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Abstract

Background: Fat deposition is an important economic consideration in pig production. The amount of fat
deposition in pigs seriously affects production efficiency, quality, and reproductive performance, while also affecting
consumers’ choice of pork. Weighted gene co-expression network analysis (WGCNA) is effective in pig genetic
studies. Therefore, this study aimed to identify modules that co-express genes associated with fat deposition in pigs
(Songliao black and Landrace breeds) with extreme levels of backfat (high and low) and to identify the core genes
in each of these modules.

Results: We used RNA sequences generated in different pig tissues to construct a gene expression matrix
consisting of 12,862 genes from 36 samples. Eleven co-expression modules were identified using WGCNA and the
number of genes in these modules ranged from 39 to 3,363. Four co-expression modules were significantly
correlated with backfat thickness. A total of 16 genes (RAD9A, IGF2R, SCAP, TCAP, SMYD1, PFKM, DGAT1, GPS2, IGF1,
MAPK8, FABP, FABP5, LEPR, UCP3, APOF, and FASN) were associated with fat deposition.

Conclusions: RAD9A, TCAP, SMYD1, PFKM, GPS2, and APOF were the key genes in the four modules based on the
degree of gene connectivity. Combining these results with those from differential gene analysis, SMYD1 and PFKM
were proposed as strong candidate genes for body size traits. This study explored the key genes that regulate
porcine fat deposition and lays the foundation for further research into the molecular regulatory mechanisms
underlying porcine fat deposition.
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Background
Pork is an important and widely used animal resource
and has become one of the main sources of protein in
human diets. Fat deposition is economically important
in pig production and is closely related to production
efficiency [1], pork quality [2], and reproductive character-
istics [3]. It also affects consumer choice. Fat deposition-
related traits are quantitative traits with certain genetic
variations. Identifying molecular markers that affect por-
cine fat deposition is an important way of accelerating
genetic progress. Because they have similar genetic and
physiological characteristics as humans, domestic pigs
have become ideal animal models for studying obesity and
metabolic syndrome in humans [4]. Therefore, the mo-
lecular mechanisms underlying porcine fat deposition
have always been a focal point in scientific research.
Animal fat mainly exists in the form of subcutaneous

fat, visceral fat, intramuscular fat, and intermuscular fat,
and there is a strong positive correlation in the charac-
teristics of fat deposition. Pig backfat thickness has a
high genetic and phenotypic correlation with body fat
rate, subcutaneous fat thickness, and intramuscular fat
content, so it can be used as an indicator of how much
fat is deposited in the body [4]. Adipose deposition is a
dynamic equilibrium process that primarily includes the
synthesis, decomposition, and transport of fat. These
processes occur mainly in adipose tissue, liver, and
muscle [5]. Therefore, in order to investigate the forma-
tion and development of fat in this study, pig backfat
thickness was used as a phenotype for the selection of
samples from these three tissue types.
The transcriptome represents the overall level of gene

expression in a sample (cell, tissue, etc.) and is therefore
referred to as the “expression profile.” With the develop-
ment of second-generation sequencing technology, there
have been many studies on the transcriptome of porcine
fat-related traits using RNA-seq technology. Li et al. [6],
Wang et al. [7], Sodhi et al. [8], and Xing et al. [9] used
transcriptomic data for differential expression analysis
and found a large number of genes associated with fat
deposition and metabolism in pigs. Hundreds of genes
have been shown to be associated with pig fat develop-
ment. However, organisms are complex systems, and the
genes involved in the regulation of life activities are
interconnected to form a complex network system, so
the relationship between thousands of genes in multiple
tissues must be considered while studying the develop-
mental characteristics and mechanisms of tissues. Differ-
ential expression analysis may fail to detect important
biological pathways or gene-gene interactions associated
with disease because it focuses on the effects of individ-
ual genes rather than on the effects of gene networks.
Weighted gene co-expression network analysis (WGCN
A) is an efficient and accurate method for bioinformatics

and biodata mining [10]. Co-expressed genes often form
densely connected subgraphs in the network (generally
corresponding to gene groups or signal pathways with
similar functions) and have specific biological functions,
forming local substructure modules [11, 12]. The inter-
action between genes can be revealed at the system level,
helping researchers to further understand the mecha-
nisms behind gene interactions and find the regulatory
center of co-expressed genes [13]. The discovery of
modules that are highly correlated with target traits is
important for the rapid identification of key genes asso-
ciated with these traits [14]. In a variety of biological
fields, including cancer studies, genetics, and brain im-
aging, WGCNA has been widely used and is useful for
identifying candidate biomarkers or therapeutic targets
[15]. In recent years, WGCNA has been increasingly
used to study pigs, with several reports demonstrating
its effectiveness [16].
This study aimed to use transcriptome data from mul-

tiple tissues to construct co-expression modules and
identify modules that co-express genes associated with
fat deposition. The modules of interest were analyzed in
combination with differentially expressed genes and the
core genes in each module were identified. This study
provides a starting point for further exploration of
the molecular regulatory mechanisms underlying fat
deposition.

Methods
Experimental material
A total of 500 purebred Landrace and Songliao black
sows from the same pig farm were selected for the study.
All of them were healthy and reared in the same environ-
ment. The backfat thickness of each living pig was mea-
sured. It was measured 5 cm from the dorsal midline,
between the third and fourth last ribs, using a B-ultrasound
machine. The backfat thicknesses of pigs weighing 100 kg
body were corrected using the backfat thickness correction
formula. High backfat thickness and low backfat thickness
populations were selected from each breed (Stable 1). After
slaughter, subcutaneous fat, longus dorsal muscle, and liver
samples were collected, and total RNA was extracted for
transcriptome sequencing. Specific sample information is
presented in Table 1. The following detailed sequencing
steps were used: Oligo (dT) magnetic beads were used to
adsorb and purify mRNA, and Oligo (dT) primer-guided
reverse transcription was used to synthesize double-
stranded cDNA. Then, using exonuclease and polymerase,
the nucleotide ‘A’ was added to the 3′ end of the DNA
fragments, specific paired-end (PE) adaptors was connected,
and the cDNA fragments with the adaptors were separated
and added for recovery. Amplification with a PCR primer
cocktail (10 cycles) was used to concentrate cDNA, and
PCR products were purified using the AMPure XP system
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(Beckman Coulter, Beverly, MA, USA). The quality of the
transcriptomic sequence library was then tested using an
Agilent Bioanalyzer 2100 (Agilent, USA). The TruSeq PE
Cluster kit V3-C Bot-HS (Illumina) was used for password
clustering on the C Bot Cluster Generation system, and the
Illumina Hiseq 2000 sequencing platform was used for PE
sequencing. The sequencing reads generated were 110 bp
long.
To process transcriptome sequence data, IlluQC.pl

(NGS QC Toolkit) [17] was used for quality control of
the sequencing reads, and reads with unknown se-
quences greater than 10% and quality scores less than 20
were removed. HISAT2 [18] was used for fast and accur-
ate sequence alignment. Finally, a transcriptome gene
expression count file was converted using Samtools [19]
and featureCounts [20] to obtain the gene expression
profile in each tissue sample.

Gene expression matrix construction
Gene expression data from 36 samples were combined
to construct an expression count matrix. From a biological
point of view, only after gene expression reaches a certain
level can the related protein be translated to perform the
biological function [21]; therefore, low-expression data
(sum counts < 10) were eliminated from analysis. The
gene expression matrix used for WGCNA was obtained
by normalizing the variance stabilizing transformation
(VST) [22] function in the DESeq2 package [23].

Differential gene expression analysis
The gene expression count matrix was divided into
groups based on backfat thickness (high and low). Dif-
ferential expression analysis was conducted for different
tissues from the two breeds based on gene expression
count by following the outlined steps: a) differential gene
expression analysis was conducted for different fatty tis-
sues from Landrace pigs; the differential genes of high
backfat thickness and the second backfat thickness were
compared, and the same method was also used to
analyze the liver tissues and muscle tissues of Landrace
pigs, b) differential expression analysis was conducted
for different tissues from Songliao black pigs, c) the dif-
ferentially expressed genes from different tissues of the
same variety were combined as candidate gene sets af-
fecting fat deposition in this variety, d) the genes in the
intersecting candidate gene sets from different breeds
were selected as candidate genes affecting pig fat depos-
ition (Supplementary Fig. 2 and Supplementary Fig. 3).
Analysis of differential expression between different sub-
groups was conducted using DESeq2 v.1.20 [23]. DESeq2
performs internal normalization, where the geometric
mean is calculated for each gene across all samples. The
counts for each gene in each sample were then divided
by this mean. The median of these ratios in a sample is
the size factor for that sample. This procedure corrects
for library size and RNA composition bias, which can
arise, for example, when only a small number of genes

Table 1 Sample information

ID Breed Groupa Tissue ID Breed Group Tissue

S_H_1_F Songliao High Fat L_H_1_F Landrace High Fat

S_H_2_F Songliao High Fat L_H_2_F Landrace High Fat

S_H_3_F Songliao High Fat L_H_3_F Landrace High Fat

S_L_1_F Songliao Low Fat L_L_1_F Landrace Low Fat

S_L_2_F Songliao Low Fat L_L_2_F Landrace Low Fat

S_L_3_F Songliao Low Fat L_L_3_F Landrace Low Fat

S_H_1_L Songliao High Liver L_L_1_L Landrace Low Liver

S_H_3_L Songliao High Liver L_L_2_L Landrace Low Liver

S_L_1_L Songliao Low Liver L_L_3_L Landrace Low Liver

S_L_3_L Songliao Low Liver L_L_4_L Landrace Low Liver

S_H_1_M Songliao High Muscle L_H_1_L Landrace High Liver

S_H_3_M Songliao High Muscle L_H_2_L Landrace High Liver

S_H_4_M Songliao High Muscle L_H_3_L Landrace High Liver

S_L_1_M Songliao Low Muscle L_H_4_L Landrace High Liver

S_L_3_M Songliao Low Muscle L_H_1_M Landrace High Muscle

S_L_4_M Songliao Low Muscle L_H_2_M Landrace High Muscle

L_L_1_M Landrace Low Muscle L_H_3_M Landrace High Muscle

L_L_2_M Landrace Low Muscle L_L_3_M Landrace Low Muscle
aBackfat thickness
The following pairs of individuals are full siblings: S_H_1/S_L_1, S_H_2/S_L_2, S_H_4/S_L_4, L_H_1/L_L_1, L_H_2/L_L_2, and L_H_3/L_L_3
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are highly expressed under one experimental condition
and not in another. Additionally, DESeq2 automatically
detects count outliers using Cook’s distance and
removes these genes from the analysis. DESeq2 uses
shrinkage estimation for dispersions and fold changes.
The dispersion value was estimated for each gene using
a model fit procedure. Using these estimations, the pack-
age fits a negative binomial generalized linear model for
each gene and uses the Wald test for significance testing.
Genes with P values less than 0.05 were selected as dif-
ferentially expressed genes. Differential gene expression
analysis was conducted as recommended in the Biocon-
ductor software (http://bioconductor .org/help/
workflows/rnaseqGene/).

Weighted co-expression network construction
The pig gene co-expression network was constructed
using the WGCNA package in R [24]. Outlier samples
are likely to have adverse effects on the results of
network module analyses. Therefore, it was necessary to
first identify and remove outlier samples before con-
structing the network. No outlier samples were found by
clustering the samples, and all 36 samples were retained.
The final expression matrix of 12,862 probes was used
to construct the co-expression network. A one-step
method was used to construct a network and determine
the gene module. Based on the description by Zhang
et al. [10], gene co-expression networks should have
scale-free characteristics and follow a power-law distri-
bution. A weighted adjacency matrix was created, de-
fined as Aij = |cor * (xi, xj) |

β, where xi and xj are the ith
and jth genes, respectively. Adjacent to the adjacent
network is the combination of the soft thresholding
power parameter β, which is required to improve the co-
expression similarity for computing the adjacency. To
keep the network consistent with scale-free topology,
the pickSoftThreshold() function was used to analyze
the network topology and choose an appropriate soft-
thresholding power value (β) to build the network and
allow the mean connectivity of all genes in the module
to be evaluated. The soft thresholding power parameter,
β, was set to 14 following a sensitivity analysis of the
scale-free topology. By selecting an appropriate soft
threshold, the correlation coefficients in the similarity
matrix can be continuously transformed into an expo-
nential function transformation to obtain the adjacency
function. The adjacency matrix was subsequently con-
verted to a topological overlap matrix (TOM), which can
evaluate the direct correlation of gene pairs and their de-
gree of agreement with other genes in the dataset [25].
The division of gene modules was based on the degree
of connection between modules, so it was necessary to
convert the degree of coincidence of topological connec-
tions into the degree of divergence. Average linkage

hierarchical clustering was conducted in accordance
with the TOM-based dissimilarity measure. For modules
with high topological overlap (dissimilarity less than
0.25), the adaptive dynamic pruning algorithm was used
to merge the modules, and the gene modules were then
recalculated. For the gene dendrogram, a minimum gene
module size of 30 was used to classify similar genes into
one module [15]. The module eigengene (ME), which
can be regarded as representative of the gene expression
profiles of a module, is defined as the first principal
component of a module of interest. Associating gene
modules with phenotypic information is helpful for find-
ing gene modules related to target traits; genes in these
modules are likely to be important for trait expression.
Module eigengenes can summarize the expression pat-
terns of all genes into a single characteristic expression
profile within a given module. Therefore, the correlation
between phenotypic characteristics and each ME was
one of the factors used to determine the key module.
This study establishes the relationship between the sam-
ple information and the module by constructing a
matrix; if the rows and columns were the same samples,
the value of the matrix was 1; if not, it was 0. Finally, the
correlation coefficient between the matrix and ME mod-
ule was calculated.
We also calculated the gene significance (GS) and

module significance (MS). The equation GSi = |cor (xi,
T)| was used to quantify the gene i of GS, where xi is
the expression profile of i, and T is a sample trait [24].
In key modules, MS was identified as another factor, de-
fined as the average significance of all genes contained
in a module. Generally, the higher the MS value, the
higher the correlation between the module and the sam-
ple type. Module membership (MM) is the correlation
coefficient between this gene and the trait characteristic
genes of this module and can be used to screen import-
ant genes in the module. Genes with high module mem-
bership often also have high gene significance in
modules related to a trait of interest. Genes with high
module membership in modules related to traits are
natural candidates for further validation. If GS and MM
show a very significant correlation for a gene in a
module, it means that the central genes in that module
also tend to be highly correlated with the target trait.
This would not only indicate the accuracy of the classifica-
tion, but would also allow important genes to be identified
in this way.
The highly connected genes in the module are also

known as hub genes, which may play an important role
in the module [26]. Hub genes are conserved to a certain
extent and are at the core of the gene co-expression net-
work and can act as a genetic buffer to reduce the impact
of other gene mutations [27]. We identified the top 30
hub genes in the module that were most closely related to
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backfat thickness differences, that is, the 30 genes with the
highest connectivity in the module, and used Cytoscape
software [28] to map the gene-gene interaction network
for the visualization of gene relationships.

Functional enrichment analysis of co-expression modules
and selection of candidate genes
Gene Ontology (GO; http://www.geneontology.org/) is
widely used in the field of bioinformatics and classifies
genes into terms from three different biological categor-
ies: cellular components (CC), molecular functions (MF),
and biological processes (BP). The default parameters
were used to identify the phenotype-related module, and
three gene ontology enrichment analyses were per-
formed on the genes in the module. False discovery rate
(FDR) P-values less than 0.05 were considered signifi-
cant, and the 10 most prominent entries for each
analysis were kept. The Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.genome.jp/kegg/) is a
database for the systematic analysis of gene function and
genomic information, which helps researchers study
genes and gene expression as part of a whole network.
“ClusterProfiler” [29] and the “ggplot2” packages were
used to analyze and visualize the genetic information,
respectively. The R software package BioMart (http://
www.biomarbiomart.org/) [30] was used to annotate
genes in the module, using the reference genome
Sscrofa11.1. We selected a subset of modules based on
their functional annotation and selected genes related to
fat development. Based on the above information, the
candidate genes affecting fat growth and development in
this experiment were identified.
For differentially expressed genes, we conducted enrich-

ment analysis to identify differences between different
tissues. The overall analysis, including GO and KEGG,
was carried out in KOBAS 3.0 (http://kobas.cbi.pku.edu.
cn/kobas3/?t=1).

Quantitative real-time PCR (qPCR)
To confirm the sequence data, reverse transcription
quantitative real-time PCR was performed using the
Light Cycler® 480 Real-Time PCR System (Roche, USA).
Nine genes (three DEGs in each tissue) were selected
to validate the changes in mRNA expression between
different groups. Total RNA from samples that were
used for high-throughput RNA-seq was isolated and
converted into cDNA using the Revert Aid™ First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific
Inc., USA). A reaction volume of 20 μL was used in
the qPCR reactions according to the manufacturer’s
protocol. qPCR experiments were performed in tripli-
cate, and the average Ct was used for further analysis.
The 2−ΔΔCt method was used to determine relative
mRNA abundance.

Results
Construction of co-expression modules
We used RNA-seq of different tissues from Songliao
black and Landrace pigs to construct the gene expres-
sion matrix consisting of 12,862 genes from 36 samples
after standardized processing. The WGCNA package
tool was used to construct co-expression modules. No
outlier samples were found in the hierarchical clustering
of samples when they were analyzed using the flashClust
tools package (Fig. 1).
Based on the standard of a scale-free network, we

choose the appropriate weighted parameter of the adja-
cency function, namely, the soft threshold. This selection
can make the adjacency function satisfy the scale-free
condition, which primarily affects the independence and
average connectedness of the common expression
module. First, an appropriate soft thresholding power
parameter was screened (Supplementary Fig. 2). When
the power value was 14, the independence was approxi-
mately 0.8, and the average connectedness was relatively
high. Then, we calculated the correlation matrix and ad-
jacency matrix, combined into the topology matrix, and
finally identified a total of 11 gene modules (Fig. 2;
Table 2) based on genetic similarity (based on merging
modules with dissimilarities less than 0.25 and a mini-
mum module size of 30).

Analysis of the relationship between gene modules and
phenotypic sample information
Phenotypic information included sample breed, high or
low backfat thickness, and organ type. The Pearson cor-
relation coefficient between the eigengenes of modules
and corresponding variables represents the correlation
between the module and phenotypic information (Fig. 3).
As shown in Fig. 3, the black, brown, and turquoise mod-
ules were moderately negatively correlated with backfat
thickness (r = − 0.44, r = − 0.52, and r = − 0.45, respectively;
P < 0.01), and moderately positively correlated with the
blue module (r = 0.49; P < 0.01). All four modules were
strongly correlated with different tissue types. It is postu-
lated that the genes in these modules are involved in fat
formation and have a function in different tissues. In
addition, the yellow module showed a high positive correl-
ation with the adipose tissue (r = 0.94). Adipose tissue is
the organ most directly associated with fat formation, and
its related genes deserve attention.
A module eigengene (ME) is the first principal compo-

nent gene in a specific module and represents the overall
level of gene expression within the module. Module
membership (MM) for a gene is the correlation between
the expression profile of a sample and the ME expres-
sion profile of a certain feature’s associated gene. By cre-
ating a cluster dendrogram of genes and a heat map of
the topological overlap between genes, the blue module
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was found to be most closely associated with fat forma-
tion. Therefore, we focused on the genes in this module
for subsequent analyses. As a final module assessment,
we drew scatter plots of GS for backfat (high or low)
versus MM for the black, brown, blue, and turquoise
modules (Fig. 4). In these modules, there is a significant
correlation between GS and MM, indicating that genes
tend to be highly correlated with backfat in modules
associated with a trait of interest.

Functional enrichment analysis of genes in relevant
modules
GO enrichment analysis was performed for genes in the
black, brown, blue, and turquoise modules (Fig. 5). The
10 most significant terms in the BP, MF, and CC cat-
egories are shown in the figure, and the terms enriched
by each of the four modules are different. The genes in
the black module were concentrated in ribonucleopro-
tein complex biogenesis (GO:0022613), nuclear DNA-
directed RNA polymerase complex (GO:0055029), and
protein tag (GO:0031386). Genes in the blue module

were associated with protein metabolism and muscle
fiber formation, mainly located in protein deubiquitina-
tion (GO:0016579), myofibril (GO:0030016), and protein
serine/threonine kinase activity (GO:0004674). The
genes in the brown module were similar to those in the
blue module, and were enriched in protein-containing
complex disassembly (GO:0032984), inner membrane
(GO:0005743), and nuclease activity (GO:0004518). The
turquoise module had the highest number of genes, up
to 3,363, which are involved in the processing of ribose
and the transport of small molecules. Entries were
mainly in the terms small molecule catabolic process
(GO:0044282), endoplasmic reticulum (GO:0005788),
and coenzyme binding (GO:0050662). Although these
entries vary, the biological processes involved are associ-
ated with lipid formation. From KEGG analysis of the
genes in these modules, we showed that the pathways
with significant enrichment involved gluconeogenesis,
insulin signaling pathway, MAPK signaling pathway,
REDOX and pentose metabolism, and other important
pathways (Supplementary Table 1). In addition, with

Fig. 1 Sample clustering. Clustering was conducted to eliminate low-quality samples. There were no outliers in the clustering tree
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regard to specific gene functions, we found differing
numbers of genes related to the fat deposition process in
these four modules and the yellow module (Table 3).

Module visualization and hub genes
Hub genes are a series of genes with the highest degree
of connectivity in a module and that, to a certain extent,
determine the characteristics of the module. Compared
with hub genes in the global network, hub genes in the
module tend to be more biologically significant. Intra-
module analysis was performed to calculate the degree
of connectivity between the genes. According to the in-
structions in the WGCNA package [24], intramodular
connectivity measures the connection or co-expression
of a given gene with respect to the genes of a particular
module. Intramodular connectivity may be interpreted
as a measure of module membership. For each module,
the average degree of connectivity between genes was
calculated; that is, the correlation between genes was
measured. Finally, the average degree of connectivity

Fig. 2 Division of gene modules. The figure shows the clustering of genes, and the division of gene modules is based on this result. Branches of
the same color were divided into the same gene modules

Table 2 The number of genes in each of the 11 modules

Module color Frequency (number) of genes

Black 358

Blue 2,570

Brown 1,977

Green 416

Green-yellow 39

Grey (unassigned genes) 1,193

Magenta 174

Pink 277

Purple 172

Red 412

Turquoise 3,363

Yellow 1,910
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between genes was calculated based on the absolute
value of the correlation. The genes within a module were
sequenced based on connectivity, and the 30 genes with
the highest connectivity within each module were se-
lected as hub genes. The top 30 genes with the highest
degree of connectivity were selected from the four can-
didate modules, and Cytoscape software was used to
generate the gene interaction network diagrams (Fig. 6).
Based on the candidate genes associated with fat depos-
ition (Table 3), we identified that in the black, blue,
brown, and turquoise modules, the core genes that may
be involved in the control of the fat deposition process
are RAD9, TCAP, SMYD1, PFKM, GPS2, and APOF.

Differentially expressed genes (DEGs)
The genes were further screened to identify DEGs, ensur-
ing that the candidate genes were as differentiated as pos-
sible with regard to grouping based on backfat thickness.
Differential analysis was conducted for genes in the se-

lected tissues from both pig breeds. In the Landrace pigs,
there were 1,485 differentially expressed genes in the
adipose tissue, 183 differentially expressed genes in the
liver tissue, 1,888 differentially expressed genes in the
muscle tissue, and a combined total of 2,334 differentially
expressed genes. In the Songliao black pigs, there were 2,
239 differential genes in the adipose tissue, 901 differential
genes in the liver tissue, 2,459 differential genes in the
muscle tissue, and a combined total of 3,626 differential
genes. There were 1,123 common differentially expressed
genes in the two breeds and 659 common genes in the
four modules (Supplementary Fig. 3).

Differential gene enrichment analysis in different
tissues showed that enrichment entries differed in the
different tissues (Supplementary Fig. 4), with most of
them involved in energy metabolism, including phos-
phate dephosphorylation, AMPK signaling pathway, and
multiple entries with ATP keywords. Some of these
terms, such as fatty acid degradation, fatty acid metabol-
ism, and fat absorption, have been directly associated
with fat deposition.
Among the 16 candidate genes identified via WGCNA,

three genes, namely, IGF2R, SMYD1, and PFKM, were
differentially expressed. FASN was also differentially
expressed in the yellow module. In addition, two of the
six hub genes, SMYD1 and PFKM, were differentially
expressed (Fig. 7).

Quantitative real-time PCR (qPCR)
Nine genes were selected for RNA-seq data validation.
Furthermore, the fold change in the selected genes
showed similar trends. These results indicate that the
DEGs identified using transcriptome data were efficient
and reliable (Fig. 8).

Discussion
Landrace is a widely used lean pig breed, while Songliao
black pig is a fatty, Northeast China breed. These two
breeds can well represent the whole pig breed in the
study of fat deposition. In addition, similar regulation
patterns were observed in different pig breeds. There-
fore, these two breeds were selected to explore and study
pig fat deposition, with the aim of identifying the key

Fig. 3 Module-trait associations. Panel a shows correlation between gene module and sample information, where the x-axis represents sample
information, including varieties, grouping of backfat thickness, and sample tissue type. The y-axis represents each gene module. In the panel, the
darker the color, the higher the correlation, with red representing positive correlation and blue representing negative correlation. The significance
value, represented by the P value, is in brackets. Panel b shows the absolute correlation between the genes in each module and backfat thickness
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genes regulating pig fat deposition and providing a basis
for improving pig production and meat quality through
genetic intervention. Porcine fat deposition is a typical
quantitative trait regulated by multiple genes, all of
which interact with each other. In the traditional single-
dimensional study of this trait, it is difficult to locate the
main gene and its mechanism of action. However,
WGCNA can make full use of phenotypic information

to transform the associations between thousands of
genes and phenotypes into associations between multiple
gene sets and phenotypes, which can not only effectively
reflect the interactions between genes, but also do not
require multiple hypothesis testing and corrections
[24, 31, 32]. Therefore, WCGNA was used to study
the co-expression network in multiple groups
(grouped by backfat thickness) in order to identify the

Fig. 4 Scatterplot of Gene Significance (GS) for backfat vs. Module Membership (MM) in candidate modules. The figure shows the significance of
the genes in the four modules. The x-axis represents the value of membership in each module, and the y-axis represents gene significance for
backfat; a, b, c, and d represent the genes in the black, brown, blue, and turquoise modules, respectively. The gene in the upper right corner of
each graph is the hub gene that we need to look for. These genes are highly correlated with phenotypes and have a high MM, which is a good
representation of the gene module
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major genes affecting fat deposition. The algorithmic
principle of WGCNA network construction is to
strengthen strong correlations and weaken weak cor-
relations, so that the correlation value is more in line
with the characteristics of a scale-free network and
has more biological significance. The soft threshold is
determined in order to make the network built more
in line with the characteristics of the scale-free net-
work, and the higher the R2, the better. The network

Fig. 5 Gene ontology enrichment analysis for genes in co-expression modules. In the figure, a, b, c, and d show the enrichment of genes in
black, blue, brown, and turquoise modules from three different biological categories, respectively. The y-axis represents the gene-enriched entries,
and the x-axis represents the number of genes enriched in the same entry. In each panel, different biological categories are represented with
different colors. CC, cellular components; MF, molecular functions; BP, biological processes

Table 3 Candidate genes from co-expression modules

Module Color Candidate genes

Black RAD9A

Blue IGF2R, SCAP, TCAP, SMYD1, PFKM

Brown DGAT1, GPS2, IGF1, MAPK8

Turquoise FABP4, FABP5, LEPR, UCP3, APOF

Yellow FASN
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constructed in this study met expectations, with R2
as high as 0.8, making the network of high biological
significance. Meanwhile, the average connectivity was
also high, reaching 185, indicating a high correlation
between genes in the module and thus laying a foun-
dation for locating key genes.
Functional enrichment analysis showed significant dif-

ferences in the interactions between different modules.
These were largely associated with their different func-
tions, but were all involved in fat deposition and metab-
olism. The genes in the black module were primarily
involved in the synthesis and processing of ribose and
hydrolysis of phosphate bonds, which are closely associ-
ated with energy metabolism. An important source of
fatty acids is the de novo synthesis pathway, which re-
quires a large amount of energy. Glucose is the main
precursor for fatty acid synthesis in monogastric ani-
mals, where glucose is decomposed and acetyl CoA is

produced. Under the catalysis of acetyl CoA carboxylase
(ACC) and fatty acid synthase (FAS), through a series of
intermediate reactions, CoA enters the fatty acid synthe-
sis system in the cytosol for a series of hydrogenation re-
duction processes, culminating in the synthesis of fatty
acids. In pigs, most of this occurs in the fat tissue [33].
The black module was significantly associated with adi-
pose tissue (0.79, P < 0.01), indicating that module div-
ision was rational and had biological significance. In the
GO terms nucleic acid phosphodiester bond hydrolysis
(GO:0090305), 3 ‘5’ exonuclease activity (GO:0008408),
and exonuclease activity, active with either ribo-or de-
oxyribonucleic acid and phosphoesters (GO:0016796),
the common gene RAD9A was found. This is not only
related to the synthesis and hydrolysis of ATP, but also
contributes to the control of cell differentiation, which
affects the development of embryos and contributes to
fatty cell differentiation [34].

Fig. 6 Visualization of the top 30 genes in specific modules: (a) black, (b) brown, (c) blue, and (d) turquoise. Network relationship diagram of hub
genes in different modules. The thicker the line between genes, the higher the correlation of genes; the higher the number of lines between the
gene and other genes, the more important the gene
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The function of the genes in the brown module was
similar to that of the genes in the black module, involved
energy metabolism, and contained many terms associ-
ated with protein synthesis. This module was also
significantly associated with fat and muscle tissue, both
of which are major sites for energy synthesis and metab-
olism. The gene IGF1 was found among the two signifi-
cantly enriched terms: positive regulation of catabolic
process (GO:0009896) and positive regulation of cellular
catabolic process (GO:0031331). This gene encodes

insulin-like growth factor-1, which has been found to be
associated with fat formation in pigs [35]. Autophagy
(GO:0006914), process utilizing autophagic mechanism
(GO:0061919), macroautophagy (GO:0016236), and
multiple signal-enrichment pathways (ssc04141: protein
processing in endoplasmic reticulum), the common gene
MAPK8 (mitogen-activated protein kinase 8), is signifi-
cantly correlated with backfat thickness in carcasses
[36]. Acyl CoA: diacylglycerol acyltransferase (DGAT1)
is a very important enzyme in mammals. It forms

Fig. 7 Volcanogram (a) and Venn map (b) of differentially expressed genes (DEGs). Panel a shows differential gene expression. The x-axis
represents the multiple of differences, denoted by log2 Fold Change; the larger the absolute value, the larger the multiple of difference. The y-
axis represents the significance of the difference, denoted by -log10 (P-value); the larger the value, the more significant the difference. The panel
shows the names of the 20 genes with the most significant differences. Panel b shows the Venn map from various analysis methods, among
which the intersection is the most important candidate gene
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triacylglycerol by adding diacylglycerol to fatty acid acyl
[37]. This enzyme plays an important role in lactation,
small intestinal fat absorption, lipoprotein assembly, and
fat formation [38, 39]. Noneman et al. [40] obtained the
complete sequence of DGAT1 in pigs and located
DGAT1 to chromosome 4 of pigs, mainly to study the
correlation between this gene and obesity in pigs. The
decrease in GPS2 expression in adipocytes is closely
associated with obesity [41, 42]. A previous study
suggested that, in mice and humans, GPS2 controls the
reprogramming of white adipocytes, influencing pancre-
atic islet function and insulin secretion, thus affecting fat
deposition [43]. In the blue module, TCAP exists in
three significantly enriched terms: myofibril (GO:
0030016), I band (GO:0031674), and sarcomere (GO:
0030017). The protein TCAP (titin-cap; telethonin) is a
myofilament protein that plays an important role in the
assembly of myofibril, and is crucial for muscle growth
and fat deposition [44]. The blue module was also highly
correlated with muscle tissue (0.95, P < 0.01). Insulin-like
growth factor (IGF) regulates lipid metabolism and af-
fects the development of adipose tissue, mainly by bind-
ing to two types of insulin-like growth factor receptors
(IGFR) on the cell surface [45]. In animal growth, IGFR
is an important factor, particularly type I insulin-like
growth factor receptor (IGF1R) and insulin-like growth
factor receptor II (IGF2R) [46]. Several studies have
shown that IGF2R affects fat deposition in pigs [47].
Additionally, SCAP/SREBP signaling is the main path-
way regulating lipid metabolism [48]. Elevated blood
glucose levels promote lipogenesis by activating SREBP
transcription factors that are regulated by SCAP [49].
The Smyd1 gene encodes a lysine methyltransferase that
is specifically expressed in striated muscles. Muscle fiber
atrophy has been observed in mice with mutations in
this gene [50]. However, the development of intramuscular
fat is closely associated with the state of muscle fibers,
therefore, this gene is likely to be involved in the regulation
of fat deposition. Phosphofructokinase, muscle type
(PFKM), is a key regulatory enzyme that catalyzes the

irreversible conversion of fructose-6-phosphate to fructose-
1,6-bisphosphate during glycolysis. The porcine PFKM
gene is expressed in skeletal muscles and heart, and its ex-
pression level is highly correlated with pork marbling and
intramuscular fat content [51], which indicates that the ex-
pression of PFKM has a certain influence on the fat content
of pigs.
The turquoise module is significantly associated with

adipose and liver tissues, and there are five genes associ-
ated with fat deposition. FABP4/FABP5 genes (fatty acid
binding proteins 4 and 5) are directly involved in the
regulation of fat deposition, are mainly expressed in fat
and bone marrow cells, and are related to the develop-
ment of insulin resistance [52, 53]. Third, many studies
have shown that the polymorphism in LEPR is associated
with the levels of blood glucose, insulin, leptin, and
triglyceride, and LEPR deficiency can directly lead to the
accumulation of fat, resulting in obesity [54, 55]. Fourth,
the gene UCP3 codes for a proton transport carrier dis-
tributed in the inner mitochondrial membrane that can
reduce the H+ electrochemical gradient on both sides of
the membrane, resulting in uncoupling of the oxidation
and ADP phosphorylation processes. This is an import-
ant way for the body to produce energy and heat [56]. In
pigs, the UCP3 gene’s 5’ and 3’ sequence control regions,
AvaI enzyme loci were significantly associated with fat
metabolism [57]. Finally, experiments on mice have
found that the APOF gene controls the speed of LDL
(Low Density Lipoprotein) clearance mechanisms, thus
affecting fat deposition [58].
In addition, although the yellow module was not asso-

ciated with the candidate module grouping, it was highly
correlated with the adipose tissue. This indicates that,
although genes in this module may not be significantly
associated with backfat thickness, they play a crucial role
in the development and formation of fat, and the specific
regulatory mechanism underlying this needs to be stud-
ied further. The candidate gene identified in the yellow
module was FASN, which encodes fatty acid synthase
(FASN), an enzyme involved in fat deposition and fatty

Fig. 8 Validation of gene expression patterns obtained from RNA-seq data. Differentially expressed genes were validated in fat tissue (a), liver
tissue (b), and muscle tissue (c) using qPCR
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acid composition [59, 60]. The genes in each module
were analyzed. The importance of a gene is repre-
sented by the sum of its connectedness to all other
genes in the module. The higher the total connectiv-
ity, the higher the correlation between this gene and
all other genes, therefore, the greater the influence of
this gene on other genes in the module and any
change to this gene will change the module as a
whole. In combination with the above analysis, hub
genes (RAD9A, TCAP, SMYD1, PFKM, GPS2, and
APOF) that are significantly associated with fat depos-
ition were identified in four modules.
We conducted differential expression analysis on three

tissues in the two pig breeds, and the results showed that
the enrichment in different tissues were mostly different,
indicating that the three tissues had functional differ-
ences with obvious tissue specificity (Supplementary
Fig. 4). However, these differences are associated with
energy metabolism and many similar terms are associ-
ated with the formation and metabolism of fatty acids.
Therefore, it can be inferred that all three tissues are in-
volved in fat deposition but have different divisions of
labor, which is consistent with the complex process of
fat deposition. Based on the similarity described by en-
richment terms, we found that although there were dif-
ferences in the same tissue function between Landrace
and Songliao Black pigs, the specificity between tissues
was significantly greater than that between breeds. This
further indicates that there is little difference in fat de-
position between these two breeds, and also reflects the
rationality of the analyses used in this experiment. Based
on the overlap between the common differentially
expressed genes in the two breeds and the results of
WGCNA (Fig. 7), more than half of the DEGs were
identified by the WGCNA analysis, inferring similarity
between the two analysis methods and further demon-
strating the reliability of the results of this study. How-
ever, some of the fat-associated genes identified through
WGCNA were not differentially expressed, suggesting
that WGCNA could identify more information by estab-
lishing associations between genes, which is consistent
with the description of WGCNA. To effectively reduce
the number of candidate genes, we chose the overlap of
hub genes found by WGCNA and differentially
expressed genes as strong candidate genes, while candi-
date genes of other non-differentially expressed genes
can also be used as references. Of the 16 candidate genes
screened using WGCNA, six (RAD9A, TCAP, SMYD1,
PFKM, GPS2, and APOF) were hub genes corresponding
to each module associated with this trait, which play a
major role in the regulation of fat deposition. In
addition, we found that SMYD1 and PFKM are also
DEGs, further supporting the importance of SMYD1 and
PFKM in fat deposition.

Conclusions
Four important modules were screened using WGCNA
and 16 of these (RAD9A, IGF2R, SCAP, TCAP, SMYD1,
PFKM, DGAT1, GPS2, IGF1, MAPK8, FABP, FABP5,
LEPR, UCP3, APOF, and FASN) were associated with fat
deposition. SMYD1 and PFKM were not only hub genes
but also differentially expressed genes, and are as strong
candidate genes affecting fat deposition.
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Additional file 1: Supplementary Table 1. Body weight and backfat
thickness between different groups. Supplementary Table 2. KEGG
analysis of genes in the four modules related to traits. Supplementary
Fig. 1. Analysis of network topology for various soft-thresholding powers.
According to the definition of soft threshold, try to choose a large R2

value. According to the suggestion of WGCNA package, choose an R2

value greater than 0.8, that is, the value above the red line in the left fig-
ure. The figure on the right shows the average connectivity of the con-
structed network. The larger the network is, the closer the gene is, and
the more conducive it is to screen out hub genes. Supplementary
Fig. 2. Venn map of differentially expressed genes (DEGs) of Panel a, b
and c respectively shows the situation of the differentially expressed
genes in adipose tissue, muscle and liver of Songliao black pigs. Panel e,
f and g respectively shows the situation of the differentially expressed
genes in adipose tissue, muscle and liver of Landrace. The x-axis repre-
sents the multiple of difference, which is denoted by log2FoldChange.
The larger the absolute value is, the larger the multiple of difference is.
The y-axis represents the significance of the difference, which is denoted
by -log10(P-value). The larger the value is, the more significant the differ-
ence is. Each panel shows the names of the top 20 genes with the most
significant differences. Supplementary Fig. 3. Volcanogram of differen-
tially expressed genes in different tissues of two breeds. Panel a and b re-
spectively shows the overlap of the differentially expressed genes in
adipose tissue, muscle and liver of Songliao black pigs and Landrace.
Panel b shows the overlap of all the differentially expressed genes of
Songliao black pigs and Landrace. Supplementary Fig. 4. GO enrich-
ment analysis and KEGG pathway analysis in different tissues of two
breeds. Panel a, b and c respectively shows the enrichment entries of
the differentially expressed genes in adipose tissue, liver and muscle of
Landrace. Panel d, e and f shows the enrichment entries of the differen-
tially expressed genes in adipose tissue, liver and muscle of Songliao
black pigs. The x-axis represents the significance of the difference, which
is denoted by -log2(P-value). Each bubble represents an enriched func-
tion, and the size of the bubble is set with six gradients according to the
p-value, from small to large, representing the different significance levels:
ns (P-value> = 0.05), * (0.01 < =P-value< 0.05), ** (0.001 < =P-value< 0.01),
*** (0.0001 < =P-value< 0.001), **** (1e-10 < =P-value< 0.0001), ***** (P-
value<1e-10). The color of the bar is the same as the color in the circular
network, which represents different clusters. For each cluster, if there are
more than 5 terms, top 5 with the highest enrich ratio will be displayed.
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