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gene networks, performance and liver lipid
content in dairy cows
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Abstract

Background: Main objectives were to determine to what extent Smartamine M (SM) supplementation to a prepartal
higher-energy diet could alter neutrophil (PMN) and liver tissue immunometabolic biomarkers, and whether those
responses were comparable to those in cows fed a prepartal lower-energy diet (CON).

Results: Twenty-eight multiparous Holstein cows were fed CON (NE_ = 1.24 Mcal/kg DM) during d =50 to d —22 relative
to calving. From d —21 to calving, cows were randomly assigned to a higher-energy diet (OVE, n=9; NE, = 1.54 Mcal/kg
DM), OVE plus SM (OVE + SM, n = 10; SM = 0.07 % of DM) or remained on CON (n =9). All cows received the same basal
lactation diet (NE_ = 1.75 Mcal/kg DM). Supplementation of SM (OVE + SM) continued until 30 d postpartum. Liver
biopsies were harvested at d —10, 7, and 21 relative to parturition. Blood PMN isolated at —10, 3, and 21 d relative
to calving was used to evaluate gene expression. As expected, OVE increased liver lipid content postpartum; however,
cows fed OVE + SM or CON had lower concentrations than OVE. Compared with OVE, cows in CON and OVE + SM had
greater DMI postpartum and milk production. Furthermore, cows fed OVE + SM had the greatest milk protein and fat
percentage and lowest milk SCC despite having intermediate PMN phagocytic capacity. Adaptations in PMN gene
expression in OVE + SM cows associated with the lower SCC were gradual increases from —10 to 21 d in genes that
facilitate migration into inflammatory sites (SELL, [TGAM), enzymes essential for reducing reactive oxygen metabolites
(SOD1, SOD?2), and a transcription factor(s) required for controlling PMN development (RXRA). The greater expression of
TLR4 on d 3, key for activation of innate immunity due to inflammation, in OVE compared with CON cows suggests a
more pronounced inflammatory state. Feeding OVE + SM dampened the upregulation of TLR4, despite the fact that
these cows had similar expression of the pro-inflammatory genes NFKBT and TNF as OVE. Cows in CON had lower
overall expression of these inflammation-related genes and GSR, which generates reduced glutathione, an important
cellular antioxidant.

Conclusions: Although CON cows appeared to have a less stressful transition into lactation, SM supplementation was
effective in alleviating negative effects of energy-overfeeding. As such, SM was beneficial in terms of production and
appeared to boost the response of PMN in a way that improved overall cow health.
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Background

Cows around calving time experience a depression on
immune function partially due to the marked negative
energy balance (NEB), which results when cows cannot
ingest enough nutrients to support dietary requirements
for milk production. During this time, methionine (Met)
as one of the first limiting AA in dairy cows may be in
limited supply. Research has demonstrated that Met
plays a key role in milk protein synthesis, hepatic lipid
metabolism, and immune function [1-3].

The decreased immune function during the peripartal
period is partly responsible for the high incidence of
infections [4, 5]. An effective immune response relies
upon the efficient activation of polymorphonuclear neu-
trophils (PMN) [6]. PMN account for 25 % of leukocytes
in bovine peripheral blood of healthy animals [7] and
form the first line of cellular defense against invading
pathogens [8].

Controlling prepartal energy intake has been associ-
ated not only with optimized hepatic lipid metabolism
[9, 10] but also with a reduced inflammatory response
after calving [9]. In contrast, energy-overfed cows often
have greater hepatic lipid accumulation [11-13] increasing
the risk of metabolic disorders during the peripartal
period. Earlier studies have reported that over-feeding
energy diets during the close-up period leads to a striking
increase in serum NEFA and BHBA postcalving, both of
which likely affect the immune response [14, 15]. We have
recently observed that over-feeding energy during the dry
period upregulated the expression of genes associated
with the proinflammatory response such as NFKBI,
TLR2, RXRA, and PLA2G4A [6].

Rumen-protected Met in the form of Smartamine M
(SM; Adisseo NA, Alpharetta, GA, USA) is effective in
providing extra metabolizable Met to balance peripartal
diets, which in turn helps to optimize DMI, milk pro-
duction, and improve whole blood phagocytosis cap-
acity [3]. Our hypothesis was that SM during the
peripartal period alleviates the negative effects of a pre-
partal higher-energy diet on PMN function as well as
blood and liver tissue immunometabolic biomarkers,
which are ultimately reflected in an impaired postpartal
performance. Furthermore, it was hypothesized that
beneficial effects of SM would result in responses com-
parable to those detected in cows fed a prepartal lower-
energy diet. The hypothesis was addressed by measur-
ing gene expression in PMN, biomarkers in blood and
liver tissue, and performance.

Methods

Animals, experimental design, and animal management
Animal handling procedures were performed in accord-
ance with protocols approved by the University of Illinois
Institutional Animal Care and Use Committee. Complete
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details of the experimental design have been reported pre-
viously [3, 13]. Although published separately, all dietary
treatments were run concurrently. Briefly, a subset of
cows from a group of 65 that remained healthy through-
out the study with the most complete set of PMN samples
(d -10, 3, and 21) during the transition period were
selected. All cows in the experiment were fed a lower-
energy diet (CON; NE = 1.24 Mcal/kg DM; no Met sup-
plementation) for ad libitum intake during the far-off dry
period (ie., d =50 to d —21). During the close-up period
(ie, d -21 d to calving), cows were randomly assigned
either to a higher-energy diet (OVE; NE; = 1.54 Mcal/kg
DM), OVE plus Smartamine M (OVE + SM; Adisseo NA)
or remained on CON (Table 1). The same basal lactation
diet (NEp = 1.75 Mcal/kg DM) was fed to all cows postpar-
tum until 30 DIM. The number of cows used in the
present study was 9, 10, and 9 in OVE, OVE + SM, and
CON. The SM (0.07 % of DM) was top-dressed during the
entire experiment over the OVE or lactation diet from -21
DIM through 30 DIM. Consecutive morning, midday, and
evening milk samples were harvested until 30 DIM.
Composite milk samples were prepared in proportion to
milk yield at each milking, preserved (800 Broad Spectrum
Microtabs II; D & F Control Systems Inc., Sab Ramon,
CA), and analyzed for contents of fat, protein, lactose, and
SCC (Dairy Lab Services, Dubuque, IL). The SCC data
were logl0 transformed prior to statistical analysis. Per-
formance data from all cows in CON and OVE have been
published previously by Ji et al. (2012), and data from all
cows in OVE and OVE + SM by Osorio et al. [3]. There-
fore, in order to combine the performance data for CON,
OVE, and OVE + SM they were re-analyzed using only
cows from which PMN were isolated.

Blood metabolites and liver composition

Blood was sampled from the coccygeal vein at d -21, -10,
7, 14 and 21 relative to parturition. Samples were collected
into evacuated serum tubes (BD Vacutainer; BD and Co.,
Franklin Lakes, NJ) containing either clot activator or
lithium heparin for serum and plasma, respectively. After
blood collection, tubes with lithium heparin were
placed on ice and tubes with clot activator were kept at
21 °C until centrifugation (~30 min). Serum and plasma
were obtained by centrifugation at 1900 x g for 15 min
at 4 °C. Aliquots of serum and plasma were frozen
(-20 °C) until further analysis. Measurements of NEFA,
BHBA and glucose were performed using commercial
kits in an autoanalyzer at the University of Illinois
Veterinary Diagnostic Laboratory (Urbana). Insulin con-
centration was quantified using a commercial bovine insu-
lin ELISA kit (catalog no. 10-1201-01; Mercodia AB,
Uppsala, Sweden). The concentration of very-low-
density lipoproteins (VLDL) was determined using a
high-density lipoprotein and low-density lipoprotein
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Table 1 Ingredient and chemical composition of diets

Close-up period® Lactation®
[tem CON OVE OVE + SM
Ingredient, % of DM
Alfalfa silage 12.00 8.20 8.20 5.00
Alfalfa hay — 350 350 4.00
Corn silage 33.00 35.90 35.90 33.00
Wheat straw 36.00 1540 1540 4.00
Cottonseed — — — 350
Wet brewers grains — 6.00 6.00 10.00
Ground shelled corn 4.00 13.00 13.00 2220
Soy hulls 2.00 4.00 4.00 4.00
Soybean meal, 48 % CP  7.94 3.10 3.10 330
Expeller soybean meal® — 2.00 2.00 6.20
SoyChlor 0.15 3.80 3.80 —
Blood meal, 85 % CP 1.00 1.00 1.00 0.30
Smartamine M® — — 0.07 —
Urea 045 030 0.30 0.14
Rumen-inert fat' — — — 1.00
Limestone 1.30 1.30 1.30 118
Salt (plain) 032 0.30 0.30 0.27
Dicalcium phosphate 0.12 0.18 0.18 0.27
Magnesium oxide 0.21 0.08 0.08 0.14
Magnesium sulfate 091 097 097 —
Sodium bicarbonate — — — 0.75
Potassium carbonate — — — 0.10
Calcium sulfate — — — 0.10
Mineral-vitamin mix? 0.20 0.20 0.20 0.20
Vitamin A" 0.015 0.015 0.015 —
Vitamin D' 0.025 0.025 0.025 —
Vitamin P 0.38 0.38 0.38 —
Biotin — 0.35 035 035
DMK, % 466+08 452+08 452+08 452+15
Chemical analysis, %
NE_, Mcal/kg 1.24 147 147 1.65
CP, % of DM 146 156 15.6 16.3
ADF, % of DM 36.2 302 30.2 241
NDF, % of DM 527 44.7 44.7 379

“The control diet (CON) was fed to all cows during the far-off dry period (—50
to —21 d relative to expected calving). During the close-up period (-21 d to
calving) cows were assigned either to a higher-energy diet (OVE), OVE plus
Smartamine M (OVE + SM) or continuously fed the CON diet

PAll cows received the same lactation diet; however, Smartamine M (0.07 % of
DMI) supplementation to the OVE + SM diet continued until 30 DIM

“SoyPLUS (West Central Soy, Ralston, IA, USA)

4SoyChlor (West Central Soy, Ralston, IA, USA)

€Smartamine M (Adisseo NA, Alpharetta, GA, USA)

fEnergy Booster 100 (MSC, Carpentersville, IL, USA)

9Contained a minimum of 5% Mg, 10% S, 7.5 % K, 2.0 % Fe, 3.0 % Zn, 3.0 % Mn,
5000 mg of Cu/kg, 250 mg of I/kg, 40 mg of Co/kg, 150 mg of Se/kg, 2200 kIU of
vitamin A/kg, 660 klU of vitamin D3/kg, and 7700 IU of vitamin E/kg

"Contained 30,000 kiU/kg

iContained 5009 kiU/kg

IContained 44,000 1U/kg

“Means + SD

Page 3 of 12

(LDL)/VLDL cholesterol quantification kit (catalog no.
K613-100; BioVision Inc., Mountain View, CA).

Liver biopsies were harvested at d —-10, 7, and 21 rela-
tive to parturition from cows under local anesthesia
using the same procedures as described previously
(Osorio et al., 2013). Liver was frozen immediately in
liquid nitrogen and stored until further analysis for concen-
tration of total lipid [16] and triacylglycerol (TAG) [17, 18].

PMN isolation

Neutrophils were isolated based on procedures described
by Moyes et al. [19] with modifications. Briefly, blood
(~120 mL) was sampled from the coccygeal vein before
morning feeding at -10, 3, and 21 d in ACD Vacutainer
tubes and mixed well by inversion and placed on ice
until isolation. Samples were centrifuged at 600 x g for
30 min at 4 °C. The plasma, buffy coat, and approxi-
mately one-third of the red blood cells were discarded.
The remaining sample was poured into a 50-mL conical
tube (Fisher Scientific, Pittsburgh, PA). Twenty-five
milliliters of deionized water at 4 °C was added to lyse
red blood cells, followed by addition of 5 mL of 5 x PBS
at 4 °C to restore an iso-osmotic environment. Samples
were centrifuged at 200 x g for 10 min at 4 °C and the
supernatants were decanted. The pellet was washed
with 10 mL of 1xPBS and centrifuged for 5 min
(200 x g at 4 °C) and supernatants were decanted. Eight
milliliters of deionized water at 4 °C was added,
followed by addition of 2 mL of 5 x PBS at 4 °C. Sam-
ples were centrifuged at 500 x g for 5 min at 4 °C and
supernatant was decanted. Two subsequent washings
using 10 mL of 1 x PBS at 4 °C were performed with
samples centrifuged at 500 x g for 5 min at 4 °C and
supernatant was decanted. Although no cell differential
was performed, this protocol routinely results in >88 %
of isolated cells as neutrophils [19-21]. Neutrophils
were immediately homogenized in 2 mL of Trizol Reagent
(Invitrogen, Carlsbad, CA) with 1 uL of liner acrylamide
(Ambion Inc, Austin, TX) using a Polytron power
homogenizer at maximum speed. The suspension was
transferred equally into 2 RNA-free microcentrifuge tubes
(2 mL; Fisher Scientific) and stored at —80 °C until further
analysis.

Whole blood phagocytosis

Details of the phagocytosis procedure were reported
previously [3]. The phagocytic capacity of heparinized
whole blood was determined using the Phagotest kit
(Orpegen Pharma, Heidelberg, Germany) following the
manufacturer’s instructions. In brief, 20 pL of bacteria
Escherichia coli was added to 1 of 3 whole blood sam-
ples (100 pL; 1 control and 2 test samples) in test tubes
(Falcon, Becton Dickinson, Franklin Lakes, NJ) and incu-
bated for 10 min at 37 °C. The cells were resuspended in
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200 pL of DNA-staining solution, and light-protected in
an ice bath until analyzed by flow cytometry (LSR II,
Becton Dickinson, San Jose, CA).

RNA extraction, primer design and evaluation, and
quantitative PCR
Specific details of RNA extraction from PMN, primer
design and evaluation, cDNA synthesis, and quantitative
reverse transcription PCR are presented in the Add-
itional File. Briefly, RNA samples were extracted from
PMN using Qiazol reagent combination with miRNeasy”
Mini Kit (Cat. #217004, Qiagen). The quality of RNA
evaluated by RNA integrity number (RIN) in the 2100
Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA)
was above 6.50. Based on relevant biological functions in
PMN, 16 target genes selected in this study are involved
in metabolism, inflammation, oxidative stress, and cellu-
lar receptors. The official symbol, name, and a short
summary description of these genes are presented in
Additional file 1: Table S1. Primers were designed via
Primer Express 3.0.1 software (Applied Biosystems).
Quantitative PCR (qPCR) was performed by ABI Prism
7900 HT SDS instrument (Applied Biosystems). Details of
primer sequences and amplicon size, primer product
sequencing information, and qPCR performance are pre-
sented in Additional file 1: Table S2, S3, S4, and S5. We
used three genes as internal controls (ICG), oxysterol-
binding protein-like 2 (OSBPL2), golgin subfamily A,
member 5 (GOLGAS), and single-strand-selective mono-
functional uracil-DNA glycosylase 1 (SMUGI). These
were previously confirmed as stably expressed for PMN
gene expression [19]. The final gene expression data were
normalized with the geometric mean of the 3 ICG.

Statistical analysis

Gene expression data were normalized by logarithmic
transformation prior to statistical analysis. Data were
analyzed with the Proc MIXED procedure of SAS 9.4
(SAS Institute Inc., Cary, NC) using diet, time, and
diet x time as fixed effects and cow as random effect.
The exponential correlation covariance structure SP for
repeated measures was used for analysis of gene expres-
sion and phagocytosis data with the following model:

Yie =M+ Di+Tj+ DTy + ax + ek

Where vy is the dependent, continuous variable; p is
the general mean; D; is the fixed effect of the diet (i=1,
2, or 3, namely, CON, OVE or OVE + SM); Tj is the
fixed effect of the time (j =1, 2, or 3, namely, -10, 3, or
21 DIM); DTj is the fixed effect of the ith treatment by
the jth time of the interaction; ay is the random effect of
the individual; ej, is the random residual. For data of
DMI, SCC, milk yield, and milk composition, which
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were equally-spaced, an autoregressive 1 covariance struc-
ture was used while the exponential correlation covariance
structure SP (POW) was used for unequally spaced data
from liver composition and blood metabolites.

Results

Performance and phagocytosis

The complete set of milk yield, milk composition, and
DMI data for the entire group of cows in CON, OVE,
and OVE + SM have already been published by Osorio et
al. [3] and Ji et al. [13]. Only performance data from
cows used for PMN extraction were utilized in the
present analysis. Results for peripartal performance in-
cluding milk yield and components, SCC, ECM, DMI,
and whole blood phagocytosis are presented in Table 2
and Fig. la-d. There was a DxT (P=0.01) for DMI
postpartum mainly due to a slower increment in DMI of
OVE cows after 6 d postpartum. The latter was reflected
in ca. 5.3 kg/d lower (P < 0.01) DMI in OVE than CON and
OVE + SM, while no differences were observed between
CON vs. OVE + SM. In contrast to DMI postpartum, pre-
partal DMI was not affected by diet or D x T.

There were D x T observed for milk protein (P =0.02)
and milk fat (P=0.09), mainly attributed to greater
(P<0.01) concentration in OVE + SM than other treat-
ments during the 1st wk of lactation. Milk yield was
greater (P =0.07) in CON and OVE + SM cows compared
with OVE, while ECM (P =0.06) was lower in OVE than
OVE + SM but similar compared with CON. In addition,
milk yield (P<0.01) and ECM (P =0.02) increased over
time, while milk fat (P <0.01) and milk protein (P <0.01)
decreased (Fig. 1a, ¢, d).

The SCC was lower in cows fed OVE + SM than CON
and OVE (P < 0.04), while CON vs. OVE had similar SCC.
Additionally, SCC declined (P<0.01) over time after
calving for all treatments. There was greater (P<0.01)
phagocytosis in whole blood of CON cows compared with
OVE and OVE + SM, while OVE + SM cows had greater
(P=0.01) phagocytosis than OVE. In contrast to SCC,
whole blood phagocytosis was not affected by time.

Blood biomarkers and liver composition

A D x T interaction was detected for insulin and NEFA
concentration (P < 0.01; Table 2 and Fig. 2a, b). Feeding
OVE + SM compared with OVE and CON led to greater
(P<0.02) insulin concentration after parturition, while
cows in OVE compared with CON had greater (P < 0.01)
insulin at d 7 and 21. Cows fed OVE + SM had lower
(P=0.03) NEFA at d -21 in comparison to OVE and
CON, follow by lower NEFA in OVE and OVE + SM in
comparison to CON at d —10 (P =0.02) compared with
CON, and at d -21. The concentration of BHBA was
not affected (P > 0.05) by treatments.
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Table 2 Effects of different treatments on production responses, somatic cell counts (SCC), whole blood phagocytosis, and blood
and liver tissue biomarkers in Holstein cows fed a lower-energy diet (CON), higher-energy diet (OVE) or OVE plus Smartamine M
(OVE + SM) during the close-up period and through the first 30 d postpartum

ltem? Treatment® SEMP P-value
CON OVE OVE + SM Diet Time DXT

Milk yield, kg/d 4097¢ 3404 4143° 259 007 <001 074
ECM, kg/d 4487° 40.02° 46.90° 226 0.06 0.02 0.17
DM, kg/d

Prepartum 11.52 12.57 12.64 0.57 0.22 <0.01 0.76

Postpartum 16.19° 1128 16.94° 1.22 <0.01 <001 0.01
Feed efficiency 253 301° 247 0.15 003 <001 001
Milk fat, % 460 458 475 018 076 <001 0.09
Milk protein, % 3.10 305 320 0.09 044 <001 0.02
Log-transformed SCC 4.95¢ 4.92¢ 463 0.10 0.06 <001 0.90
Whole blood phagocytosis, % 77.35¢ 41819 51.28f 338 <001 058 0.75
Blood biomarkers

Insulin, ug/L" 166" -130' -0.83¢ 0.19 0.01 <001 <001

NEFA, mEq/L" -0.77 -096 -1.02 0.10 0.16 <001 <001

BHBA, mmol/L" -039 -037 -052 008 030 <001 0.11

Glucose, mg/dL 57.8° 546 535" 155 007 <001 054

VLDL, pg/ul 037 043°f 049° 0.04 001 <001 025
Liver composition, % wet wt

Total lipid" 69 92 7.7 113 0.14 <001 037

TAG 247 470° 3.40°f 065 003 <001 0.15

?CON = lower-energy control energy (n=9; 1.24 Mcal’kg DM); OVE = higher-energy (n = 9; 1.54 Mcal/kg DM); OVE + SM = higher-energy plus Smartamine M (n=10;

SM =0.07 % of DM)
PLargest SEM is shown
“Interaction between diet and time

9ECM = energy corrected milk; VLDL = very-low density lipoproteins; TAG = triacylglycerol
*9Mean values within a row with different superscripts were significantly different (P < 0.05)

PLog,-scale

Feeding OVE and OVE + SM compared with CON
tended (P =0.07) to decrease overall glucose concentra-
tion (Table 2). Although total lipid concentration in liver
was not affected (P> 0.05) by treatments, the diet effect
(P=0.03) in concentration of TAG was reflected in
lower TAG in cows fed CON (P=0.01) and OVE + SM
(P =0.08) compared with OVE (Table 2). The concentra-
tion of VLDL was greater (P=0.03) in OVE + SM fed
cows compared with CON.

Target gene expression

For most of the genes evaluated an interaction diet x
time was observed, which based on the data was most
likely associated with the different response over time
between the CON and OVE + SM group.

Met and glutathione metabolism
A Dx T interaction was observed for GPX1 (P =0.05),
AHCY (P =0.10) and GSR (P = 0.06; Table 3 and Fig. 3a-c).

The expression of AHCY was lower (P=0.02) in CON
than OVE and OVE + SM, while expression was similar
between OVE and OVE + SM cows. The expression of
GPX1 was lower in OVE + SM compared with CON
(P=0.01) and OVE (P=0.01) at -10 d postpartum,
and postpartal expression of GPXI was similar among
treatments. At 21 d postpartum, CON cows had a lower
expression of GSR compared with OVE (P=0.07) and
OVE +SM (P<0.01), but GSR expression was similar
between OVE and OVE + SM.

Inflammation

A D x T interaction was observed for STAT3 (P =0.07),
TLR4 (P=0.06), LTA4H (P =0.01) and RXRA (P =0.03;
Table 3 and Fig. 4a-d). A markedly lower (P <0.01) ex-
pression of LTA4H at -10 d was observed in OVE + SM
and OVE than CON fed cows. The mRNA expression
of TLR4 was greater (P =0.01) in OVE than OVE + SM
cows at 3 d, while TLR4 expression in OVE + SM cows
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Milk yield (kg/d)

DMI postpartum (kg/d)
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Fig. 1 Postpartal milk yield (panel a), DMI (panel b), milk fat (panel c)
and protein (panel d) content in Holstein cows fed a lower-energy
control diet (CON), higher-energy diet (OVE) or OVE plus Smartamine
M (OVE + SM) during the close-up period and through the first 30 d
postpartum. ®°Effect of diet (P < 0.10) at a specific time point

was similar to CON at the same time point. The
expression of STAT3 and RXRA was upregulated in
OVE + SM cows than CON (P =0.05). STAT3 mRNA
expression was similar between OVE and OVE + SM at
21 d postpartum, while RXRA mRNA expression was
greater in OVE + SM than OVE at the same time point.
The diet effect (P<0.01) observed in NFKBI and
TNFA was reflected in a greater mRNA expression of
NFKB1 (P<0.01) and TNFA (P<0.01) in OVE and
OVE + SM cows compared with CON. The diet effect
(P=0.07) observed in TLR4 was associated with a
greater (P=0.05) expression in OVE+SM than CON,
while similar expression was observed between OVE + SM
and OVE.

057 _e_ coN A
—O— OVE
0.0 1 —y— OVE+SM

Log, NEFA (mEq/L)
s

-0.5 4

-1.0 A

-1.5 -

Log, insulin (ng/L)

-2.0 -

-2.5 A

Day relative to parturition

Fig. 2 Non-esterified fatty acids (NEFA) (panel a) and insulin (panel b)
concentration in Holstein cows fed a lower-energy control diet (CON),
higher-energy diet (OVE) or OVE plus Smartamine M (OVE + SM) during
the close-up period and through the first 30 d postpartum. ““Effect of
diet (P <0.10) at a specific time point

A\
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Table 3 Expression of target genes in PMN isolated on -10, +3,
and 21 d around parturition in Holstein cows fed a lower-
energy control diet (CON), a higher-energy diet (OVE) or OVE
plus Smartamine M (OVE + SM) during the close-up period and
through the first 30 d postpartum

Gene Treatment® SEMP  P-value
CON  OVE OVE + SM Diet Time DxTC
Met and glutathione metabolism
AHCY  523¢ 13479 1223¢ 247 002 067 010
GSR 576 921 1012 202 028 034 006
GPXT 982 902 7.66 094 024 004 005
Inflamnmation
NFKBT  7.80° 1758 19.24° 360 <001 080 098
STAT3 837 1140 1046 180 048 087 007
TLR4  —428° -320% —2094° 057 007 096 006
TNF -334° 5919 636° 205 <001 066 077
[TA4H 008 006 005 001 026 046 001
RXRA 1132 1294 1339 159 061 011 003
Cellular receptors
SELL 238 504 493 123 023 062 <001
ITGAM  504° 1069  10.37° 173 004 007 007
TINT 1253 977 10,08 111 018 024 007
VCL —-500° —398%  —4.24° 026 002 <001 <001
Oxidative stress
sop1 709 993 1031 198 034 036 010
Sop2  -068° -083° 021¢ 032 006 004 008
S100A8 888 728 6.96 088 025 025 004

?CON = lower-energy control (n=9; 1.24 Mcal/kg DM); OVE = higher-energy
(n=9; 1.54 Mcal/kg DM); OVE + SM = higher-energy plus Smartamine M (n = 10;
SM =0.07 % of DM)

bLargest SEM is shown

¢ Interaction between diet and time

4eMean values within a row with different superscripts were significantly
different (P < 0.05)

Cellular receptors

We observed a D x T interaction for the expression of
SELL (P<0.01), ITGAM (P=0.07), TLN1 (P=0.07) and
VCL (P <0.01; Table 3 and Fig. 5a-d). The expression of
ITGAM was greater (P =0.01) in OVE than CON at -10
d, while expression in CON and OVE + SM was similar
at the same time. The expression of ITGAM and SELL
was greater in OVE + SM than CON (P =0.01) and OVE
(P<0.01) cows at 21 d postpartum. The previous re-
sponse in ITGAM was reflected in a diet effect (P = 0.04)
were greater (P =0.03) expression was observed in OVE
and OVE + SM than CON. The expression of TLN1 was
markedly lower (P=0.02) in OVE + SM than CON fed
cows at -10 d, whereas expression in OVE + SM and OVE
were similar. The TLN1 was followed by lower (P =0.05)
expression in OVE than CON and OVE + SM at 21 d
postpartum. Expression of VCL was drastically down-
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Fig. 3 Expression of adenosylhomocysteinase (AHCY, panel a),
glutathione reductase (GSR, panel b), and glutathione peroxidase 1
(GPX1, panel ) in PMN of Holstein cows fed a lower-energy control
diet (CON), higher-energy diet (OVE) or OVE plus Smartamine M
(OVE + SM) during the close-up period and through the first 30 d
postpartum. These genes are related with methionine and glutathione
metabolism. P Effect of diet (P< 0.10) at a specific time point

regulated in CON cows compared with OVE and OVE +
SM (P < 0.01) cows at 3 d postpartum. Similarly to ITGAM,
a diet effect (P=0.02) was observed for VCL expression,
where OVE and OVE + SM had greater expression than
CON (P =0.05).
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higher-energy diet (OVE) or OVE plus Smartamine M (OVE + SM) during
the close-up period and through the first 30 d postpartum. These
genes are related with inflammation and gene transcription. @ Effect
of diet (P < 0.10) at a specific time point

Oxidative stress

A D x T interaction was observed for SOD1 (P =0.10),
SOD2 (P=0.08), and SIO00A8 (P=0.04; Table 3 and
Fig. 6a-c). Expression of SOD2 was greater (P =0.05) in
OVE + SM than OVE cows at —10 d, while expressions
in OVE and CON were similar. The expression of SODI
and SOD2 was up-regulated in OVE + SM cows than
CON (P =0.02) and OVE (P =0.09) at 21 d postpartum.
The mRNA expression of SI00A8 was lower (P < 0.03)
in OVE + SM than CON, while expression was similar
between OVE and CON at —-10 d. Similarly to prepartal
expression of SOD2, the expression of SI00A8 was
greater (P=0.04) in OVE + SM than OVE at 21 d post-
partum, while expression was similar between OVE and
CON.

Discussion

Performance

Overfeeding dairy cows in the prepartum period typic-
ally increases NEFA concentration and liver TAG accu-
mulation postpartum [12], which consequently can
decrease milk yield, DMI, health status and reproductive
performance [22]. Supplementing the diet with rumen-
protected methyl donors (e.g. choline, Met) has some-
times resulted in lower liver TAG [23-25], due to an
increase in phosphatidylcholine synthesis [26], which is a
main constituent of VLDL [27]. Thus, the greater milk
yield in OVE + SM than OVE could be attributed at least
in part to a better health status of the liver which may
have allowed cows to achieve a greater DMI. This hy-
pothesis is partially supported by the lower liver TAG
concentration and coupled with greater VLDL synthesis
and export indicated by the greater blood VLDL con-
centration between OVE + SM vs CON but not OVE vs
CON. The similar performance between CON and
OVE + SM supports the idea that Met supplementation
allowed cows to overcome the negative effects of the
prepartal higher-energy diet. The greater ECM yield in
OVE + SM cows compared with OVE was driven by the
greater milk protein and milk fat response elicited by
feeding SM [3].

SCC and PMN phagocytosis
Phagocytosis is a key function of PMN, which are in-
volved in host defense [28]. The Met supplied by the
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basal OVE diet along with tissue mobilization might not
be sufficient to meet the demand by the immune system
for sulphur amino acids, which is of central importance
given that overfeeding dietary energy also could impair
function of the immune system [6, 19]. It is well-established
that metabolic products of Met metabolism, e.g. homocyst-
eine, taurine and glutathione, play an important role in
maintaining and supporting immune function [29]. The
immunomodulatory properties of these compounds are
underscored by the decrease in lymphocyte number and
phagocytosis during taurine deprivation [30] as well as an
increase in PMN adhesion when homocysteine concentra-
tion increased [30]. Furthermore, the antioxidant capacity
of taurine and glutathione influences immune function by
modulating the actions of reactive oxygen metabolites on
transcription factor activation [31]. The whole blood phago-
cytic capacity detected in OVE + SM compared with OVE
and CON provides evidence that enhancing Met supply
could “boost” the immune system, hence, alleviating the
negative effects of overfeeding energy in the dry period.
During mastitis, bacteria release toxins that activate
macrophages and epithelial cells in the mammary gland
to secrete cytokines that recruit PMN to the site of in-
fection where they can serve as phagocytes [28]. The
lower SCC in cows fed OVE + SM compared with CON
and OVE might indicate that Met supplementation en-
hances immunity. Further research is needed to deter-
mine more precisely the effects (and mechanisms) of
Met in cows that are more susceptible to mastitis risk.

Gene expression

The mRNA expression of genes related to Met and
glutathione metabolism, inflammation, and oxidative
stress were evaluated to generate data on the possible
mechanisms whereby Met elicits a response in PMN.
The PMN function in dairy cows during the transition
period is impaired in part due to high concentrations of
NEFA and BHBA [32, 33]. Although in the present study
NEFA and BHBA did not differ postpartum between
treatments, the greater liver TAG accumulation in OVE
than CON is indicative of a reduction in the capacity to
export lipid out of the liver, also supported by the dif-
ferences in blood VLDL concentration. Liver lipidosis
clearly could impair cow performance. Research has
demonstrated that increasing Met supply during the
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peripartal period increased hepatic expression of Met and
glutathione metabolism-related genes, and decreased in-
flammation and oxidative stress [34]. However, to our
knowledge, there are no published data reporting that Met
supplementation has an effect on PMN from peripartal
dairy cows.
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Methionine and glutathione metabolism

The enzyme S-adenosyl-L-homocysteine hydrolase (AHCY)
is involved in the pathway from Met to homocysteine
which is a precursor of glutathione [35]. Protection against
the damaging effects of free radicals is carried out by GSR
(glutathione reductase) and GPX1 (glutathione peroxidase),
among others, which are enzymes related with glutathione
metabolism [36]. Although it is possible that the increase in
Met supply reaching the liver could have a positive effect
on flux through the GSR and GPX1 pathways, the fact that
GSR and GPXI did not differ indicates the existence of
post-transcriptional control on both pathways.

Inflammation

The genes NFKBI and TNF had the same pattern of re-
sponse in OVE and OVE + SM cows. The greater NFKB1
expression could be partly associated with the numerical
increase of STAT3 expression in those cows. It is well-
established that the concentration of TNF-a, which stimu-
lates the pro-inflammatory response, can be affected by
several factors, e.g. tissue damage, pathogen invasion, and
excessive fat deposition [37, 38]. The similar mRNA ex-
pression of TNF in OVE and OVE + SM indicates that the
positive effect of Met supplementation may not be strictly
related with PMN function, and that other mechanisms
are more directly linked with the greater DMI in OVE +
SM compared with OVE. The down-regulation of RXRA
is essential for PMN development from granulocyte or
monocyte progenitors [39], supporting other data indicat-
ing that retinoic acid deficiency led to an increase in
neutrophil numbers in mice [40]. Although we did not
measure retinoic acid or vitamin A concentrations in
plasma or isolated neutrophils, it could be possible that
the observed changes in RXRA were associated with the
availability of these metabolites. Thus, as previously dem-
onstrated in mice [40], the markedly greater expression of
RXRA in OVE + SM cows at 21 d might have been associ-
ated with the stimulation of neutrophil differentiation.
Although we are unaware of research studying the inter-
action of retinoic acids and Met in immune cells, there is
evidence that exogenous retinoic acids alters Met
catabolism in liver, i.e. enhances S-adenosylmethionie,
S-adenosylhomocysteine, and taurine concentrations
[41]. Thus, the observed change in RXRA in response
to Met might have elicited a positive effect on the con-
centration of circulating neutrophils and their ability to
control oxidative stress and inflammation.

Cellular receptors

Neutrophils express a variety of adhesion molecules
that are of fundamental importance in the acute inflam-
matory response by recognition of inflammatory sites,
supporting adhesion, and transmigration across the
endothelium as well as recognition and phagocytosis of



Li et al. Journal of Animal Science and Biotechnology (2016) 7:18

opsonized microorganisms [42]. Among the four genes
related with cellular receptors analyzed, SELL and
ITGAM had a similar expression pattern in OVE + SM
cows. Although homocysteine concentration was not
measured, we speculate that feeding SM could have in-
creased its concentration when compared with CON
and OVE, and consequently, enhanced the ability for
cell adhesion by the PMN as indicated by the greater
SELL expression at d 21. Dudman et al. [30] reported
that increasing homocysteine blood concentration from
<10 pmol/L to 2200 pmol/L increased neutrophil adhe-
sion by ~50 %.

Oxidative stress

Reactive oxygen metabolites (ROM) could serve as anti-
microbial substances generated by the host defense
mechanism to neutralize invading pathogens [43]. How-
ever, excessive production of ROM leads to loss of cell
function, necrosis and apoptosis [44], and decreases
dairy cow performance [45]. The imbalance between
ROM production and the neutralizing capacity of anti-
oxidant mechanisms is termed oxidative stress [46].
Antioxidant defenses are diverse and can be either syn-
thesized in vivo or derived from the diet. The most effi-
cient antioxidants are the enzymes SOD (SOD1, and
SOD2), which can directly catalyze the reduction of
ROM [47].

Hu et al. [48] reported that inhibition of SOD2 caused
accumulation of ROM. Thus, the upregulation of SOD
isotypes in OVE + SM cows indicates that Met is linked
to antioxidant mechanisms conferring protection against
cell impairment from oxidative stress. Furthermore, sev-
eral studies in non-ruminants have demonstrated direct
protective effects of Met on oxidative stress [49-51] via
the reaction of Met residues with ROM to form Met
sulfoxide, hence, scavenging the reactive oxygen metabo-
lites [49].

Conclusions

The similar pro-inflammatory response in both overfed
groups of cows with and without supplemental Met sug-
gests that the mechanisms associated with the positive
benefits of feeding Smartamine M are not only associated
with the biology of the PMN. The temporal adaptations in
PMN of genes related with migration, development and
cellular antioxidants indicate that Smartamine M supple-
mentation was effective in alleviating negative effects of
prepartal energy-overfeeding. Furthermore, the similar
DMI and milk yield of those cows compared with cows
fed the lower-energy diet underscore the idea that Met
helps overcome the limitations of overfeeding energy
during the prepartal period.
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