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Abstract 

Host defense peptides (HDPs) are small molecules with broad-spectrum antimicrobial activities against infectious 
bacteria, viruses, and fungi. Increasing evidence suggests that HDPs can also indirectly protect hosts by modulating 
their immune responses. Due to these dual roles, HDPs have been considered one of the most promising antibiotic 
substitutes to improve growth performance, intestinal health, and immunity in farm animals. This review describes 
the antimicrobial and immunomodulatory roles of host defense peptides and their recent applications in animal 
production.
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Introduction
Antibiotics have been used in animal production for 
more than 50  years [1]. However, the extensive use of 
antibiotics in animal production has resulted in wide-
spread antimicrobial resistance by pathogens. Antibi-
otic residues in animal-derived foods transfer antibiotic 
resistant bacteria to humans, meaning that antimicrobial 
resistance has become a great threat to human health [2]. 
Novel and effective antibiotic substitutes are therefore 
urgently needed.

Host defense peptides (HDPs), also known as antimi-
crobial peptides (AMPs), are essential components of the 
innate immune system and exist in virtually all forms of 
life, ranging from single-celled bacteria to multi-cellular 
organisms [3]. In recent years, HDPs have been studied 
as antibiotic substitutes due to their potent antibacte-
rial activities against Gram-positive, Gram-negative, and 

multidrug-resistant bacteria [4]. HDPs principally inter-
act with the bacterial membrane and destroy membrane 
integrity, but they additionally act on intracellular targets 
to interfere with key cellular processes [5, 6]. HDPs mod-
ulate both innate and adaptive immune responses by reg-
ulating inflammation, recruiting leukocytes, activating 
immune cells, and modulating adaptive immunity, all of 
which help to protect the host against bacterial infection 
[7–9]. A key advantage of HDPs over conventional antibi-
otics is the ability of HDPs to modulate host immunity in 
response to microbial infection.

HDPs have received increasing attention for potential 
use in animal production due to their antimicrobial and 
immunomodulatory roles. Many HDPs can positively 
influence growth performance, nutrient digestibility, 
intestinal health, and immune function in animals. This 
review focuses on the antimicrobial and immunomodu-
latory roles of HDPs and their applications in livestock 
development.
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HDPs
HDPs are evolutionarily conserved molecules, generally 
comprising 10–50 amino acids, that are found among 
nearly all forms of life that have defense functions [10]. 
More than 3000 HDPs have been identified to date 
and are hosted in the Antimicrobial Peptide Database 
(https://​aps.​unmc.​edu/​AP/​main.​php). Among the more 
than 3000 known HDPs, 2431 originate from animals, 
361 from plants, 371 from bacteria, 5 from archaea, 8 
from protists, 22 from fungi, and some from synthetic 
peptides.

HDPs are divided into three categories based on their 
origin: animal HDPs, plant HDPs, and bacterial HDPs. 
Based on structural differences and biological char-
acteristics, animal HDPs can be further classified into 
two subfamilies: cathelicidins and defensins (including 
α-defensin and β-defensin). Among the known animal 
HDPs, human cathelicidin LL-37 is the most well-studied 
[11]. Plant HDPs are widely distributed; they are found 
in stems, flowers, leaves, roots, and seeds, and include 
thionins, defensins, hevein‑like peptides, knottin‑type 
peptides, lipid transfer proteins, and snakins. These plant 
HDPs defend against bacteria, fungi, and insects[12]. 
Bacterial HDPs, also called bacteriocins, play important 
roles in regulating competitive interactions in natural 
microbial systems. Some are narrow-spectrum, efficient 
antibacterial compounds, and these characteristics con-
tribute to their potential to limit or prevent colonization 
by diarrheal pathogens [13, 14]. In addition to natural 
HDPs, an increasing number of synthetic HDPs have 
been reported in recent years. Compared with the natural 
HDPs, synthetic peptides have optimized sequences that 
confer low resistance to digestive enzymes and minimal 
cell cytotoxicity, circumventing the drawbacks of natu-
ral HDPs [15]. HDPs are highly diverse in sequence and 
structure but can be classified into four major structural 
groups: α-helical (e.g., melittin and cecropins), β-sheet 
(e.g., α- and β-defensins), β-hairpin (e.g., lactoferricin 
and tachyplesins), and extended HDPs (e.g., indolicidin 
and histatins) [5, 10]. Regardless of the natural source or 
structure, all HDPs can kill pathogens and modulate host 
immune responses.

Antimicrobial roles of HDPs
The unique ability of HDPs to kill pathogenic bacteria 
provides a platform for researchers to develop promising 
alternatives to antibiotics.

Broad‑spectrum antimicrobial activities
Numerous researchers have shown that HDPs possess 
broad-spectrum antimicrobial activity against bacte-
ria (Gram-negative, Gram-positive, and drug-resistant), 
fungi, and viruses [16, 17]. For example, human defensing 

(hBD)-3 was shown to have antimicrobial activity against 
several pathogenic bacteria, such as Staphylococcus 
aureus, Streptococcus pyogenes, Pseudomonas aerugi-
nosa, Escherichia coli (E. coli), multidrug-resistant S. 
aureus, and vancomycin-resistant Enterococcus fae-
cium, in addition to the fungal pathogen Candida albi-
cans [18]. Wang et al. isolated 12 novel HDPs from frogs, 
and most showed potent antimicrobial activities against 
Gram-positive bacteria (E. coli, Enterococcus faecalis, and 
Enterobacter cloacae), Gram-negative bacteria (S. aureus, 
Klebsiella pneumonia, and Bacillus dysenteriae), and a 
fungus (C. albicans) [19]. Bovine myeloid HDPs, a group 
of α-helical cathelicidins, exhibited powerful inhibitory 
effects against antibiotic-resistant species such as methi-
cillin-resistant S. aureus (MRSA), vancomycin-resistant 
E. faecalis (VREF), and multidrug-resistant strains of P. 
aeruginosa and Acinetobacter baumannii [20]. Subtilosin 
displays potent antiviral activity against herpes simplex 
virus type 1 and 2 [21, 22].

Antibacterial mechanisms
The antibacterial mechanisms of HDPs are diverse and 
dependent on the properties of individual HDPs and the 
microbial pathogens upon which they are acting. Based 
on their interacting sites, the antibacterial mechanisms of 
HDPs can be divided into membrane targeting and non-
membrane targeting mechanisms.

Membrane targeting mechanism
Cell membranes are widely considered to be the main 
site of antibacterial action for HDPs [5]. Bacterial mem-
branes are negatively charged due to the presence of ani-
onic phospholipids, namely lipopolysaccharides (LPS) in 
Gram-negative bacteria and teichoic acids (TA) in Gram-
positive bacteria [7]. Most HDPs are rich in positively-
charged residues such as lysine, arginine, and histidine 
[16, 23]. Therefore, the electrostatic interactions between 
bacterial membranes and HDPs lead to the initial target-
ing of cell membranes, although HDPs also later attract 
more peptides [24]. The efficiency of this process is 
strongly related to the cationic charge and concentration 
of HDPs that are bound to the membrane interface. Gen-
erally, increased binding activity results from more highly 
charged HDPs and higher HDP concentrations (within 
a physiological range) [25]. At higher concentrations of 
HDPs, interactions between the peptides and membranes 
tend to depend on hydrophobicity, which controls the 
extent to which peptides can penetrate the membrane 
layer [26, 27]. When the number of HDPs attached to 
the membrane reaches a critical concentration, self-asso-
ciation, multimerization, and conformational transfor-
mation occur. This change eventually causes membrane 
penetration and disruption; the specifics of this process 
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have been described by various hypothetical models, 
such as the carpet, aggregate, toroidal pore, and barrel-
stave models [28]. Membrane penetration eventually 
leads to leakage of intracellular ions and metabolites, 
ultimately causing cell death. In contrast to conventional 
antibiotics, which require days to be effective, HDPs 
cause bacterial death within minutes of exposure [29].

Non‑membrane targeting mechanism
In addition to inducing perturbation of bacterial mem-
branes, HDPs can kill bacteria by inhibiting metabolic 
and translational processes, such as protein synthesis, 
nucleic acid synthesis, and enzyme activity [30]. For 
example, proline-rich HDPs can bind to the ribosomal 
exit tunnel and subsequently prevent protein synthesis 
[31]. The histone-derived HDPs buforin II and desH-
DAP1 interact with the phosphate groups of DNA via 
hydrogen bonding, altering DNA conformation and 
function and thus inhibiting bacterial growth [32]. NP-6, 
an HDP derived from pepper seeds, targets E. coli by 
inhibiting β-galactosidase activity in a dose-dependent 
manner[33].

Immunomodulatory roles of HDPs
In animals, HDPs are often located at sites where envi-
ronmental pathogen exposure is most likely to occur, 
such as the skin, ears, eyes, epithelial surfaces, lungs, and 
gut, but also in the bone marrow, testes, ovary and ovi-
duct [34, 35]. Invasion by pathogens can induce expres-
sion of host HDP genes at early stages of infection, which 
facilitates elimination of bacteria by the host [36]. HDPs 
expression is likely a prophylactic response to infection. 
Immunomodulatory activities of HDPs are more exten-
sive than the antimicrobial activities and seem to depend 
on the degree and phase of bacterial infection, the physi-
ological status of host cells, and the HDP concentra-
tion[37, 38]. Understanding the mechanisms of HDPs 
immunomodulation will be helpful in determining prac-
tical applications of HDPs in animal production.

Modulation of inflammation
Inflammation is a biological response of the innate 
immune system to defend against invading pathogens. 
However, overwhelming and uncontrolled inflammation 
can cause severe injury to the host [39]. HDPs exhibit 
both pro- and anti-inflammatory roles. For example, 
they can up-regulate inflammatory factors to activate 
the immune system, which helps to eliminate invad-
ing pathogens early in an infection. This is considered a 
pro-inflammatory response. Conversely, HDPs can sup-
press over-reactive inflammatory responses induced 
by bacteria or bacterial products. This is considered an 

anti-inflammatory response. Therefore, HDPs can modu-
late inflammation to maintain immune homeostasis.

Bactenecin-5 and epinecidin can induce transcrip-
tion of interleukin (IL)-1β in the presence and absence 
of live Mycobacterium marinum in macrophage-like 
THP-1 cells. Bactenecin-5 was also found to signifi-
cantly up-regulate tumor necrosis factor-α (TNF-α), but 
the pro-inflammatory activity of bactenecin-5 required 
co-stimulation with M. marinum [40]. Oral administra-
tion of sublancin, an HDP derived from Bacillus subtilis, 
restored expression of IL-2, IL-4, and IL-6 in immuno-
suppressed mice and accelerated recovery of phagocytic 
activity by macrophages [41]. These results indicate that 
HDPs can activate immune responses by inducing the 
release of pro-inflammatory cytokines.

LPS is a major component of Gram-negative bacterial 
outer membranes, and can be recognized by host toll 
like receptor-4 (TLR4), and activates production of pro-
inflammatory cytokines by immune cells via TLR4 sign-
aling [42]. The anti-inflammatory functions of HDPs are 
mainly due to LPS-neutralizing activity, which suppresses 
downstream TLR4 signaling pathways (such as mitogen-
activated protein kinase [MAPK] and nuclear factor-κB 
[NF-κB] signaling) [43, 44]. For example, a frog-derived 
peptide, cathelicidin-MH, exerts LPS-neutralizing activ-
ity. This protects against LPS-induced sepsis in mice and 
significantly decreases production of the pro-inflam-
matory cytokines IL-1β, IL-6, and TNF-α by suppress-
ing MAPK signaling [34]. Lactoferricin downregulated 
the secretion of the pro-inflammatory cytokines TNF-α, 
IL-6 in LPS-treated macrophages by targeting the MAPK 
and NF-κB pathways [45]. In addition to direct binding 
of HDPs to LPS, some HDPs (such as pigeon-derived 
cathelicidin Cl-CATH2 and 3, snake-derived cathelicidin 
Hc-CATH) bind to the opening region of the LPS-bind-
ing pocket on myeloid differentiation factor-2 (MD-2) of 
the TLR4-MD-2 complex in macrophages challenged by 
LPS. This direct binding inhibits activation of the TLR4 
pathway induced by LPS, which in turn decreases expres-
sion of pro-inflammatory cytokines at the transcriptional 
level [46, 47].

Recruitment of leukocytes
HDPs exhibit direct chemotactic activity towards leu-
kocytes (such as neutrophils, macrophages, mast cells, 
and T cells). The underlying mechanisms involve sev-
eral cellular receptors, including chemokine receptors, 
formyl peptide receptors (FPRs), and G protein-coupled 
receptors (GPCRs) [42]. hBD-3 had been reported to uti-
lize C–C chemokine receptor type 2 (CCR2) to induce 
monocyte/macrophage chemotaxis [48]. The HDPs scol-
opendrasin and LL-37 recruit neutrophils, monocytes, 
and T cells to sites of bacterial infection by interacting 
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with FPR1 and formyl peptide receptor-like 1 (FPRL1), 
respectively [49, 50]. G-protein pathways are reportedly 
involved in mast cell chemotaxis induced by the syn-
thetic cationic HDP IDR-1018, which is associated with 
increased intracellular Ca2+ mobilization [51].

HDPs also indirectly facilitate recruitment of leukocytes 
by inducing production of chemokines and chemokine 
receptors. Cathelicidins can induce chemokine receptor 
CCR2, CXCR2, IFNγ-R, MRC1, and LFA1 production in 
monocytes. Additionally, stimulated monocytes produce 
various chemokines like CCL2, CCL5, CCL7, CXCL10, 
and CXCL8 (IL-8) [52]. HDP-IBP5, derived from insulin-
like growth factor-binding protein 5, induces production 
of cytokines and chemokines such as granulocyte–mac-
rophage colony-stimulating factor (GM-CSF), TNF-α, 
IL-8, MCP-1, MCP-3, macrophage inflammatory protein 
(MIP)-1α, and MIP-1β, which regulate migration of mast 
cells in a dose-dependent manner [53].

In vivo experiments have also demonstrated chemo-
taxis of HDPs. Inoculating mouse peritoneum with the 
scorpion-derived HDP ToAP2A increased levels of peri-
toneal macrophages and induced a greater chemotac-
tic migration of neutrophils (and possibly eosinophils) 
[54]. Injection of PopuCATH (cathelicidin from tree 
frog) significantly elicited chemokines (CXCL1, CXCL2, 
and CXCL3)/cytokine (IL-1β and IL-6) production in 
macrophages through activating p38/ERK MAPKs and 
NF-κB p65 pathway, and rapidly drove neutrophil, mono-
cyte/macrophage influx in mouse abdominal cavity [55].

Activation of immune cells
Activation of immune cells by HDPs directly increased 
the bactericidal activities of these peptides and promoted 
early clearance of infections. Two synthetic peptides, 
Pin2[G] and FA1, stimulate phagocytosis of Salmonella 
typhimurium by macrophages [56]. LL-37 and hBD-2 
enhance the expression and induce translocation of 
NOD1, NOD2, and RIG-I innate immunity receptors, 
and also directly activate the pro-inflammatory and 
migratory responses of peritoneal mast cells in vitro [57]. 
PopuCATH significantly enhanced neutrophil phagocy-
tosis via promoting the release of neutrophil extracellular 
traps [55].

Immune cell activation by HDPs may be mediated by 
some immune cell receptors. Human host defense pep-
tides, such as LL-37, and IBP5, can activate mast cells 
via the MAS-related G protein-coupled receptor X2 
(MRGPRX2), which is highly expressed on mast cells and 
responds to various exogenous and endogenous stimuli. 
Activation of mast cells leads to degranulation, release 
of eicosanoids, and multicellular signaling cascades [53, 
58]. Murine β-defensin-2 (mDF2beta) can directly acti-
vate immature dendritic cells by acting as an endogenous 

ligand for TLR4, resulting in up-regulation of costimula-
tory molecules and maturation of dendritic cells [59].

Regulation of adaptive immunity
B and T cells are important participants in adaptive 
immunity and can influence the generation and polariza-
tion of lymphocyte responses. Stimulating resting por-
cine lymphocytes with nisin produced by Lactococcus 
lactis increased the percentage of CD4+CD8+ T cells. 
This effect may result from modulation of the stimulat-
ing potential of antigen-presenting cells [60]. Pathogenic 
stimulation significantly increased expression of catheli-
cidin genes in trout IgM+ and IgT+ B cells both in vitro 
and in  vivo. Interestingly, these peptides increased the 
intracellular bactericidal, phagocytic, and reactive oxygen 
species (ROS) activities of trout IgM+ and IgT+ B cells 
[61]. Antigen-presenting cells (e.g., monocytes) can take 
up and process antigens and present them to T cells in 
concert with major histocompatibility complex (MHC) 
II molecules on the cell surface. Chicken cathelicidin-2 
increases the antigen presentation capacity of chicken 
monocytes by up-regulating expression of the antigen 
presentation markers MHC-II and mannose receptor 
C-type 1 (MRC1) [62]. A similar effect on mouse mac-
rophages was described in response to treatment with 
a chicken HDPs fowlicidin-1 [63]. Thus, HDPs improve 
antigen presentation capacity, which prepares antigen-
presenting cells to function in an enhanced adaptive 
immune response against infection.

Applications of HDPs in animal production
HDPs are evolutionarily conserved components of the 
innate host defense system that are present in essentially 
all forms of life. Farm animals produce a variety of endog-
enous HDPs in gut, mainly cathelicidins and defensins 
[64–67]. Supplementing exogenous HDPs could mimic 
the physiological release of endogenous HDPs and thus 
improve the host immune response against bacterial 
infections [68–70]. In recent years, HDPs have been used 
as alternatives to antibiotics to improve animal growth 
performance, immunity, and intestinal health; they have 
also been used as novel therapeutic agents to reduce the 
frequency and severity of subclinical infections (Tables 1 
and 2).

Swine
In swine, HDPs have been studied most extensively with 
weaned piglets. Post-weaning diarrhea is one of the 
most serious problems for swine producers worldwide. 
It is usually caused by proliferation of enterotoxigenic 
E. coli (ETEC) in the intestine and is characterized by 
reduced growth performance and increased mortality of 
piglets [87, 88]. Supplementation of feed with HDPs can 
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effectively control post-weaning diarrhea and ameliorate 
the associated adverse effects on weaned piglets [89]. 
For example, Xiong et  al. evaluated the effects of feed-
ing composite HDPs (lactoferrin, cecropin, defensin, and 

plectasin) to weaned piglets from five different farms. 
Piglets were feed with dietary supplement of 3 g/kg com-
posite HDPs (mixture of natural lactoferrin, cecropin, 
defensin, and plectasin) showed decreased incidence 

Table 1  Effects of host defense peptides (HDPs) on swine

HDPs Dose Method of 
administration

Swine Effects on growth 
performance
(compared to  
control), %

Other effects (compared to 
control)

References

ADG ADFI G/F

Microcin J25 500 mg/kg
1000 mg/kg
2000 mg/kg

Feeding Weaned pigs  + 1.1
 + 3.7
 + 9.2

– 0.4
 + 0.5
– 0.3

 + 1.7
 + 3.4
 + 6.9

Decreased the concen-
trations of the cytokines 
IL-6, IL-1β, and TNF-α and 
increased IL-10 level on 
serum, decreased D-lactate, 
diamine oxidase, and 
endotoxin concentrations 
and fecal E. coli numbers, 
improved fecal Lactobacillus 
and Bifidobacterium numbers

[71]

Cecropin AD 400 mg/kg Feeding Weaned pigs
challenged with E. coli

 + 14.7  + 4.6  + 10.9 Decreased diarrhea inci-
dence by 47.6%, improved 
villus height to crypt depth 
ratio in the jejunum and 
ileum, decreased total 
viable counts of E. coli while 
increased the Lactobacilli 
counts in cecum

[72]

Composite HDPs 500 mg/kg Feeding Weaned pigs — — — Increased the serum levels 
of immunoglobulin IgG, IgM, 
IgA and classical swine fever 
antibody CSF-Ab, CH50

[73]

HDP-WK3 2000 mg/kg BW Injecting Weaned pigs
challenged with E. coli

 + 55.9  + 28.9  + 8.7 Decreased diarrheal index 
by 24.4%, increased villus 
height in the ileum, reduced 
numbers of Enterobacterium 
spp. in cecal and attenuated 
intestinal oxidative damage

[74]

Cathelicidin-BF 0.6 mg/kg BW Injecting Diarrheal weaned piglets  + 70.3  + 51.7  + 11.1 Decreased diarrheal index 
by 40.1%, increased the 
expression levels of zonula 
occluden-1, Occludin, and 
Claudin-1 in the jejunum 
and colon, decreased IL-6, 
IL-8, IL-22, IL-10 production in 
the jejunum and ileum

[75]

Composite HDPs 4000 mg/kg Feeding Weaned pigs
challenged with DON

 + 11.4 – 3.4  + 17.5 Improved peripheral lym-
phocyte proliferation rate, 
serum antioxidant capacity, 
intestinal morphology, intes-
tinal epithelial cell prolifera-
tion and protein synthesis, 
alleviate organ damage 
induced by DON

[76]

Epinecidin-1 2500 mg/kg BW Injecting Pigs
challenged with MRSA

— — — Decreased MRSA counts 
in the blood, liver, kidney, 
heart, and lungs, attenuated 
the levels of proinflamma-
tory cytokine IL-6, IL-1β, and 
TNF-α in serum and MRSA-
induced gene expressions

[77]
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Table 2  Effects of host defense peptides (HDPs) on poultry

HDPs Dose Method of 
administration

Poultry Effects on growth 
performance
(compared to  
control), %

Other effects (compared to 
control)

References

ADG ADFI G/F

HDP-cLF36 20 mg/kg Feeding Chickens
challenged with E. coli

 + 9.2 – 1.7  + 11.6 Increased the number 
of Lactobacillus spp. and 
decreased harmful bacteria 
of ileum, upregulated gene 
expression of immune cells 
and tight junction proteins

[78]

Microcin J25 0.5 mg/kg
1.0 mg/kg

Feeding Chickens
challenged with E. coli and 
Salmonella

 + 2.5
 + 2.6

 + 2.2
 + 2.9

 + 3.4
 + 3.9

Decreased population of 
total anaerobic bacteria and 
E. coli, increased the number 
of Bifidobacterium, increased 
the villus height and villus 
height/crypt depth in the 
duodenum and jejunum, 
decreased levels of TNF-α, 
IL-1β, and IL-6 in the serum

[79]

HDP-cLFchimera 20 mg/kg Feeding Chickens
challenged with
C. perfringens

 + 6.4 – 15.3  + 26.0 Enhanced villus height, 
width, and surface area 
on jejunum, regulated the 
expression of cytokines, 
junctional proteins, and 
mucin transcripts in the jeju-
num, increased the popula-
tion of Lactobacillus spp. and 
Bifdobacterium spp. and also 
decreased the colonization 
of E. coli and Clostridium spp. 
in ileum

[80]

Sublancin 2.88 mg/L
5.76 mg/L
11.52 mg/L

Drinking Chickens
challenged with
C. perfringens

 + 10.4
 + 12.3
 + 10.4

 + 3.5
 + 3.0
– 0.7

 + 7.3
 + 9.1
 + 10.9

Reduced the severity of 
intestinal lesion, reduced C. 
perfringens counts in cecum, 
improved villus height and 
villus height to crypt depth 
ratio in the duodenum, 
decreased IL-1β, IL-6, and 
TNF-α levels in ileum

[81]

HDP-SGAMP 0.2 mg/d Gavaging Chickens under heat stress — — — Reduced the histological and 
ultrastructural lesions of gut, 
increased height of villus and 
thickness of gut mucosa, 
increased the number of 
intestine intraepithelial lym-
phocytes and goblet cells, 
secreting IgA in the small 
intestine

[82]

Plectasin 150 mg/kg Feeding Chickens under heat stress — — — Increased jejunal and ileal 
goblet cell counts, IFN-γ 
levels and serum IgY titer

[83]

HDP-A3 60 mg/kg
90 mg/kg

Feeding Chickens  + 1.3
 + 4.2

 + 0.2
 + 1.8

 + 1.1
 + 2.3

Increased the retention of 
dry matter, gross energy and 
crude protein, decreased 
excreta coliforms, total 
anaerobic bacteria and 
Clostridium spp., increased 
villus height of the duode-
num, jejunum and ileum

[84]



Page 7 of 14Wu et al. Journal of Animal Science and Biotechnology          (2022) 13:141 	

of diarrhea (from 9.42% to 5.22%) and increased sur-
vival rates (from 93.34% to 97.42%). Average daily gain 
(ADG) and feed efficiency (G/F) were also significantly 
improved [90].

Weaned piglets are very susceptible to pathogens and 
stressors caused by changes in the intestinal flora due to 
the immature development of the immune system and 
compromised intestinal integrity. Consequently, effects 
of HDPs on immunity, intestinal barrier function, and 
composition of intestinal microbiota are important 
factors in attenuation of post-weaning diarrhea [91]. 
Dietary supplementation with microcin J25, an HDP 
isolated from a fecal strain of E. coli, can reduce sys-
tematic inflammation by decreasing concentrations of 
the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α 
and increasing concentration of the anti-inflammatory 
cytokine, IL-10, in serum. Compared with the antibiotic 
colistin sulfate, microcin J25 also decreased the popula-
tion of E. coli and increased the abundance of Lactoba-
cillus and Bifidobacterium in the feces of weaned piglets 
[71]. Wu et al. [72] tested the effects of cecropin on pig-
lets challenged with ETEC. They found that supplemen-
tation with cecropin significantly reduced the incidence 
of diarrhea and improved growth performance, simi-
lar to the effects observed with antibiotic supplemen-
tation (kitasamycin and colistin sulfate). In addition, 
both cecropin and antibiotics improved nitrogen reten-
tion, dietary energy digestibility, intestinal morphology, 
and intestinal microbiota of challenged piglets. Serum 
concentrations of IgA and IgG were higher in animals 
supplemented with cecropin than those treated with anti-
biotics. These responses indicate that cecropin may have 
superior performance compared to antibiotics because 
it can modulate host serum immune responses [72]. 
Effects of HDPs on immunoglobulin levels of weaned 

piglets were also reported by Yuan et al. They found that 
a mixed HDP (swine defensin and a fly HDP) increased 
serum concentrations of IgG, IgM, IgA, and the classical 
swine fever antibody CH50 in weaned piglets in a dose-
dependent manner, suggesting that HDPs can improve 
humoral immunity of weaned piglets [73]. In addition 
to dietary inclusion, injection of the HDP WK3 (a linear 
trpzip-like β-hairpin HDP composed of 14 amino acids) 
alleviated diarrhea in piglets, increased villus height in 
the ileum, reduced cecal abundance of Enterobacterium 
spp., and attenuated intestinal oxidative damage caused 
by ETEC [74]. Intraperitoneal injection of cathelicidin-BF 
(isolated from Bungarus fasciatus in China) suppressed 
intestinal inflammation by inhibiting the NF-κB signal-
ing pathway and enhancing immune cell phagocytosis via 
STAT-1 [88], improved the intestinal barrier function by 
increasing expression of tight junction proteins, includ-
ing zonula occluden-1, occludin, and claudin-1 in the 
jejunum and colon of weanling piglets [75].

Deoxynivalenol (DON) is a mycotoxin produced by 
certain Fusarium species that often contaminates corn, 
wheat, oats, barley, rice, and other cereals in the field or 
during storage [92]. It is a serious threat to animal pro-
duction worldwide, especially for pigs [93]. Ingestion of 
high concentrations of DON can cause intestinal injury, 
reduce feeding efficiency, and suppress growth; in seri-
ous cases, it causes emesis, rectal bleeding, and diarrhea 
[94]. HDPs can protect weaned piglets from the toxic 
effects of DON [76]. Composite HDP (primarily anti-
bacterial lactoferrin peptides, plant defensins, and active 
yeast) supplementation has been shown to mitigate 
growth inhibition and oxidative damage and to repair 
DON-induced intestinal injury in weanling piglets. This 
improvement may be a result of the ability of HDPs to 
enhance immunity, intestinal morphology, epithelial cell 

Table 2  (continued)

HDPs Dose Method of 
administration

Poultry Effects on growth 
performance
(compared to  
control), %

Other effects (compared to 
control)

References

ADG ADFI G/F

Plectasin 100 mg/kg
200 mg/kg

Feeding Chickens  + 16.1
 + 17.4

– 4.7
– 5.6

 + 21.8
 + 24.5

Enhance NDV and H9N2 AIV 
antibody levels of serum, 
improved the intestine 
structure, inhibit E. coli and 
proinflammatory cytokines 
in the ileum, and ameliorate 
the blood biochemical 
indices

[85]

Composite HDPs 200 mg/kg Feeding Chickens – 1.4 – 5.0  + 3.8 Increased serum antibody 
levels of H9N2 AIV, improved 
the development of bursa 
and thymus

[86]
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proliferation, and intestinal protein synthesis of weanling 
piglets [76].

In a MRSA-challenged pig model, HDPs showed 
favorable therapeutic effects. Huang et  al. reported that 
injection of 2.5 mg/kg body weight epinecidin-1 (derived 
from Epinephelus coioides) completely protected pigs 
against death caused by MRSA after one week, decreased 
pathogen counts in multiple organs, enhanced serum 
levels of the proinflammatory cytokines IL-6, IL-1β, and 
TNF-α [77].

Poultry
E. coli, Salmonella, and Clostridium perfringens are com-
monly found in poultry. These pathogens cause intestinal 
inflammation, diarrhea, epithelial damage, systemic sep-
sis, and death in severe cases. HDPs reportedly reduce 
bacterial pathogen load and increase the abundance of 
beneficial bacteria in the intestine, which alleviates nega-
tive effects on broilers [70]. Daneshmand et al. tested the 
effects of cLF36 (an HDP extracted from camel lactofer-
rin) on E. coli-challenged chickens. Dietary supplementa-
tion with cLF36 increased the abundance of Lactobacillus 
spp., decreased harmful bacteria in the ileum, and up-
regulated genes associated with immune cells and tight 
junction proteins [78]. Supplementation with microcin 
J25 mitigated negative effects in broilers challenged with 
E. coli and Salmonella, mainly by decreasing popula-
tions of total anaerobic bacteria and E. coli in the feces, 
improving villus height in the duodenum and jejunum, 
and reducing concentrations of IL-6, IL-1β, and TNF-α 
[79]. Necrotic enteritis is a well-known enteric disease in 
broilers that is induced by Clostridium perfringens. Sup-
plementation with the HDPs cLFchimera and sublancin 
ameliorated necrotic enteritis-related intestinal lesions 
and reduced growth inhibition in broilers challenged 
with Clostridium perfringens. These HDPs improved 
intestinal morphology and restored the balance of micro-
biota in the ileum and cecum by decreasing and increas-
ing the abundance of Clostridium spp. and Lactobacillus 
spp., respectively [80, 81]. Moreover, cLFchimera also 
positively affected expression of cytokines, tight junction 
proteins, and mucin in the jejunum [80].

Heat stress causes a variety of physiological distur-
bances, such as systemic immune dysregulation, intesti-
nal injury, endocrine disorders, and reduced antioxidant 
capacity [95]. Chickens are vulnerable to heat stress 
because their thick feathering and absence of sweat 
glands minimizes their capacity to reduce body heat [96]. 
Hu et al. evaluated the effects of swine gut host defense 
peptides on chickens under chronic heat stress. They 
found that supplying chickens under heat stress with 
SGAMPs improved ADG, G/F, villus height, gut mucosal 
thickness, the number of intestinal intraepithelial 

lymphocytes and goblet cells, and concentrations of IgA 
in the small intestine [82]. The protective effects of die-
tary plectasin on boilers were also observed by Ko et al. 
in tropical environmental conditions. Supplementation 
with plectasin increased goblet cell counts in the jeju-
num and ileum and increased the serum concentrations 
of IFN-γ and IgY [83]. These studies indicated that HDPs 
may alleviate the adverse effects of heat stress by improv-
ing intestinal health and influencing immunomodulatory 
responses of the intestinal mucous and the innate and 
humoral immune systems.

HDPs could also be supplemented as growth promot-
ers or immunomodulators in the absence of bacterial 
challenge or heat stress. Choi et al. reported that dietary 
supplementation of HDP-A3 linearly improved ADG, 
retention of dry matter, dietary digestibility of energy 
and protein, and intestinal villus height compared with 
non-supplemented birds [84]. Compared to treatment 
with enramycin, plectasin improved ADG and G/F and 
enhanced levels of antibodies against Newcastle disease 
virus (NDV) and H9N2 avian influenza virus (AIV) in 
yellow-feathered chickens [85]. Compared with enramy-
cin zinc bacitracin, treatment with combined HDPs 
(plectasin and cecropins) showed positive effects on 
growth performance and serum antibody levels of H9N2 
AIV and improved development of the bursa and thy-
mus [86].

Ruminants
The rumen is an essential organ in ruminants, which pro-
duces short chain fatty acids and essential amino acids 
and vitamins by microbial fermentation [97]. Meth-
ane is also a significant product of rumen fermentation, 
accounting for 2%–12% of gross energy lost from feeds 
[98]. Methane is a potent greenhouse gas, and methane 
emissions from agriculture represent 40% of total anthro-
pogenic emissions, with the largest single contributor 
(25%) being enteric fermentation in ruminants [99, 100]. 
Some host defense peptides, especially bacteriocins, can 
inhibit Methanococcus vannielii, Methanobacterium, 
and Methanomassiliicoccus luminyensis through several 
different mechanisms [101, 102]. In an in  vitro experi-
ment, bovicin HC5 (a bacteriocin from Streptococcus 
bovis HC5) reduced methane production by 50%, even at 
low concentrations. Cultures gradually lost their ability 
to produce methane after treatment with bovicin HC5. 
Methane was not detected after four transfers, suggest-
ing that ruminal methanogens could not quickly adapt 
and evolve resistance to bovicin HC5 [103]. Another 
in vitro study compared the effects of monensin and nisin 
on rumen fermentation and microbiota. Nisin showed 
greater effects in reducing methane production and 
acetate/propionate ratios than monensin did, indicating 
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that nisin is a potential alternative to monensin for rumi-
nants [104]. Although the roles of HDPs in suppressing 
methane production are documented in vitro, additional 
in vivo experiments are needed to determine the specific 
roles of HDPs in ruminant production.

HDPs have also been reported to show antibacterial 
activity against pathogens that induce bovine diseases 
such as bovine mastitis, bovine respiratory disease com-
plex, and bovine viral diarrhea. Peptide H18R (H2) can 
be internalized into MAC-T cells and inhibit MRSA. 
H2 showed greater efficiency than vancomycin in con-
trolling S. aureus, which causes mastitis. In a mouse 
model of S. aureus E48-induced mastitis, H2 reduced 
the bacterial load in the mammary glands and allevi-
ated both histopathological damage in mammary tissues 
and polymorphonuclear neutrophil infiltration of alve-
oli, demonstrating that H2 can be used as a therapeutic 
agent to treat S. aureus-induced mastitis [105]. The cow 
mammary gland also secretes HDPs, such as psoriasin, 
cathelicidin and lactoferrin, which play different roles for 
local defense against bacterial infection in the mammary 
gland [106].

Mycoplasma bovis is an important contributor to the 
bovine respiratory disease complex. Bovine NK-lysin-
derived peptides can damage the plasma membrane 
and kill M. bovis [107]. Małaczewska et  al. compared 
the effects of nisin, lysozyme, lactoferrin, and combina-
tions of these compounds against bovine viral diarrhea 
virus (BVDV) in  vitro. All of the tested HDPs showed 
anti-BVDV effects. The combination of nisin and lacto-
ferrin was the most potent in reducing extracellular 
viral titer and intracellular viral RNA levels [108]. These 
studies performed both in  vitro and in animal models 
highlighted HDPs as promising new candidates for the 
treatment of bovine diseases.

Although many HDPs have been used as feed additives 
for pigs and chickens, only a few studies have evaluated 
their use in ruminants. Liu et al. and Ren et al. tested the 
effects of mixed HDPs (swine defensin and a fly antibac-
terial peptide) on goats. They found that mixed HDPs 
improved rumen microbial community structure by 
increasing Fibrobacter, Anaerovibrio, Succiniclasticum, 
and the ciliate genus Ophryoscolex, while simultaneously 
decreasing Selenomonas, Succinivibrio, Treponema, and 
the ciliate genera Polyplastron and Entodinium. Xyla-
nase, pectinase, and lipase showed increased activity and 
acetic acid, propionic acid, and total volatile fatty acids 
were present at higher levels in the rumen after dietary 
treatment with HDPs [109, 110]. These results indicated 
that HDPs could be used as feed additives for goats to 
improve growth performance. However, additional feed-
ing experiments should be conducted to evaluate the 
effects of HDPs supplementation on ruminants.

Challenges and prospects
In recent years, many HDPs have been used as antibi-
otic alternatives in animal feeding and shown beneficial 
effects on farm animals. However, the application of 
HDPs in animal production still faces some challenges.

Preparation of HDPs
The preparation of HDPs has limitations including low 
yield, high cost and conditions for activity maintenance, 
which limit their large-scale production and applica-
tion in animal production. Currently, the methods for 
HDPs preparation mainly include: biological material 
extraction, chemical synthesis and gene engineering 
expression [111]. Although HDPs exist widely in organ-
isms, their content in biological tissues is low and so 
the separation is difficult. Chemical synthesis can get a 
certain number of samples, however, the error rate and 
side reaction increase with the increase of the molecular 
weight of HDPs, and the cost is quite high. Gene engi-
neering expression may be the most economical method 
to obtain large quantities of HDPs at present. However, 
exogenous expression of HDPs is more difficult than 
other peptides because they are easily attacked by pro-
teases, and the more intractable problem for recombi-
nant E. coli expression system is the toxicity for bacteria 
cells as well as bacterial LPS contamination. To overcome 
these problems, HDPs are often expressed by means of 
fusion proteins or hybrid peptides.

The common tags for fusion expression include thiore-
doxin (Trx), glutathione-stransferase (GST), maltose-
binding protein (MBP) and small ubiquitin-like modifier 
(SUMO) et al. [112]. Meng et al. [113] expressed planta-
ricin as a fusion protein with Trx in E. coli BL21 (DE3) 
with a yield up to 9–11  mg/L, and purified plantaricin 
showed strong antimicrobial activity against Micrococcus 
luteus, Staphylococcus epidermidis, Lactococcus lactis, 
Lactobacillus paracasei and Listeria innocua. Cao et  al. 
[114] successfully expressed broad spectrum of anti-
bacterial peptide proSP-B (rat lung surfactant protein 
B precursor) by fusion with GST in E. coli pLySs, which 
showed low toxicity to E. coli. Lamer et al. [115] designed 
a His6-SUMO-peptide-intein system to express lactococ-
cin A, leucocin A, faerocin MK, neopetrosiamide A in 
E. coli BL21(DE3), which protected these DHPs against 
degradation, and also improved yields (up to 17-fold) 
compared with standard expression and isolation proce-
dures. However, fusion proteins are usually needed to be 
removed to release activated peptides, which increases 
the difficulty and cost of HDPs preparation.

Hybrid peptides refer to HDPs fused to other HDPs 
or functional proteins to provide bifunctional proper-
ties [116]. Sun et  al. [117] combined bovine lactoferrin 
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(LfcinB) and human lysozyme (hLY) in Pichia pastoris 
GS115 expression system, and the results showed that 
the antibacterial activity of hybrid peptides LfcinB-hLY 
against E. coli K88 was higher than that of hLY and LfcinB 
solely, and was not effected by trypsin and chymotrypsin 
digestion. Liu et  al. [118] reported that hybrid peptide 
cecropinA-thanatin had broad-spectrum antimicrobial 
activity without hemolysis and good stability in  vitro as 
well. However, the properties and application potential of 
hybrid HDPs need to been deeply investigated each.

In sum, developing appropriate expression system and 
perfecting the expression strategy would remain a chal-
lenge in this field.

Stability of HDPs
Many HDPs are susceptible to the digestion of endoge-
nous proteases, such as trypsin and pepsase in digestive 
tract, which result in low efficiency at the site of action 
and limit their administration by oral or water. In addi-
tion, temperature, pH and salt concentration can also 
change the structure of HDPs and affect the interaction 
of HDPs with pathogens. Strategies such as amino acid 
substitution, peptide cyclization, peptide chain modifi-
cation as well as encapsulation with nanoparticles have 
been used to improve metabolic stability, conformational 
stability and bioavailability of HDPs [119, 120].

Amino acid substitution is popular to improve pep-
tide stability against protease digestion, including D- or 
unnatural amino acids residue substitution [121, 122]. 
For example, Lu et al. [123] synthesized derivatives of the 
cationic HDP Pep05 (the putative active domain of hista-
tin 5) by substituting L-amino acid residues with D- and 
unnatural amino acids, such as D-lysine, 4-aminobuta-
noic acid, and the results showed that both improve the 
stabilities of the peptides toward proteases. Nonetheless, 
it should be noted that the cost of synthetic peptides con-
taining D- and unnatural amino acids is higher than solely 
of L-amino acids. Cyclization enabled peptides to have a 
more rigid conformation and partly shield the potential 
protease-scissile sites at the free termini and backbone 
of peptides, therefore improved the protease stabil-
ity. The type of peptide cyclization mainly includes four 
categories: head-to-tail, head-to-sidechain, sidechain-
to-tail and sidechain-to-sidechain. But the outcome of 
peptide cyclization may depend on sequence diversity 
and the complicated structure of HDPs, which can-
not be easily predicted [124, 125]. The common peptide 
chain modifications are amidation, acetylation, methyla-
tion, PEGylation, lipidation and glycosylation [120]. For 
example, C-terminal amidation of HDP-N6 (a variant of 
arenicin-3) enhanced its ability to penetrate the bacterial 
and stability toward trypsin, as well as reduced hemoly-
sis [126]. C-terminal PEGylation of pig-derived HDPs 

protegrin-1 exhibited more efficient antibacterial activ-
ity and higher stability toward trypsin degradation [127]. 
Encapsulation with nanoparticles for HDPs delivery 
may provide another strategy to improve drug bioavail-
ability and safety, avoid enzymatic degradation, enhance 
controlled release and prevent aggregation [128]. Lai 
et  al. [129] reported a self-assembling peptide nanopar-
ticles remained largely intact after 8 h of degradation by 
proteases, demonstrating the proteolytic stability of the 
self-assembling peptide nanoparticles. Nonetheless, the 
stability of HDPs encapsulated with nanoparticles should 
be eventually evaluated in vivo.

Safety of HDPs
The absorption and metabolism of most HDPs in  vivo 
are rarely reported. Whether HDPs could be degraded or 
absorbed by intestinal tract? How are HDPs metabolized 
by the body? What are the effects of their metabolites on 
the body? These questions are still not been explained 
clearly. Therefore, potential toxicity of HDPs, such as 
immunogenicity and hemolysis in  vivo should not be 
ignored. Additional efforts are required to explore the 
pharmacokinetics and pharmacodynamics of HDPs.

Conclusions
The broad-spectrum antibacterial activities of HDPs have 
been widely demonstrated, making them promising alter-
natives to antibiotics. The immunomodulatory proper-
ties of HDPs mean they likely have superior performance 
compared to antibiotics in production of livestock. It is 
reported that HDPs could improve growth performance, 
intestinal health, and immunity of farm animals. How-
ever, problems on preparation, stability and safety of 
HDPs still limit their large-scale application. With the 
in-depth study of HDPs and the development of biotech-
nology, these challenges to HDPs will be figured out for 
better application of HDPs in animal production.
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