR5, CCR7, CD4, 
CD40, CSF2, CSF2RB, CSF3, CX3CL1, CXCL10, CXCL11, 
CXCL16, CXCL2, CXCL5, CXCL8, CXCR1, CXCR2, CXCR4, FAS, 
GDF10, GDF9, GHR, GRO1, IFNAR2, IFNB, IFNB2, IL10RA, 
IL10RB, IL11, IL17A, IL17F, IL18, IL18RAP, IL1A, IL1B, IL1RAP, 
IL1RN, IL2, IL20RA, IL20RB, IL21, IL23A, IL2RG, IL31RA, IL34, 
IL36A, IL4R, IL6, INHBB

Hematopoietic cell lineage KEGG:04640 2.008 × 10−3 BOLA-DOB, BOLA-DQA2, BOLA-DQA5, BOLA-DRB3, CD14, 
CD1E, CD34, CD36, CD37, CD38, CD3E, CD4, CD44, CD55, 
CD8A, CD8B

REACTOME: Term name Term ID Padj Genes in pathway
Chemokine receptors bind chemokines REAC:R-BTA-380,108 3.344 × 10−5 ACKR3, CCL11, CCL16, CCL19, CCL2, CCL20, CCL28, CCL3, 

CCL4, CCL5, CCR1, CCR2, CCR5, CCRL2, CXCL13, CXCL16, 
CXCR4

Senescence-Associated Secretory Phenotype (SASP) REAC:R-BTA-2,559,582 4.729 × 10−2 CDK6, CDKN2B, CDKN2C, CEBPB

Table 3  Functional enrichment analysis for the input list of the collected candidate genes

GO Gene ontology, BP Biological process, MF Molecular function, CC Cellular component, Padj adjusted enrichment P-values

GO:BP GO:MF GO:CC

Term name Term ID Padj Term name Term ID Padj Term name Term ID Padj

Response to stress GO:0006950 2.229 × 10−48 Chemokine 
activity

GO:0008009 2.078 × 10−13 Extracellular region GO:0005576 8.251 × 10−18

Defense response GO:0006952 1.292 × 10−46 Signaling receptor 
binding

GO:0005102 4.433 × 10−12 Extracellular space GO:0005615 5.248 × 10−16

Immune system 
process

GO:0002376 5.366 × 10− 43 Protein binding GO:0005515 7.952 × 10−12 Cytoplasm GO:0005737 3.469 × 10−15

Response to exter-
nal stimulus

GO:0009605 1.122 × 10−37 Chemokine recep-
tor binding

GO:0042379 3.461 × 10−11 Plasma membrane 
protein complex

GO:0098797 1.408 × 10−10

Immune response GO:0006955 2.454 × 10−37 Cytokine activity GO:0005125 3.795 × 10−11 Cell surface GO:0009986 6.243 × 10−10

Response to 
organic substance

GO:0010033 3.460 × 10−33 ABC-type trans-
porter activity

GO:0140359 8.961 × 10−11 External side of 
plasma membrane

GO:0009897 2.348 × 10−9

Inflammatory 
response

GO:0006954 1.027 × 10−32 Immune receptor 
activity

GO:0140375 1.822 × 10−10 Cell periphery GO:0071944 2.209 × 10−8

Response to biotic 
stimulus

GO:0009607 1.247 × 10−32 Cytokine receptor 
activity

GO:0004896 9.780 × 10−10 Endomembrane 
system

GO:0012505 7.691 × 10−8

Response to other 
organism

GO:0051707 2.191 × 10−32 Cytokine receptor 
binding

GO:0005126 3.058 × 10−9 Extracellular matrix GO:0031012 8.426 × 10−8

Regulation of 
immune system 
process

GO:0002682 3.557 × 10−32 Enzyme binding GO:0019899 5.853 × 10−9 External encapsu-
lating structure

GO:0030312 9.481 × 10−8
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data into a meaningful meta-analysis to extract relevant 
information. We believe that standardisation of such 
experiments would represent an important advance 
in the field. In addition, it should be kept in mind 
that existing reports may lead new studies to focus on 
already identified candidate genes. Therefore, whole-
genome/transcriptome-level studies should be used to 
collect relevant data and identify potential candidate 
genes more broadly, followed by targeted functional 
studies of the most promising candidates.

Genes influencing complex traits are assumed to be 
additive in their contribution to phenotype and to con-
tribute only to a minor extent. The number (2448 candi-
date genes and 668 QTL) and distribution of candidate 
loci across all bovine chromosomes illustrate the com-
plexity of the trait and support the theory of a large 
number of candidate loci with a small contribution of a 
single locus to the phenotype. Given the “infinitesimal 
model” paradigm [189], identification of causative genes 

for mastitis resistance would be difficult and probably 
not reasonable in the context of marker-assisted selec-
tion (MAS). However, if alleles with moderate to large 
influence on mastitis resistance were identified, it would 
be feasible to implement such alleles in breeding strate-
gies via MAS. Combining MAS and genomic selection 
would likely be an optimal trait improvement strategy in 
such a case. In addition, there are suggestions that to bet-
ter understand the genetic architecture of complex traits, 
the current additive effects-based quantitative genetic 
framework needs to be improved and refined to include 
the effects of a range of multi-allelic markers, epige-
netic inheritance, and genetic interactions, or even that 
an entirely new paradigm in quantitative genetic analy-
sis should be proposed [190]. Epigenetic processes have 
been shown to influence multiple traits, including disease 
resistance [191–193] and consideration of non-Mende-
lian inheritance may be a next step toward better under-
standing the genetic background of complex traits [194]. 

Fig. 2  Results of the candidate gene analysis. A Overlaps between the collected candidate genes found in different studies on ruminants 
compared to the list of candidate genes reported in multiple studies (considered the most promising candidate genes), showing eight genes in 
the cross section with reported sequence polymorphisms associated with mastitis resistance and differentially expressed during E. coli and S. aureus 
intramammary infections. B Pathway enrichment analysis using g:Profiler and Cytoscape showing major biological pathways within the analysed 
gene set of the most promising candidates (node cutoff: P value = 0.01; Q value = 0.01. C Protein-protein interactions of the 22 most promising 
candidate genes as suggested by STRING database of which 13 are connected in a network. Different edge colours represent different types of 
associations (turquoise: known interactions – from curated databases; magenta: known interactions – experimentally determined; green: predicted 
interactions – gene neighbourhood; red: predicted interactions – gene fusions; blue: predicted interactions – gene co-occurrence; lime: others – 
text mining; black: others – co-expression; lavender: others – protein homology)
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The effect of clinical mastitis on methylation patterns 
has been demonstrated in the case of DNA remethyla-
tion around the STAT5-binding enhancer in the CSN1S1 
promoter leading to disruption of αS1-casein synthe-
sis during intramammary infection [195]. In addition, 
microRNAs (miRNAs) [196] and large non-coding RNAs 
(lncRNAs) [197] play a role in regulating gene expression 
and may serve as biomarkers for various pathophysiolog-
ical conditions [198], including mastitis [199].

Integration of the collected candidate genes from multiple 
sources into a single database, overlaid with known QTL, 
allows identification of regions densely populated with 
candidate loci, revealing potential genomic hotspots (posi-
tional candidates) for mastitis resistance. Five of the genes 
considered the most promising candidates (Table  1) (i.e., 
BoLA-DRB3, CXCL8, GC, NPFFR2, and STAT5A) overlap 
with mastitis-associated QTL (CM or SCS). Eight of the 
most promising candidates (C6, C9, CARD6, CD14, CXCL8, 
LTF, TLR2, TLR4) were associated with mastitis in multiple 
studies and with different study approaches (expression and 
association studies) and were differentially expressed during 
infections with E. coli and S. aureus, respectively (Fig. 2A). 
Pathway enrichment clearly shows the most promising 
candidate genes are involved in immune response activa-
tion (Fig.  2B). A protein-protein network as suggested by 
the STRING database shows C6, C9, CD14, CXCL8, LTF, 
TLR2, TLR4 (Fig.  2C) are connected in a dense network. 
This (over)simplified diagram illuminates signal transduc-
tion pattern for activation of mammary innate immunity 
beginning at recognition receptors (TLR2/TLR4) and co-
receptors (CD14), which induce chemokines (CXCL8) 
through G  protein-coupled receptors (CXCR1/2), activate 
complement system (MBL2, C6, C9) and induce expression 
of antimicrobial peptides (LTF).

An example of a top-priority candidate from our list 
is CXCL8 (IL8), a known proinflammatory cytokine 
with a described function in neutrophil chemotaxis 
[200]. CXCL8 has been shown to be upregulated in 
mammary infections and variability in its sequence has 
been associated with mastitis related traits in several 
independent studies (Table  1). In addition, the gene 
overlaps with QTL for clinical mastitis. CXCL8 could 
therefore be considered a positional and functional 
candidate for mastitis resistance.

In 2020 a comprehensive study using a two-step 
QTL-GWAS approach has been conducted on French 
dairy cattle breeds that validated a SNP variant 
(rs436532576) of the GC (vitamin D binding protein) 
as a probable causative variant for mastitis resistance 
in Holstein breed [201]. GC was also identified as one 
of the most promising genes in our study. Interestingly, 

it is located in the vicinity of CXCL8 (around 88.8 Mb 
on BTA6) and the region around GC and CXCL8 is 
densely populated with mastitis associated QTL (Cat-
tle QTLdb). DCK and NPFFR2 suggested among the 
most promising candidates in our study are also located 
on BTA6, around 86.3  Mb and 87.3  Mb, respectively. 
Moreover, Cai et al. [202] prioritized mastitis resistance 
candidate genes using multiple data sources by com-
bining genome-wide association statistics with expres-
sion data, and also suggested GC as a putative causative 
gene for clinical mastitis QTL on BTA6, while DCK and 
NPFFR2 were suggested to be among top-five mark-
ers showing significant signals in the QTL region. This 
identifies BTA6 region between 86 and 89  Mb espe-
cially interesting for locating QTN for mastitis resist-
ance. However, in cases where multiple candidate genes 
are located in proximity to each other it is difficult to 
determine the causative mutation as the haplotypes 
may be linked. Despite the fragmentation of mastitis-
associated data, the demonstrated consistency between 
the results of studies, which combine information from 
multiple sources, supports the validity of the integra-
tive approach we used.

Novel gene editing techniques (e.g., CRISPR, TALEN, 
ZFN) have dramatically changed and simplified gene 
modifications, making it possible to generate candi-
date mutations, edit genomes, and even regulate gene 
expression of endogenous genes (e.g., transfection of 
transcription elements fused with CRISPR/dCas9). 
Combined with protocols for establishing primary 
ruminant cell cultures [203, 204] and the availability of 
immortalized ruminant cell lines (e.g., MAC-T [205], 
BME-UV [206]), a methodological platform is available 
for generating and validating the suggested candidate 
mutations in an in vitro setting, which may eventually 
be followed by (ethically more controversial) gene edit-
ing experiments in vivo.

Conclusion
The compiled database contains 2448 candidate genes 
associated with mastitis resistance in cattle, which are 
evenly distributed across bovine chromosomes, illustrat-
ing the complexity of the trait. The database provides a 
comprehensive source of mastitis associated candidate 
genes available to researchers interested in genetic back-
ground of mastitis resistance. The list of the most promis-
ing candidate genes represents a priority list for validation 
in functional studies, which may eventually lead to dis-
covery of QTN and improved mastitis resistance in the 
future, employing selection or gene editing approaches.
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