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Abstract

Background: The direct use of medical zinc oxide in feed will be abandoned after 2022 in Europe, leaving an
urgent need for substitutes to prevent post-weaning disorders.

Results: This study investigated the effect of using rapeseed-seaweed blend (rapeseed meal added two brown
macroalgae species Ascophylum nodosum and Saccharina latissima) fermented by lactobacilli (FRS) as feed
ingredients in piglet weaning. From d 28 of life to d 85, the piglets were fed one of three different feeding
regimens (n = 230 each) with inclusion of 0%, 2.5% and 5% FRS. In this period, no significant difference of piglet
performance was found among the three groups. From a subset of piglets (n = 10 from each treatment), blood
samples for hematology, biochemistry and immunoglobulin analysis, colon digesta for microbiome analysis, and
jejunum and colon tissues for histopathological analyses were collected. The piglets fed with 2.5% FRS manifested
alleviated intraepithelial and stromal lymphocytes infiltration in the gut, enhanced colon mucosa barrier relative to
the 0% FRS group. The colon microbiota composition was determined using V3 and V1-V8 region 16S rRNA gene
amplicon sequencing by Illumina NextSeq and Oxford Nanopore MinION, respectively. The two amplicon
sequencing strategies showed high consistency between the detected bacteria. Both sequencing strategies
indicated that inclusion of FRS reshaped the colon microbiome of weaned piglets with increased Shannon diversity.
Prevotella stercorea was verified by both methods to be more abundant in the piglets supplied with FRS feed, and
its abundance was positively correlated with colonic mucosa thickness but negatively correlated with blood
concentrations of leucocytes and IgG.

Conclusions: FRS supplementation relieved the gut lymphocyte infiltration of the weaned piglets, improved the
colon mucosa barrier with altered microbiota composition. Increasing the dietary inclusion of FRS from 2.5% to 5%
did not lead to further improvements.
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Background
A healthy hindgut is essential for the optimal nutrient
utilization and host health. Essentially, the gut microbes
ferment and digest macronutrients such as fibers in the
colon [1, 2]. Microbial metabolism benefits the colonic
cells and immune system by providing short-chain fatty
acids (SCFAs) like butyrate and acetate [1]. Microbial
colonization brings benefits for the host but also poten-
tial threats e.g., inflammatory responses by infections.
Thus, microbial communication with the immune sys-
tem balances on a thin line to preserve homeostasis [3]
of what to attack and what to tolerate [4].
In pig production, the weaning period is characterized

by a change in diet from milk to solid feed, separation
from the mother and aggregation in a pen with piglets
from other litters. It is a stressful period in pig life and
has a high risk of morbidities such as diarrhea. In-feed
zinc oxide used to be a prevalent choice for prophylaxis,
but according to the European Union regulations, zinc
oxide shall no longer be directly used in feed or water
from June 2022 [5]. This leaves an urgent need for new
prophylactic substitutes. Inclusion of pre-fermented feed
is a promising strategy to ameliorate the post-weaning
disorders for its effective act to improve gastrointestinal
health and enhance livestock performance in production
[6–8]. The process of microbial fermentation degrades
antinutritional compounds and macronutrients in feed,
increasing the nutrient bioavailability and nutritional
value [9, 10]. Besides, the microorganisms in fermented
feed have been proposed to inhibit the overgrowth of
opportunistic pathogens, sustain gut microbiome
homeostasis [11] and boost host immune system [12]. A
meta-analysis has shown that fermented feed can
increase the growth and performance of both weaner
and growing pigs [13].
Rapeseed meal is a by-product after the oil has

been extracted and is generally used as a protein
source in animal diets [14]. However, it has a lower
protein digestibility as compared to soybean meal.
Brown seaweed is acknowledged as a reliable source
of health-promoting phytochemicals [15] like lami-
narin [16]. The phlorotannin-rich extract from brown
seaweed Ascophyllum nodosum has been reported to
show anti-inflammatory benefits [17] and Saccharina
latissima is identified as the producers of the anti-
microbial compound 2,4-diacetylphloroglucinol [18].
However, the poor digestibility affected their wide use
in feed. Lacto-fermentation can hydrolyze protein and
fibers down to a more soluble matrix, and reduce the
naturally present antinutritional factors. We have pre-
viously reported that dietary supplementation with
rapeseed-seaweed blend (rapeseed meal added two
brown macroalgae species Saccharina latissima and
Ascophylum nodosum) fermented by lactobacilli (FRS)

could modulate the gut barrier function of piglets and
increase the production performance [5].
In the present study, we tested whether inclusion of

FRS to weaner diets could affect the gut microbiome
and the piglet production performance and influence
interactions between the diet-induced gut microbiome
modulation and host health in the weaning period. To
trace the gut microbiome shifts, we profiled the piglet
colon content using the V3 and V1-V8 region 16S rRNA
gene amplicon sequencing by second (Illumina,
NextSeq) and third generation (Oxford Nanopore
Technologies, MinION) sequencing platform,
respectively.

Methods
Preparation of fermented rapeseed-seaweed feed
The FRS feed provided by FermentationExperts
(Denmark) was a blend of rapeseed meal (Brassica
napus), wheat bran (Triticum eastivum) and two types
of brown seaweed (Saccharina latissima and Ascophy-
lum nodosum) prepared via a controlled two-step solid
state fermentation. The inoculum consisted of three lac-
tic acid bacteria: Pediococcus acidilactici (DSM 16243),
Pediococcus pentosaceus (DSM 12834) and Lactobacillus
plantarum (DSM 12837). The addition of the inoculant
controlled the process by acidifying the blend within the
first 24 h to assure an almost entirely anaerobic process.
The process continued for 11 d at 38 °C. The fermented
material was then dried in a spin flash dryer, with a
temperature setting (in a range of 40 to 75 °C) and pass-
through-speed that preserved the viable bacteria and the
microbial thermolabile metabolites (patent no.
WO2013029632A1).

Animal feeding and performance recording
The feeding trial was carried out on a commercial pig
farm (Kawiks Farm, Patoki 23. 98–170 Widawa. Prov-
ince. Lodz city, Poland) in 2018. The trial procedure and
sample collection were approved by the Local Ethical
Commission of Olsztyn University of Life Sciences (Ol-
sztyn, Poland) with regards to experimentation and ani-
mal care. A total of 690 piglets were tested under three
different feeding regimens (230 piglets per feeding treat-
ment) from 28 days of age (10 d before weaning) until
85 days of age when the piglets exited the nursing unit.
One group was a control group fed a basal feed accord-
ing to Danish nutritional recommendations [19] (0%
FRS), and the other two groups received supplementa-
tion of 2.5% or 5% FRS to the basal feed. In this period,
piglets were first supplied with three-week pre-starter
diet, followed by five-week starter diet. All diets were
subjected to standard analyses of pig feed in Denmark
and Poland, where the metabolizable energy contents
were determined through laboratory analyses of
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chemical composition, total enzyme digestible organic
matter and enzyme digestible organic matter at ileum.
These analyses were carried out in a commercial and
certified feed factory Wola-Pasze Sp. Z o.o. (Biała
Podlaska, Poland). Vitamin E was added to follow the
standard feed formulation on the farm. None of the diets
included growth promoters, prescription antibiotics or
zinc oxide. Table 1 summarized the ingredients and
nutritional values of feed formulations used in this
experiment.
These piglets were housed in the nursing units holding

an average of 48 animals per pen. The FRS dietary treat-
ment was repeated 5 times (1 repetition per experimental
week and 1 pen representing a repetition) and the control
was repeated 4 times. Piglets which experienced diarrhea
or any other serious health conditions were removed from
the experiment, treated elsewhere and counted as piglets
that did not complete the experiment. Feed and fresh
water were supplied ad libitum throughout the experi-
ment. Piglet performance were recorded every week by
pen. Performance indicators such as body weight, average
daily feed intake (ADFI), average daily weight gain (ADG),
feed conversion ratio (FCR) and the completion rate were
calculated as previously outlined [5].

Biological sample collection
A total of 10 piglets from each group (n = 5 in each
of two experimental weeks) were randomly selected
and euthanized 3 weeks after weaning. The animals
were euthanized by stun gunning with a captive bolt
immediately followed by de-bleeding at the farm
slaughtering facilities under strict sanitary regulations.
Whole blood samples and serum for clinical analysis,
the digesta from the colon for microbiome analysis,
and jejunum and colon tissues for histopathological
analyses, were collected in that order immediately
after slaughtering.
A blood sample from each piglet was deposited in a

tube with the anti-coagulant EDTA and preserved on ice
and taken to the laboratory, where it was stored at
2–8 °C until analysis. Another blood sample was col-
lected in a tube without anticoagulant, and serum sepa-
rated by centrifugation, which was then stored at − 20 °C
until analysis. Gut tissues and colon contents were sam-
pled after opening of the abdominal wall, and the stom-
ach, small and large intestines were occluded at both
ends and removed. Approximately 2 cm3 of colon con-
tent was collected from the apex of the ascending spiral
of the colon with a sterile spatula and deposited in cryo-
tubes with RNAlater™ (Sigma-Aldrich, Munich,
Germany). The tubes with colon contents were kept at
room temperature for less than 24 h, followed by cryo-
preservation in the laboratory. Tissue samples (approxi-
mate length of 2 cm) of the whole transection of the

jejunum and colon were excised and carefully rinsed
from gut contents by flushing with saline (0.9% NaCl).
For each tissue a sterilized blade was used. The tissues
were preserved in 10% formaldehyde and kept at room
temperature for no longer than 24 h until further pro-
cessing [20].

Hematology, blood biochemistry and serum
immunoglobulin analysis
Full blood counts (erythrocyte, hemoglobin, hematocrit,
mean corpuscular volume, mean corpuscular
hemoglobin, mean corpuscular hemoglobin concentra-
tion, red cell distribution width) and differential white
blood cells count (platelets, leucocytes, lymphocytes,
monocytes, neutrophils, eosinophils, basophils) were
performed using a Sysmex XT 2000i analyzer (Sysmex
Corporation, Kobe, Japan). Serum analysis followed the
standardized quantification methods [5] to measure the
concentrations of the following: alanine aminotransfer-
ase, glutamic pyruvic transaminase, aspartate amino-
transferase, glutamic-oxaloacetic transaminase, lactate
dehydrogenase, lysozyme, glucose, total protein, blood
urea nitrogen, uric acid, phosphorous, total cholesterol,
triglycerides, low density lipoprotein, high density lipo-
protein and immunoglobulin G (IgG).

Histological analysis of intestinal tissues
The histological analysis of mid-jejunal and colonic tis-
sues was conducted by a commercial analytical labora-
tory (ALAB Weterynaria, Warsaw, Poland) according to
previous procedures [5]. In short, tissue sections fixed in
10% formaldehyde were dehydrated by means of graded
ethanol and xylene baths and embedded in paraffin wax,
and 3–4 μm section were then stained with haematoxy-
lin and eosin. Histopathological evaluations (at different
lens magnifications) measured gut-associated lymphoid
tissue (GALT), intraepithelial lymphocytes (IELs) and
lymphatic infiltration of the stromal mucosa (stromal
lymphocytes, SL) counts. For GALT, the numbers of
lymphoid follicles per millimeter square were counted.
For IEL scoring, the following scale was used: 0-normal
(0–10 IELs/100 enterocytes), 1-low (10–15 IELs/100
enterocytes), 2-moderate (15–20 IELs/100 enterocytes;
this level suggests chronic subclinical inflammation,
where the intestinal-blood barrier may be damaged), 3-
severe (> 20 IELs/100 enterocytes; this level indicates
chronic inflammation with infiltration damaging the epi-
thelium and intestinal-blood barrier). For SL, the visual
scoring scale was: 0-normal (single lymphocytes in stro-
mal connective tissues of villus and crypts), 1-low (in-
creased number of lymphocytes, but no damage to the
stroma structures), 2-moderate (abundant infiltration of
lymphocytes in stroma, damaging blood vessel walls,
connective tissue fiber, reducing visibility of stroma
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Table 1 Feed formulations used for the experiment

Pre-starter diet Starter diet

0% FRS 2.5% FRS 5% FRS 0% FRS 2.5% FRS 5% FRS

Ingredients, g/kg

Wheat (11.2%) 613.26 597.88 583.86 539.88 525.11 508.24

Barley (10.6%) 100.00 100.00 100.00 200.00 200.00 200.00

Soybean meal (46.0%) 0.00 0.00 0.00 170.00 170.00 169.69

Digestible soy 79.08 69.35 59.32 10.63 0.77 0.00

Fermented rapeseed-seaweed meal 0.00 25.00 50.00 0.00 25.00 50.00

Potato protein 40.00 40.00 40.00 0.00 0.00 0.00

Fish meal (70%) 40.00 40.00 40.00 14.00 14.00 7.00

Whey protein 50.00 50.00 50.00 0.00 0.00 0.00

Soy bean oil 37.28 38.93 40.17 23.74 25.20 26.50

Limestone (Ca 38.5%) 0.00 0.00 0.00 5.71 5.57 5.66

Calcium formate 5.00 5.00 5.00 0.00 0.00 0.00

Calcium phosphate 9.12 8.68 8.23 8.83 8.38 8.29

Sodium chloride 3.83 3.70 3.58 4.98 4.85 4.89

Summer fruit 2.00 2.00 2.00 2.00 2.00 2.00

Tretracid liquid 5.82 5.83 5.84 5.60 5.61 5.75

Lysine HCl (98%) 5.00 4.00 2.50 5.00 4.00 2.50

Methionine DL (99%) 0.77 0.73 0.69 1.02 0.97 1.01

Threonine L (99%) 1.88 1.83 1.77 1.94 1.88 1.85

Valine (98%) 1.11 1.09 1.06 1.00 0.97 0.96

Tryptophan (99%) 0.65 0.65 0.65 0.37 0.37 0.36

Microbial phytase 0.15 0.15 0.15 0.15 0.15 0.15

Microbial xylanase, beta-glucanase 0.15 0.15 0.15 0.15 0.15 0.15

Vitamin E (50%) 0.03 0.03 0.30 0.10 0.01 0.01

Vitamin-mineral premixa 5.00 5.00 5.00 5.00 5.00 5.00

Calculated nutritive value, %

Dry weight 88.50 88.50 88.60 87.50 87.50 87.60

Metabolizable energy, MJ 14.30 14.30 14.30 13.50 13.50 13.50

Crude protein 19.70 19.70 19.70 18.40 18.40 18.40

Crude fat 5.56 5.75 5.90 4.03 4.20 4.31

Crude fiber 2.20 2.38 2.57 3.11 3.29 3.51

Ashes 5.37 5.42 5.45 5.69 5.71 5.87

Starch, g 471.40 408.30 399.90 425.60 416.90 406.80

Lactose, g 36.50 36.50 36.50 0.00 0.00 0.00

Calcium 0.83 0.83 0.84 0.82 0.82 0.82

Total phosphorous 0.65 0.65 0.65 0.58 0.58 0.58

Digestible phosphorous 0.59 0.59 0.59 0.51 0.51 0.51

Sodium 0.23 0.23 0.23 0.22 0.22 0.22

Chlorine 0.57 0.56 0.56 0.51 0.50 0.50

Potassium 0.65 0.65 0.66 0.67 0.68 0.69

Lysine 1.46 1.46 1.46 1.28 1.28 1.28

Methionine 0.45 0.45 0.45 0.41 0.41 0.41

Met + Cysb 0.77 0.77 0.78 0.72 0.73 0.73
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structures), 3-severe (lymphocyte infiltration completely
disrupts and conceals the stroma). In a blinded fashion,
10 fields of view per piglet at 4× magnification were used
for evaluation of GALT structures and numbers of
lymphoid follicles. IEL and SL were evaluated at 40×
magnification. The analysis used a standard light micro-
scope Olympus BX41 and Cell Sens software (Olympus
Corporation, Tokyo, Japan). The gut tissue samples
which could not reach the requirements for histological
analysis were discarded, resulting in n = 9, 8, 10 for the
0%, 2.5% and 5% FRS group, respectively.

16S rRNA gene amplicon sequencing of colon content
The collected colon contents were stored at − 60 °C
prior to the analysis. Two types of 16S rRNA gene
amplicon sequencing strategies were adopted to
characterize the prokaryotic community: Illumina,
NextSeq (Illumina, CA, USA) and MinION (Oxford
Nanopore Technologies, Oxford, UK). The genomic
DNA was extracted using Bead-Beat Micro AX
Gravity Kit (A&A Biotechnology, Gdynia, Poland)
according to the manufacturer’s instruction. DNA
concentration and purity were measured using Nano-
Drop ND-1000 spectrophotometer (Saveen and
Werner AB, Sweden).
Extracted DNA was diluted to 10 ng/μL prior to

library preparation. The V3 hypervariable region of 16S
rRNA gene was amplified and sequenced with Illumina
technology as previously described [21]. The V1-V8
hypervariable region of 16S rRNA gene was amplified
and sequenced with ONT using the following primers:
ONT_27Fa: GTCTCGTGGG CTCGGAGATG TGTA
TATAGA TCGCAGAGTT TGATYMTGGCTCAG;
ONT_27Fb: GTCTCGTGGG CTCGGAGATG TGTA
TATAGA TCGCAGAGTT TGATCCTGGCTTAG and
ONT_1540_R: GTCTCGTGGG CTCGGAGATG TGTA
TACTCT CTATTACGGY TACCTTGTTACGACT.
Custom designed barcoding system was developed to tag
encode up to 96 samples during the second round of
PCR, and the PCR primer sequence is given in Table S1
(Additional file). The PCR1 reaction mix contained 5 μl
of PCRBIO buffer and 0.25 μL PCRBIO HiFi polymerase
(PCR Biosystems Ltd., London, United Kingdom), 1 μL

of primers mix (5 μmol/L of ONT_27Fa and ONT_27Fb,
and 10 μmol/L of ONT_1540_R, see above), 5 μL of gen-
omic DNA (~ 10 ng/μL) and nuclease-free water to a
total value of 25 μL. The PCR thermal conditions were
as follows: denaturation at 95 °C for 5 min; 33 cycles of
95 °C for 20 s, 55 °C for 20 s and 72 °C for 45 s; followed
by final elongation at 72 °C for 4 mins.
PCR products were verified by agarose gel electro-

phoresis and then subjected for barcoding (PCR2).
The PCR2 mix composed of 5 μL PCRBIO buffer,
0.25 μL PCRBIO HiFi polymerase (PCR Biosystems
Ltd., London, United Kingdom), 2 μL of barcode
primers (5 μmol/L), 1 μL of PCR1 template and DEPC
water up to 25 μL. The PCR2 thermal conditions were
as follows: denaturation at 95 °C for 2 mins; 13 cycles
of 95 °C for 20 s, 55 °C for 20 s, 72 °C for 40 s; final
elongation at 72 °C for 4 mins. The final PCR prod-
ucts were purified using AMPure XP beads (Beckman
Coulter Genomic, CA, USA) and pooled in equimolar
concentrations. The pooled barcoded amplicons were
subjected to 1D genomic DNA by ligation protocol
(SQK-LSK109) to complete library preparation for
MinION sequencing. Approximate 0.2 μg of amplicons
were used for the initial step of end-prep. And 40 ng
of prepared amplicon library was loaded on a R9.4.1
flow cell.

Sequencing data analysis
The raw Illumina pair-ended reads were merged and
trimmed using fastq_mergepairs and fastq_filter scripts
implemented in the USEARCH pipeline as outlined [21].
The chimeric reads was removed and the zero radius
Operational Taxonomic Units (zOTUs) conducted using
the UNOISE3 algorithm [22]. The Greengenes (13.8)
16S rRNA gene collection was used as a reference data-
base for taxonomy assignment [23].
Data generated by MinION were collected using Min-

Know software v19.06.8 (https://nanoporetech.com).
The Guppy v3.2.2 basecalling toolkit was used to base
call raw fast5 to fastq (https://nanoporetech.com). Pore-
chop v0.2.2 was used for adapter trimming and sample
demultiplexing (https://github.com/rrwick/Porechop).
The Porechop adapter list was (adapters.py) edited

Table 1 Feed formulations used for the experiment (Continued)

Pre-starter diet Starter diet

0% FRS 2.5% FRS 5% FRS 0% FRS 2.5% FRS 5% FRS

Threonine 0.92 0.92 0.92 0.81 0.81 0.81

Tryptophane 0.30 0.31 0.31 0.26 0.26 0.26

Valine 1.03 1.03 1.03 0.90 0.90 0.90

Isoleucine 0.78 0.78 0.78 0.70 0.69 0.69
aProvided the following per kilogram of feed: Vitamin A 13,000 IU; vitamin D3 2000 IU; Vitamin E 165 mg; vitamin B1 2.5 mg; vitamin B2 7.0 mg; biotin 200 mcg;
vitamin B6 4 mg; vitamin B12 50 mcg; vitamin K3 mg; Niacin 35mg; folic acid 1.5 mg; Pantothenic acid 21.7 mg; vitamin C 100 mg; choline 0 mg; Fe 180 mg; Zn
150 mg; Cu 0mg; Mn 55mg; Se 0.4 mg; I 0.6 mg; Mg 0mg. bmethionine + cysteine
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accordingly and is given in Table S1 (Additional file).
Sequences containing quality scores (fastq files) were
quality corrected using NanoFilt (q ≥ 10; read length >
1Kb). Taxonomy assignment of quality corrected reads
against Greengenes (13.8) database was conducted using
uclast method implemented in parallel_assign_tax-
onomy_uclust.py (QIIME v1.9.1). The uclust settings
were tuned on mock communities (−-similarity 0.8;
min_consensus_fraction 0.51) assuring annotations to
the lowest taxonomic level with no false positive annota-
tions. The settings allowed it to treat individual ampli-
con sequence variants as individual “seeds”. Reads
classified to at least phylum level were subjected for
further analysis.

Statistics
All the statistical analysis of phenotypic data was per-
formed with R (v3.6.2). The piglet production perform-
ance was evaluated using linear mixed model to control
the confounding variables like pen difference as previ-
ously described [5]. Orthogonal polynomial contrast was
used to appreciate the effect on increasing dose of the
FRS (0%, 2.5%, 5%). The performance analysis took 28
days of life as assessment starting point and the last 2
weeks in the pre-starter (42 and 49 days of life) and
starter diet period (77 and 85 days of life) as the end
point. The blood hematology and biochemistry data
were analyzed by R package compareGroups [24] (v4.0)
using “comparaGroups” command and the descriptive

Table 2 Performance of piglets subjected to three dietary regimens

Parameters 0% FRS 2.5% FRS 5% FRS SEM P value

TG TG

L Q

Weaning weight, kg (d 28) 6.07 ± 0.33 6.24 ± 0.34 5.99 ± 0.66

Body weight at age of interest, kg

42 6.77 7.00 6.55 0.406 0.579 0.890 0.428

49 8.24 8.75 8.41 0.418 0.563 0.746 0.314

77 20.5 21.6 20.2 1.18 0.537 0.842 0.341

85 23.2 25.1 23.7 1.82 0.467 0.823 0.269

ADFI, kg/d

d 28–42 0.162 0.183 0.166 0.015 0.437 0.830 0.231

d 28–49 0.233 0.232 0.230 0.020 0.985 0.900 0.967

d 28–85 0.516 0.572 0.546 0.037 0.418 0.477 0.236

d 50–77 0.626 0.661 0.632 0.031 0.531 0.879 0.299

d 50–85 0.671 0.763 0.719 0.058 0.365 0.460 0.199

ADG, kg/d

d 28–42 0.049 0.063 0.049 0.025 0.835 0.993 0.574

d 28–49 0.103 0.122 0.118 0.017 0.681 0.506 0.499

d 28–85 0.306 0.339 0.316 0.034 0.584 0.790 0.343

d 50–77 0.439 0.456 0.420 0.037 0.623 0.702 0.476

d 50–85 0.423 0.467 0.431 0.045 0.486 0.993 0.574

FCR

d 28–42 6.78 7.42 7.13 3.12 0.938 0.878 0.740

d 28–49 2.37 2.12 2.09 0.311 0.681 0.486 0.683

d 28–85 1.80 1.68 1.76 0.147 0.584 0.834 0.515

d 50–77 1.44 1.45 1.55 0.084 0.485 0.365 0.597

d 50–85 6.78 7.42 7.13 3.12 0.938 0.878 0.740

Completion rate, %

d 28–42 95.2 96.9 96.1 2.10 0.773 0.74 0.504

d 28–49 94.1 95.1 94.3 2.29 0.847 0.921 0.601

d 28–85 94.8 94.4 89.1 3.60 0.472 0.328 0.564

ADFI Average daily feed intake; ADG Average daily gain; FCR Feed conversion ratio; TG Treatment group; L Linear effect; Q Quadratic effect; The statistical
significance between different dosage group is based on the result of orthogonal contrasts
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Table 3 Blood hematology and biochemistry analysis of piglets under the three feeding regimens. Respectively n = 10, 10, 10 for
the feeding regimens with 0%, 2.5% and 5% added lacto-fermented rapeseed-seaweed blend (FRS), respectively

0% FRS
(n = 10)

2.5% FRS
(n = 10)

5% FRS
(n = 10)

P.overall P.0% FRS vs.
2.5% FRS

P.0% FRS vs.
5% FRS

P.2.5% FRS vs.
5% FRS

Erythrocyte count, 1012cells/L 6.12 [5.77;6.47] 5.75 [5.43;6.07] 5.87 [5.48;6.26] 0.25 0.23 0.50 0.85

Hemoglobina, g/dL 10.06 [9.53;10.59] 10.07 [9.37;10.77] 9.81 [9.16;10.46] 0.76 1.00 0.80 0.79

Hematocrit, % 33.37 [31.51;
35.23]

33.74 [30.92;
36.56]

32.21 [29.92;
34.50]

0.56 0.97 0.71 0.56

Mean corpuscular volume, fL 54.65 [52.42;
56.88]

58.73 [55.51;
61.95]

54.98 [52.87;
57.09]

0.03 0.04 0.98 0.07

Mean corpuscular hemoglobin,
pg/cell

16.49 [15.83;
17.15]

17.55 [16.76;
18.34]

16.77 [16.04;
17.50]

0.07 0.07 0.81 0.22

Mean corpuscular hemoglobin
concentration, g/dL

30.20 [29.19;
31.21]

29.93 [28.76;
31.10]

30.49 [29.72;
31.26]

0.67 0.90 0.89 0.65

Red cell distribution width, % 24.00 [22.30;
25.70]

22.37 [19.66;
25.08]

24.25 [21.95;
26.55]

0.37 0.49 0.98 0.40

Platelets, 1011cells/L 3.74 [3.11;4.38] 3.44 [2.61;4.28] 3.35 [2.48;4.21] 0.71 0.81 0.70 0.98

Leucocyte, 1010cells/L 3.64 [2.67;4.61] 2.93 [2.31;3.54] 2.97 [2.40;3.54] 0.24 0.29 0.33 0.99

Neutrophile, % 55.15 [43.11;
67.19]

47.54 [38.74;
56.34]

56.39 [47.12;
65.66]

0.33 0.46 0.98 0.36

Limphocytes, % 40.73 [28.77;
52.69]

47.14 [37.79;
56.49]

38.05 [28.54;
47.56]

0.37 0.59 0.91 0.35

Monocytes, % 3.37 [1.59;5.15] 4.21 [2.68;5.74] 4.57 [2.04;7.10] 0.62 0.78 0.60 0.95

Eosinophile, % 0.21 [<0.01;0.42] 0.73 [0.09;1.37] 0.66 [0.01;1.31] 0.27 0.29 0.39 0.98

Basophile, % 0.54 [0.08;1.00] 0.38 [0.11;0.65] 0.33 [0.09;0.57] 0.59 0.73 0.59 0.97

Alanine aminotransferase, units/L 54.80 [40.63;
68.97]

45.70 [39.21;
52.19]

48.90 [37.41;
60.39]

0.43 0.41 0.68 0.89

Aspartate aminotransferase, units/L 120.50 [40.71;
200.29]

69.40 [54.69;
84.11]

85.40 [56.14;
114.66]

0.26 0.25 0.51 0.87

Lactate dehydrogenase, units/L 1072.20 [690.90;
1453.50]

960.30 [836.86;
1083.74]

969.10 [702.71;
1235.49]

0.78 0.80 0.82 1.00

Glucose, mg/dL 102.10 [91.99;
112.21]

110.00 [95.14;
124.86]

105.90 [86.28;
125.52]

0.72 0.69 0.92 0.90

Total protein, g/dL 4.41 [3.86;4.96] 4.68 [4.30;5.06] 4.87 [4.15;5.59] 0.44 0.73 0.41 0.85

Blood urea nitrogen, mg/dL 19.50 [16.04;
22.96]

10.00 [5.29;14.71] 13.20 [9.87;16.53] <0.01 <0.01 0.04 0.40

Phosphorous, mg/dL 9.65 [7.82;11.48] 9.52 [8.38;10.66] 8.80 [7.33;10.27] 0.63 0.99 0.64 0.73

Cholesterol, mg/dL 73.00 [57.36;
88.64]

70.00 [59.74;
80.26]

62.60 [53.55;
71.65]

0.37 0.92 0.36 0.59

Triglycerides, mg/dL 44.00 [25.70;
62.30]

49.30 [35.66;
62.94]

41.50 [33.51;
49.49]

0.66 0.82 0.96 0.65

Cholesterol LDLa, mg/dL 39.94 [30.50;
49.38]

38.39 [30.86;
45.92]

33.71 [27.46;
39.96]

0.43 0.95 0.42 0.61

Cholesterol HDLb, mg/dL 33.99 [26.12;
41.86]

34.33 [28.81;
39.85]

29.48 [24.02;
34.94]

0.41 1.00 0.50 0.45

IgG, μg/mL 2625.95 [2075.63;
3176.26]

2163.86 [1945.63;
2382.08]

2559.73 [2110.51;
3008.95]

0.20 0.22 0.97 0.32

Lysozyme, pmol/mL 168.09 [119.95;
216.22]

154.15 [121.86;
186.44]

156.09 [119.40;
192.78]

0.83 0.84 0.88 1.00

aHigh-density lipoprotein
bLow-density lipoprotein
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table was generated by “createTable” command. In R
package compareGroups, the significant differences
among groups were determined by ANOVA and Tukey’s
procedure for post hoc tests. Wilcoxon rank-sum test
was used to evaluate the histological difference between
groups.
For microbiome analysis, QIIME 2 [25] (v2018.11) and

R packages ggplot2, vegan, corrplot, Rhea, rstatix and
vennDiagram were used. Three samples were removed
due to inadequate library size (< 1,000 counts), resulting
in n = 9, 8, 10 for 0%, 2.5% and 5% FRS group, respect-
ively. For both sequencing strategies, all the samples
were summarized at the L7 levels (species) and rarefied
to the same sequencing depth (11,000 reads/sample) for
alpha and beta diversity calculations. Rarefaction on the
zOTU table (Illumina data) was adopted as comparison
for rarefaction on the species-level summarized table.
The sequencing depth (11,000 reads/sample) was
assessed with the good’s coverage index and it ranged
between 99.7% to 100% for all samples. Principal coord-
inate analysis (PCoA) plots were generated using binary
Jaccard and Bray Curtis distance metrics, and PERM
ANOVA was performed to determine differences be-
tween groups and P values were adjusted by Benjamini-
Hochberg correction. ANCOM [26] was adopted to
identify differentially abundant taxa summarized at L7
level. For identified taxa by ANCOM, Wilcoxon rank-
sum test was adopted for pairwise comparison. Pheno-
typic data were integrated with species-level bacterial
abundances by Pearson’s correlation analysis using R
package Rhea [27]. Rare microbial features were
removed with a cutoff of mean relative abundance

> 0.1% and minimal presence among 30% of samples.
Zeros of microbial feature abundance were regarded
as NA and excluded in the correlation analysis to
avoid the bias induced by extreme values. Centered
log-ratio transformation was conducted in both the
microbial relative abundance and phenotypic data.

Results
Piglet performance, blood hematology, blood
biochemistry and systemic immunoglobulin
The performance data in the last 2 weeks of the pre-
starter and starter diet period were taken to assess
changes under different feeding regimes. Piglets fed with
2.5% FRS showed numerically increased final body
weight (85 days of age) in comparison with those on the
basal diet. However, orthogonal polynomial contrast in-
dicated no significant differences in body weight, ADFI,
ADG, FCR between the three groups (Table 2). The
completion rate for piglets in the experiment (i.e., not
dead or removed due to the need for antibiotics treat-
ment) did not differ between the treatment groups. In
the sub-group of piglets euthanized 3 weeks after wean-
ing, we found no statistical differences in blood
hematology, blood chemistry and systemic immuno-
globulin parameters between treatment groups, except
for the levels of blood urea nitrogen (BUN) and mean
corpuscular volume (Table 3). Relative to piglets fed
without FRS inclusion, 2.5% FRS reduced plasma con-
centrations of BUN, but increased mean corpuscular vol-
ume. The piglets in 5% FRS group showed a similar
tendency, but only with significantly declined BUN
concentrations.

Fig. 1 The colon microbiota profiles of weaner piglets under FRS feeding regimens. The microbial features are collapsed at the lowest identified taxonomic
assignments. Respectively n= 9, 8, 10 for feeding regimens with 0%, 2.5% and 5% added lacto-fermented rapeseed-seaweed blend (FRS)
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High level of accordance between the short and long
read amplicon sequencing strategies
Two different sequencing strategies were applied: Illu-
mina NextSeq-based amplicon sequencing of the 16S
rRNA gene V3 variable region (Illumina V3) and
ONT based sequencing of V1-V8 variable regions
(ONT V1-V8). Out of 99 unique taxonomic groups
found by the two methods, 78 were shared (Add-
itional file 1: Fig. S1A). The accordance was further
improved when abundance threshold was adjusted
(Additional file 1: Fig. S1B-D). The taxonomic groups
with relative abundance above 3% were identical in
the two methods (Additional file 1: Fig. S1E) and the
overlapped detections overall showed good positive
correlation in between (Additional file 1: Fig. S1F).
Both methods revealed that the most dominant bac-
terial groups belonged to genus Lactobacillus and
families: Ruminococcae and Lachnospiraceae inde-
pendent of treatment (Fig. 1).

Dietary inclusion of FRS induced distinct shifts in the
colon microbiota composition
Both sequencing approaches revealed alterations in
gut microbial diversity in piglets under different
feeding regimens. FRS inclusion resulted in increased
Shannon diversity and observed features. The effect
was consistent, when the analysis was performed
based on the zOTU table (Fig. 2a), and the summa-
rized species-level table (Fig. 2b) from Illumina data
and ONT data (Fig. 2c). Increasing the FRS inclusion
from 2.5% to 5% did not lead to significant changes
of alpha diversity between the two groups (Fig. 2a–
c). Beta diversity analysis on binary Jaccard (qualita-
tive) and Bray Curtis dissimilarity metrics (quantita-
tive) indicated that introduction of FRS in the feed
influenced the colon microbiota composition of
weaner piglets. These changes were more pro-
nounced in the 2.5% FRS group relative to the 5%
FRS (Fig. 2d-f).

Fig. 2 Dietary inclusion of FRS induced distinct shifts in the colon microbiota composition. Observed zOTUs and Shannon diversity based on
rarefied zOTU table with Illumina sequencing on V3 region (Illumina V3) (a); Observed features and Shannon diversity based on species-level
summarized table by Illumina V3 (b) and Oxford Nanopore sequencing on V1-V8 region (ONT V1-V8) (c). The mean value for each group is
marked as a bold line respectively. PCoA plots of binary Jaccard and Bray Curtis distance metrics based on the rarefied ASV table of Illumina V3
(d), species-level summarized table of Illumina V3 (e) and species-level summarized table of ONT V1-V8 (f). The ellipses suggest the respective
80% confidential area following multivariate t-distribution. Respectively n = 9, 8, 10 for feeding regimens with 0%, 2.5% and 5% added lacto-
fermented rapeseed-seaweed blend (FRS). For pairwise Wilcoxon rank-sum tests on alpha diversity metrics, the labels of *, ** represent P < 0.05, <
0.01 respectively. For PERMANOVA tests, P values below 0.05 are heighted in yellow
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Dietary inclusion of 2.5% FRS increased the Prevotella
stercorea and Mitsuokella abundance in colon
The relative abundances of Prevotella stercorea and
Mitsuokella spp. were increased in the 2.5% FRS-
feeding group compared to the none-FRS diet and
for most comparisons also in 5% FRS (Fig. 3a–d).
The relative abundance of Prevotella stercorea
(Illumina V3) was shown to be positively correlated
with the colon mucosa thickness and negatively cor-
related to the blood leucocytes counts and serum
IgG concentrations (Fig. 4a), while this observation
was only near-significant using ONT (Fig. 4b).
There were 83 significant correlation pairs between

bacteria relative abundance by Illumina V3 sequen-
cing and phenotypic indicators, while ONT resulted
in 114 significant pairs. Although two methods gave
similar associations and trends for the overlapped
pairs, only one taxon, Faecalibacterium prausnitzii
showed identical accordance in correlations to the
phenotypic data. The relative abundance of F. praus-
nitzii was positively correlated with colon mucosa
thickness but negatively associated with the serum
concentrations of aspartate aminotransferase, lactate
dehydrogenase and IgG (Additional file 2: Fig. S2).

Gastrointestinal histological analysis of the weaned
piglets
The morphological characteristics of intestinal tissues ob-
tained from piglets in the different treatment groups are
shown in Fig. 5a. All animals fed 0%, 2.5% and 5% FRS
presented normal ranges for heights and structures of villi
and intestinal crypts. The continuity and height of the je-
junal and colonic epithelium were more pronounced in
both FRS groups compared to the piglets on the basal feed
with no added FRS. In the jejunal epithelium and stroma,
the piglets fed with FRS had reduced IEL and SL infiltra-
tion compared to 0% FRS group, with 2.5% FRS showing
the best effect (Fig. 5b). We found the similar tendency of
alleviated focal inflammation in the colon tissues of 2.5%
FRS, but with no significant difference between treatment
groups (Fig. 5c). Diffuse lymphoid follicles at the base of
the mucosa were visible with normal size and structure in
jejunum and colon. No clear stimulation of lymphoid folli-
cles was observed in all gut tissues. Neither did FRS inclu-
sion result in the aggregation of jejunal and colonic
lymphoid follicles (Fig. 5d). Histological evaluation did not
show damaged intestinal epithelial barrier in any group
but the mucous membrane was higher with deeper intes-
tinal crypts in the 2.5% FRS relative to 0% FRS (Fig. 5e).

Fig. 3 Dietary inclusion of 2.5% FRS increased the Prevotella stercorea and Mitsuokella abundance in colon. The Prevotella stercorea and
Mitsuokella spp. abundances determined by Illumina sequencing on V3 region of 16S rRNA gene (a) and Oxford Nanopore sequencing on
V1-V8 region of 16S rRNA gene (b). Data in the bar plot was presented as mean value and SEM error bar. Respectively n = 9, 8, 10 for
feeding regimens with 0%, 2.5% and 5% added lacto-fermented rapeseed-seaweed blend (FRS). The labels of *, **, *** represent P < 0.05,
< 0.01, < 0.005 respectively
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Fig. 4 Colon Prevotella stercorea abundance was associated with colon mucosa thickness, serum leucocyte and IgG concentrations. The
correlations pairs were statistically significant using the taxa abundance from V3 region 16S rRNA gene sequencing (a), similar trends yet not
significant were found using the taxa abundance from V1-V8 region 16S rRNA gene sequencing (b)

Fig. 5 Gastrointestinal histological analysis of the weaned piglets. Histopathological micrograph of jejunum and colon under 10× magnification (a),
gastrointestinal inflammation measured by the number of lymphocytes infiltrated at the epithelium (IEL) and stroma (SL) of jejunum (b) and colon (c), the
numbers of lymphoid follicles per squared millimeter in jejunum and colon (d) and colon mucosa thickness (e). Respectively n= 9, 8, 10 for feeding regimens
with 0%, 2.5% and 5% added lacto-fermented rapeseed-seaweed blend (FRS). The labels of *, **, *** represent P<0.05, < 0.01, < 0.005 respectively
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Discussion
In modern pig production, the weaning of piglets is
usually conducted at an early age, with physiological
stress from changes in diet, environment and social
groups. Hence, many weaned piglets experience in-
testinal and immune dysfunction, elevated risk of in-
fection with enteric pathogens, diarrhea, and lowered
weight gain due to reduced feed intake and poorer
utilization of ingested nutrients [28]. Reduced weight
gain and high mortality rate among the weaned pig-
lets are undesirable in production. Preventive mea-
sures, such as use of in-feed antibiotics, have been
banned by the European Union (EU) back in 2006,
while the commonly used zinc oxide will be banned
in 2022. Therefore, there is an urgent need for alter-
native strategies. We have shown that FRS feed in-
creased the jejunal villus development of weaned
piglets, stimulated colon mucosal development and
reduced signs of intestinal inflammation [5]. Since
FRS was demonstrated to be effective without in-
feed zinc oxide, in the present study, we further in-
vestigated the dose-dependent influence of FRS on
gut microbiome composition and its plausible link
with phenotypic indicators.
To study the gut microbiome composition, we have

adopted two sequencing strategies on different regions
of microbial 16S rRNA gene. The short-read 16S rRNA
gene amplicon sequencing by Illumina platform was
compared with the near-full length 16S rRNA gene se-
quencing method by ONT. The two strategies showed
satisfying accordance and allowed to draw the same
overall conclusions including the taxonomic detections
at the species level, which is challenging even when dif-
ferent hypervariable regions of 16S rRNA gene are pro-
filed with the same sequencing platform [29–31].
Data generated with both sequencing strategies con-

firmed significant changes of gut microbiota compos-
ition in response to dietary FRS supplementation. This
effect was more pronounced in the 2.5% FRS group
relative to the 5% FRS. The colon microbiota of piglets
under FRS feeding regimen had increased Shannon di-
versity, suggesting a more diverse and uniformly dis-
tributed microbial community than the piglets fed the
basal diet. High microbial diversity is generally desir-
able, as it has been demonstrated to exclude pathogenic
microbes, improve immune response and reduce necro-
tizing enterocolitis and post-weaning diarrhea inci-
dences [32–34]. FRS supplementation led to increased
relative abundance of Prevotella stercorea and Mitsuo-
kella spp., especially pronounced in the 2.5% FRS
group. Prevotella is known to be the major contributor
to the microbiome of post-weaned piglets given the
ability to degrade plant fibers in the solid diet. The spe-
cies P. stercorea has previously been described as a

member of the healthy pig gut microbiome [35] and
also a potent producer of SCFAs [36, 37], which main-
tain the intestinal barrier function through providing
energy resources and immunoregulatory regulation
[38–40]. Our data indicated that the abundance of
P. stercorea correlated positively with colon mucosa
thickness, which is not surprising, since Prevotella spp.
are recognized colonizers of the mucosal sites [41]. It is
also reported that complex hemicelluloses and cellulose
most likely enhances the mucosal abundance of P. ster-
corea [42, 43]. The negative correlation of P. stercorea
with the serum levels of leucocytes and IgG could sug-
gest that increased abundance of P. stercorea on the
more fibrous FRS supplemented diet stimulated the gut
barrier and immune function, reducing the risk of sys-
temic inflammation.
Faecalibacterium prausnitzii is one of the main butyr-

ate producers found in the gastrointestinal tract [44].
Butyrate plays a vital role in gut physiology and gut
health, serving as a main energy source for the colono-
cytes and a protector against inflammatory disease and
colorectal cancer [45, 46]. Many studies have linked the
reduced abundance of F. prausnitzii with different intes-
tinal disorders, hence it has been proposed that F. praus-
nitzii is a potential biomarker of gut health [47]. Our
data indicated that F. prausnitzii abundance in colon
correlated positively with colon mucosa thickness and
negatively with serum levels of two enzymes released
from the liver i.e., aspartate aminotransferase and lactate
dehydrogenase, and IgG. Increased concentration of the
hepatic enzymes in blood is a sign of liver malfunction
while IgG is a systemic indicator of host inflammation.
Our findings are in line with studies demonstrating the
ability of F. prausnitzii to reduce inflammation and im-
prove the liver function in murine models [48, 49] and
human trials [50].
Although the microbiota data suggested there was

no distinct impact with regards to the inclusion levels
of FRS (2.5% versus 5%), it is important to note that
we found significantly alleviated lymphocyte invasion
in jejunum and enhanced colon mucosa barrier func-
tion solely among piglets receiving 2.5% FRS. Mean-
while, inclusion of 5% FRS did not lead to further
improvements of production performance (ADG, FCR,
completion rate). Possibly, if excessive FRS are added,
the piglets are exposed to more bioactive components
from either the rapeseed or seaweed. Even though
they are beneficial in low amounts, excessive intake
can increase the physiological stress in the weaning
period and become counterproductive to FCR. Young
animals are more sensitive to the anti-nutritional fac-
tors like glucosinolates [51] than adult animals, and
thereby our results indicate that the inclusion of 2.5%
FRS is a superior choice than 5% FRS.
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Conclusion
Our study demonstrates that inclusion of 2.5% FRS in
feed alleviated signs of lymphocyte invasion in jejunum
and improved the colon mucosa barrier with reshaped
microbiota community. 2.5% FRS supplementation led
to increased microbial diversity in colon and elevated
the abundances of Prevotella stercorea and Mitsuokella
spp.
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