
ORIGINAL ARTICLE Open Access

Evaluation of postural stability based on a
force plate and inertial sensor during static
balance measurements
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Abstract

Background: Previous research on balance mostly focused on the assessment, training, and improvements of
balance through interventions. We investigated tools commonly used to study static balance. Differences in
postural stability were analyzed using multiscale entropy (MSE) and feature analysis.

Methods: A force plate and inertial sensor were used to collect acceleration and center-of-pressure (COP) nonlinear
signals. MSE was also used to detect fractal correlations and assess the complexity of univariate data complexity.
Fifteen healthy subjects participated in the experiments. Each stood on a force plate and wore a sensor while
attempting to maintain postural stability for 30 s in four randomized experiments to evaluate their static balance via
a copositive experiment with eyes open/closed and with standing on one foot or both feet. A Wilcoxon-signed
rank test was used to confirm that the conditions were significant. Considering the effect of the assessment tools,
the influence of the visual and lower limb systems on postural stability was assessed and the results from the
inertial sensor and force plate experiments were compared.

Results: Force plate usage provided more accurate readings when completing static balance tasks based on the
visual system, whereas an inertial sensor was preferred for lower-limb tasks. Further, the eyes-open-standing-on-
one-foot case involved the highest complexity at the X, Y, and Z axes for acceleration and at the ML axis for COP
compared with other conditions, from which the axial directions can be identified.

Conclusions: The findings suggested investigation of different evaluation tool choices that can be easily adapted
to suit different needs. The results for the complexity index and traditional balance indicators were comparable in
their implications on different conditions. We used MSE to determine the equipment that measures the postural
stability performance. We attempted to generalize the applications of complexity index to tasks and training
characteristics and explore different tools to obtain different results.

Trial registration: This study was approved by the Research Ethics Committee of National Taiwan University and
classified as expedited on August 24, 2017. The committee is organized under and operates in accordance with
Social and Behavioral Research Ethical Principles and Regulations of National Taiwan University and government
laws and regulations.
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Background
Balance affects the quality of life and plays a significant
role in fall risk. Current research on balance mostly has
focused on the assessment, training, and improvements
through interventions. Clinically, falling is the unex-
pected change in body position due to the body’s center
of gravity being out of balance [1]. In clinical settings,
the most commonly used tests to examine a subject’s fall
risk in determining whether the balance ability is present
and include Timed Up and Go test in which the measure
of function correlates to balance and fall risk and unipe-
dal stance test with eyes open/closed which is a method
of quantifying static balance ability [2]. In contrast, la-
boratory research involves subjects to execute specific
movements and uses different parameters to observe
their limb movements and physical responses for exam-
ining how they maintain balance. Examples include per-
forming tasks under different visual setting [3, 4],
standing on different materials [5], standing still, walk-
ing, and performing other tasks [6] as well as comparing
the balancing ability between different populations [3, 7].
Balance training has also been performed using different
rehabilitation therapy systems such as cycling [8] and
partial body weight support on a treadmill [9]. These
studies mostly use motion capture systems and force
plates for real-time acquisition of subject limb move-
ments to evaluate balance. Moe-Nilssen et al. [10] also
employed a three-dimensional accelerometer worn on
the subject’s lower back, near the center of gravity.
Wearable accelerometers are a viable technology for asses-
sing fall risk and have joined clinical and laboratory
methods as acceptable tools [11]. Wearable accelerome-
ters measure changes in the acceleration of the triaxial
axis while maintaining a certain position. If these changes
have a larger amplitude, the measurement value of accel-
erometers will also be larger. Previous studies have used
sensors to investigate fall prevention, assess falls [12–14]
and conduct daily monitoring [15]. Although one factor
known to contribute to falls is balance ability [11, 16], few
studies have considered balance evaluation tools rather
than or in addition to performance.
The evaluation tool used affects the evaluation results

[17]. Most studies using static balance have employed
force plates [6, 18–25], which have been shown to effect-
ively assess the center-of-pressure (COP) and thus the
balance performance [16]. For example, the elderly often
have reduced strength in the lower limb, resulting in in-
creased COP displacement and indicating low balance
and muscle weakness’ contribution to postural instability
and falls [5]. The displacement trajectory caused by
standing balance has typically been studied using the
COP displacement of the body’s swing. However, it is
difficult to collect time series data to account for the
swing around the coordinate pair (X, Y), where the

X-axis is the time series and the Y-axis is the amplitude
intensity. When the amplitude intensity is the only infor-
mation obtained, the signal’s meaning cannot be ex-
plained. Therefore, the front-to-back and left-to-right
trajectories are determined using a separate force plate.
The COP data are related to force (F) and moment (M),
including Fx, Fy, Fz, Mx, My, and Mz; thus, both force
and moment are used to evaluate postural stability.
Advances in sensor and data acquisition technologies

have made it possible to record real-world signals contain-
ing multiple data channels in a coherent way, even with
large dynamic differences between channels [26]. COP
and acceleration are nonlinear, objectively collected
physiological signals of attitude stability; therefore, no con-
clusion can be drawn if these signals are plainly presented.
Signal complexity or regularity is represented by a quan-
tized value, known as complexity [10], to distinguish dif-
ferences between nonlinear data. Established complexity
measures typically operate a single scale and thus fail to
quantify inherent long-range correlations in real-world
data, which is a key feature of complex systems. The re-
cently introduced multiscale entropy (MSE) method can
detect fractal correlations and has successfully been used
to assess the complexity of univariate data [26]. Because of
the instability of wearable accelerometer triaxial signal
measurements [27], empirically collected COP data
physiological signals are nonlinear [17]. Complexity can be
easily appreciated when faced in practice settings [28] and
complex systems are neither absolutely regular nor abso-
lutely random [29, 30]. Thus, the MSE method [31, 32]
was proposed to measure the complexity of finite-length
time series. Previous studies have employed this method
to analyze COP to investigate postural stability [19, 20].
Acceleration sensors have also been used to collect
acceleration information and investigate postural stability
[33–38]. Mayagoitia et al. [33] also investigated sensor and
force plate features to determine the correlation; however,
no published studies have examined whether entropy
measurements respond differently to postural stability in
different equipment and which entropy measurement
show more sensitive response to stimuli.
Therefore, an experiment was designed to examine the

features because MSE has been studied with both sensors
and force plates. MSE is also investigated as a shared func-
tion to explore the correlation between the two and the
usability of sensors measuring postural stability. Herein,
we not only attempted to discuss that the discernibility of
MSE is further confirmed to understand the versatility of
the sensor and force plate but also discussed the evalu-
ation tools during static balance measurements.

Methods
While maintaining postural stability depends on the ves-
tibular system, proprioception receptors, and visual
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system, studies evaluating these three systems individu-
ally in balance tests have confirmed that the visual sys-
tem is particularly crucial in influencing balance [34].
Cha et al. showed that subjects’ center of gravity moved
more when their eyes were closed than when they were
open [35], whereas Rose [36] found a much larger center
of gravity displacement when subjects stood one-legged
with their eyes closed in comparison with that obtained
in a stance with the eyes open. Static balance studies
have also already shown comparable results. Thus, four
previously used conditions to maintain postural stability
were used to study balance tool feasibility: eyes open,
standing on both feet (OB); eyes closed, standing on
both feet (CB); eyes open, standing on one foot (OO);
and eyes closed, standing on one foot (CO). These con-
ditions were randomly assigned to subjects. During data
analysis, MSE and features were used to calculate bal-
ance indicators.

Subjects
Fifteen healthy individuals, 13 male and 2 females, be-
tween the ages of 21 and 25 (age 22.6 ± 1.55 years, height
173.2 ± 8.86 cm, weight 68.67 ± 14.22 kg) participated in
this study to obtain a standard for evaluating postural sta-
bility. None of the participants had central nervous system
medical issues or relevant skeletal or muscular diseases.

Instrument information
AMTI multi-axis force plates
A six-axis AMTI force plate (AMTI OR6-7-2000; Ad-
vanced Mechanical Technology, 2010; length 50.8 cm;
width 46.4 cm, height 8.3 cm; weight 28.18 kg) was used to
collect COP data (Fig. 1). AMTI OR6-7-2000 is con-
structed from aluminum and can collect F and M data on
three axes each: Fx, Fy, Fz, Mx, My, and Mz. The signal
amplifier amplifies the collected data for ease of analysis
before sending it to to a computer with AMTINerForce
software for analysis. A data collection sampling frequency
of 100Hz and a measurement time of 30 s were used for
each action. COP movement track data (in mm) were col-
lected for each subject and decomposed into mediolateral
(ML) and anterior-posterior (AP) components for analysis.

Inertial sensor
The inertial sensor has a built-in microelectromechani-
cal system accelerometer, gyroscope, and magnetometer
and can thus collect acceleration and rotation angle data.
Microelectromechanical system accelerometer sensors
can be distinguished using four sensing classifications
based on different power transfers: piezoelectric, piezo-
resistive, electrostatic, and capacitive. A capacitive sensor
was used herein. The accelerometer was placed on the
subject’s lower back, covering the pelvis, sacrum, and L3
to L5 vertebrae, as shown in Fig. 2. This is the most
common sensor location and was the only location used
in 65% of studies [23]. Changes in external forces cause
movement, resulting in voltage or current changes that
produce a vibration signal. Accelerometers typically use
object displacement, which is then converted to a digital
signal for processing. The most common detection
method for accelerometers in the microelectromechanical
system is capacitance. This detection method offers high
precision, high stability, low power consumption, a simple
structure, and lack of susceptibility to noise or
temperature fluctuations. The sampling bandwidth of this
device is for detecting human motion. The magnetometer
measures the size and direction of magnetic fields near
the device. Herein, the magnetometer’s direction function
was used as each subject wore a wireless triaxial acceler-
ometer system (Freescale RD3152MMA7260Q, Freescale
Semiconductor-NXP, Austin, TX, USA) on a belt around
the waist when testing postural stability. A battery, power
switch, and wireless board were installed on a rigid circuit
board glued to the back of the belt, as shown in Fig. 2.

Protocols
Inertial sensors were placed on the 15 adult subjects
standing on a force plate to collect COP sway and accel-
eration data in order to determine whether results from
the inertial sensor were similar to those from the force
plate. MSE analysis was used for the data analysis of the
index and features of both machines. Visual system tests
were developed and conducted with opened or closed
eyes. To minimize the influence from the environment
during the open eye test, a black focal spot was placed
in front of the test subject as shown in Fig. 3. Data col-
lection was also divided into single- and double-legged
stance categories. Standing on one leg is a posture used
in daily life and employed when navigating stairs,
stepping over obstacles, and walking normally. People
are most likely to fall due to a shift in the center of
gravity while standing on one leg. Previous studies have
used one-legged stance as a posture for balance training
[17, 37–39]. Four experimental conditions were used:
OB, CB, OO, and CO.
The four conditions were randomized for each partici-

pant, and the experimental process comprised of four
Fig. 1 Six-axis AMTI force plate
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parts. First, participants completed the test subject con-
sent form and provided basic information. The inter-
viewer then adjusted the sensor belt, determined the
foot the subject used to kick, and equipped the subject
with the sensor belt (see Fig. 3) while the subject stood
on the force plate before performing the test. After en-
suring that the data were saved, the interviewer removed
the sensor belt, which marked the completion of the ex-
periment. The data were then analyzed via a statistical ap-
proach that included descriptive statistics such as mean
and standard deviation and a Wilcoxon signed-rank test
to evaluate the observed differences.

Multiscale entropy (MSE)
Costa et al. introduced the MSE method, which per-
forms multiple coarse-graining operations on data (thus
defining temporal scales) and calculates sample entropy
for each defined scale [31, 32]. The MSE method quanti-
fies the signal complexity that remains hidden in stand-
ard methods where the temporal scales of a signal are
not processed separately [26]. MSE analysis can be

divided into three stages: coarse graining, sample en-
tropy, and complexity.
During coarse graining, time series are divided into mul-

tiple specifications for a variety of time segments and
spatial specifications to calculate entropy using Eq. (1),
with y being the data point, τ being the scale of segmenta-
tion, and N being the size of the original dataset.

yi
xð Þ ¼ 1

τ

Xjx

i− j−1ð Þxþ1
f i; 1≤ j≤

N
τ
: ð1Þ

This adds an additional time scale which is added to
the time series while calculating each time series. MSE
calculation is based on sample entropy (SampEn), which
is a single-scale analysis. MSE involves analysis using
multiple scales. Thus, SampEn is necessarily calculated
via a six-step process:
Step 1: The embedding dimension (m), used to under-

stand repeatability and regularity of data in a time series,
and tolerance (r), a constant, are set. It is typically rec-
ommended that m be set to 2 or 3 [40], and Pincus [41]
recommends setting an r value between 0.1 and 0.2.

Fig. 2 Inertial sensor. a Inertial sensor location. After pressing the calibration button, the sensor will move left and right as x (right+, left-), up and
down as y (up+, down-), or forward and back as z (forward+, back-). b Wireless tri-axial accelerometer system (Freescale RD3152MMA7260Q)
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Step 2: Herein, m was set to 2 as a time series data ref-
erence. For example, for time series X = (x1,…,x7), when
m = 2, the comparison unit of the group becomes {(x1,
x2), (x2, x3),…,(x6, x7)}. Here, the comparison begins with
the first group (x1, x2), which is then compared with the
other groups, as shown in Fig. 4.
Step 3: The maximum value of the distances between the

first group and remaining groups are calculated via Eq. (2):

d xi; x j
� � ¼ max xiþk−1−x jþk−1

�� ��� �
; 1≤k≤m; i≤N−m; j≤N−m:

ð2Þ

Step 4: Here, the results from Eq. (2) and r*S are used
as a comparison method, where S is the original time
series on which the alignment is based. If d[[xixj] is
smaller than r*S, then the two compared groups can be
considered similar. Therefore, similar numbers ni(m) plus

1 are accumulated and the probability of a similar num-
ber (Ci(m)) can be calculated using Eq. (3):

Ci mð Þ ¼
ni mð Þ
N−m

; 1≤ i≤N−m: ð3Þ

Step 5: Here, step 1 is repeated after changing the ori-
ginal data from m to m + 1. Steps 2 and 3 were also re-
peated; the cumulative similarity ni(m) and probability of
occurrence Ci(m) thus increase as shown in Eq. (4):

Ci mð Þ ¼
ni mþ1ð Þ
N−m−1

; 1≤ i≤N−m−1: ð4Þ

Step 6: Sample entropy can then be calculated by tak-
ing the negative natural logarithm of the average Ci(m + 1)

value over the average Ci(m) value:

Sample Entropy m; r;Nð Þ ¼ − ln

P
C i mþ1ð Þ

N−m−1P Ci mð Þ
N−m

0
B@

1
CA: ð5Þ

Finally, the complexity index (CI) can be calculated by
Eq. (6) because the sample entropy is used as a scale fac-
tor function to calculate the area under the CI, as shown
in Fig. 5.

CI ¼
XN

i¼1
Sample Entropy ið Þ: ð6Þ

Features of force plate COP
The sampling frequency and collection time affects the
number of data points collected. Additionally, each par-
ticipant may stand at a different position on the force
plate during measurement. Therefore, each data point
should first be zeroed before follow-up formulas are cal-
culated for the COP index analysis. Average values were
first calculated for the left-to-right and front-to-back di-
rections, as shown in Eqs. (7) and (8), respectively,
where AP0 and ML0 are original forward–backward and
left–right data of the pressure midpoint, respectively.

AP ¼ 1
N

XN

n¼1
APO n½ � ð7Þ

ML ¼ 1
N

XN

n¼1
MLO n½ � ð8Þ

The original data points and average values were then
subtracted to complete coordinate zeroing, as shown in
Eqs. (9) and (10), where N is the total data length:

AP n½ � ¼ APO n½ �−AP n ¼ 1;…N ; ð9Þ
ML n½ � ¼ MLO n½ �−ML n ¼ 1;…N : ð10Þ

The measurement indexes were then calculated using
force plate data as follows:

Fig. 3 A subject standing on the plate and wearing the sensor

Lee and Sun Journal of Physiological Anthropology           (2018) 37:27 Page 5 of 16



1. Total excursions (TOTEX) are calculated as the
respective distance between the AP and ML
directions of the COP from the origin:

TOTEX ¼
XN−1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AP nþ 1½ �−AP n½ �ð Þ2 þ ML nþ 1½ �−ML n½ �ð Þ2

q
:

ð11Þ

2. Total excursions-AP (TOTEXAP) are calculated as
the distance between the COP-AP direction and the
origin:

TOTEXAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AP nþ 1½ �−AP n½ �ð Þ2

q
: ð12Þ

3. Total excursions-ML(TOTEXML) are calculated as
the distance between the COP-ML direction and
the origin:

TOTEXML ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ML nþ 1½ �−ML n½ �ð Þ2

q
: ð13Þ

4. Mean distance (MDIST) is calculated as the
distance between the COP-AP and ML directions
from the origin, where N is the total length of the data:

RD n½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AP2

n þML2
n

q
; n ¼ 1;…;N : ð14Þ

5. Mean distance-AP (MDISTAP) is calculated as the
average of the absolute value of the COP-AP direction:

Fig. 5 Complexity index

Fig. 4 Step two, schematic of multi-scale entropy [31]
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MDISTAP ¼ 1
N

XN

n¼1
j AP n½ � j : ð15Þ

6. Mean distance-ML(MDISTML) is calculated as the
average of the absolute value of the COP-ML direction:

MDISTML ¼ 1
N

XN

n¼1
j ML n½ � j : ð16Þ

7. Mean velocity (MVELO) is calculated as TOTEX
over total time T:

MVELO ¼ TOTEX

T
: ð17Þ

8. Mean velocity-AP (MVELOAP) is calculated as
TOTEX in the AP direction over total time T:

MVELOAP ¼ TOTEXAP

T
: ð18Þ

9. Mean velocity-ML (MVELOML) is calculated as
TOTEX in the ML direction over total time T:

MVELOML ¼ TOTEXML

T
: ð19Þ

10. Root-mean-square distance (RDIST) is calculated as
the square root of the sum of the squared RD:

RDIST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
RD n½ �2

r
: ð20Þ

11. Root-mean-square distance-AP (RDISTAP) is calcu-
lated as the square root of the average value of the
squared AP signal:

RDISTAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
AP n½ �2

r
: ð21Þ

12. Root-mean-square distance-ML (RDISTML) is cal-
culated as the square root of the average squared
ML signal:

RDISTML ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
ML n½ �2

r
: ð22Þ

13. The 95% confidence circle area (95% CC AREA) was
then obtained. First, Z0.95 = 1.645 was obtained using
a normal distribution. The calculated square root SRD

can then be found by subtracting the average square
distance from the squared quadratic mean distance:

SRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RDIST2−MDIST2

p
: ð23Þ

The 95% confidence level can then be calculated by
squaring the sum of the product of the mean distance
and the product of Z0.95 and SRD multiplied by π:

95%CC AREA ¼ π MDISTþ Z0:95 � SRDð Þ2: ð24Þ

Inertial acceleration sensor features
The sensor was capable of reading accelerations on three
different axes: X, Y, and Z. Readings of a file belonging
to a test subject who completed the test in an average
time of 30 s are obtained as follows.

Mean absolute linear acceleration (MALA) is
calculated using an equation proposed by Capela
et al. [42]

MALA: ¼
XN

i¼1

Sij j
N

¼
XN

i¼1

Sij j
N

; S ¼ sequence;

N ¼ total number of units

ð25Þ

where S is the sequence and N is the total number of
units. As sensor-measured acceleration is directional,
adding the average arithmetic mean to the absolute
value can yield one of the most direct indicators of ac-
celeration magnitude.

Root mean square (RMS), also known as the
square average, expresses the generalized mean
of the quadratic and is often used as the average
of signals. RMS was calculated using an equation
proposed by Chen [43]

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1Si
N

s
; S ¼ sequence;

N ¼ total number of units; i ¼ 1; 2;……;N :

ð26Þ
1. Mean absolute deviation (MAD) is often used as

a discrete property for understanding sequences
and was calculated using an equation proposed
by Chen [43]

MAD ¼
PN

i¼1 j Si−�S j
N

; S ¼ sequence;

N ¼ total number of units:

ð27Þ

2. The simple moving average of mean of range (SMA
of Range) is used to minimize the influence of
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outliers. The original method of taking the full range
of information between the minimum and maximum
values from the entire series is prone to calculate too
many outliers, resulting in insufficiently accurate
results. Therefore, adding a simple moving average
method while calculating a window parameter’s full
range reforms the original data. The resulting
calculated value changes accordingly with different
window parameters; a larger window indicates more
data points that represent a sample. In our study,
when the window parameter = 30, it begins to flatten
because the sensors can collect 30 data points per
second. The SMA of Range was calculated with an
equation proposed by Capela [42], where W indicates
the window parameter.

SMA of Range ¼
PN− W−1ð Þ

i¼1 SMAi;W

N− W−1ð Þ ð28Þ

where SMAi;W ¼ Range Si;……; SiþW−1ð Þ
W

;

W ¼ Window;N ¼ total number of units

3. The simple moving average of mean of variance
(SMA of Variance) is used to determine the average
amount of variation in each window. Variance
indicates the discreteness of a set of numerical values,
reflecting the degree of dispersion among individuals
in a group and adding a simple moving average. The
SMA of Variance varies with varying window
parameters as larger window parameters indicate a
greater number of data points representing a sample.
In this study, when we set the window parameter to
30, the value flattens significantly because the test
subject’s wristband collects 30 data points per
second. The SMA of Variance was calculated using
an equation by Capela [42].

SMA of Variance ¼
PN− W−1ð Þ

i¼1 SMAi;W

N− W−1ð Þ ; ð29Þ

where SMAi;W ¼
PN

i¼1 Si−�Sð Þ2
W−1

;

S ¼ sequence;W ¼ Window;

N ¼ total number of units:

4. The zero cross rate (ZCR)is the number of lines
between two points that pass through zero
acceleration which indicates a change in the
direction of force. ZCR is used to determine the
percentage change of axis acceleration to the total

number of points and was calculated using an
equation by Chen [43]:

1
N−1

XN−1

i¼1
1R<0 SiSi−1 < 0ð Þ; S ¼ sequence;

N ¼ total number of units:

ð30Þ

5. The correlation between axes (CBA), specifically
between the X, Y, and Z axes, is represented by
ρ_(S1S2), with S1 and S2 representing any two of the
three axes. The CBA is calculated using Eq. (31),
originally from Capela [42], and the following
conditions:

1) There are positive relative and negative relative
correlations.

ρS1S2
�� ��≤1

2) When jρS1S2 j ¼ 1, A and B are completely related and
there is a linear function between them.When jρS1S2 j
> 0:8, A and B are highly related. When 0:3≤ jρS1S2 j
≤0:8, A and B are moderately related. When jρS1S2 j
< 0:3, A and B are less related to little or no degree.

ρAB ¼ Cov S1; S2ð Þffiffiffiffiffiffiffiffiffiffiffiffi
D S1ð Þp ffiffiffiffiffiffiffiffiffiffiffiffi

D S2ð Þp ð31Þ

where Cov S1; S2ð Þ ¼
PN

i¼1 S1i−μS1
� �� S2i−μS2

� �
N−1

;

S ¼ sequence;N ¼ total number of units:

Results
The analysis and discussion is divided into three main
parts. First, the force plate and sensor results were calcu-
lated. Then, a Wilcoxon signed-rank test to confirm that
the conditions are significant, i.e., the sample size large
enough to test statistical assumptions. The MSE method
was then used to analyze force plate and acceleration
sensor data. Finally, the results from the force plate and
acceleration sensor were compared with the MSE results
and used a Wilcoxon signed-rank test used to verify the
four conditions.

Results from the force plate COP feature
The data collected from the four static balance measure-
ments performed using the force plate are presented in
Table 1 and Fig. 6. All the COP features are better in
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smaller values. A simple observation of score indexes in-
dicated that OB values were lower for all actions, indi-
cating the most stable overall performance, as expected.
The visual system and single- vs. double-legged stance
appeared to have both influenced subjects’ balance. Ini-
tial results agree well with the results of previous studies;
thus, different equipment can be used for conducting
the same experiment.
A Wilcoxon signed-rank test was used to compare the

results of the actions to explore the uses of the equip-
ment, as summarized in Table 2. Judging from each
index’s discrimination, MDIST, MDIST-AP, RDIST,
RDIST-AP, and 95% CC AREA were found to distin-
guish the results of various static balance measurement
operations.

Results from the inertial sensor for acceleration feature
A cursory observation of the index scores of accelera-
tions showed that the smaller values were better, and
most situations of the feature index showed that CB per-
formed the best for most actions of the indexes, which
does not agree with expected balance results due to the

visual system and ontological sensory receptors in
humans (Fig. 7). The SMA of Variance was the lowest
index in each axis; thus, it was difficult to detect differ-
ences in CB and OB. However, all axes of SMA of
Range–XYZ showed obvious difference, as shown by the
values in Table 3.
The Wilcoxon signed-rank test results are presented

in Table 4. No differences were found in any of the 25
indexes but were found for the index of SMA of Range–
XYZ when subjects stood on both feet (OB–CB). In
cases OB–OO and OB–CO, there were differences in
most indexes (both 24/26). Similarly, only CBA values
were not recognized for the CB–OO case. Furthermore,
significant differences were found in most indexes for
cases CB–CO and OO–CO (25/26 and 22/26,
respectively).
The initial result thus indicates that the sensors

performed the best for the CB cases (i.e., OB–CB, CB–
OO, and CB–CO) when compared with other actions.
The OB–CB case showed no differences other than the
SMA of Range–XYZ; however, there were significant
differences in the CB–OO and CB–CO cases. Overall,

Table 1 Force plate test results

OB CB OO CO

TOTEX 22.04 ± 1.19 23.5 ± 5.62 50.05 ± 24.46 70.53 ± 67.4

TOTEX-AP 14.93 ± 1.09 15.9 ± 3.94 31.12 ± 15.69 43.2 ± 42.06

TOTEX-ML 12.95 ± 0.64 13.91 ± 0.64 32.54 ± 16.04 46.52 ± 44.7

MDIST 0.13 ± 0.03 0.13 ± 0.03 0.14 ± 0.03 0.32 ± 0.11

MDIST-AP 0.10 ± 0.03 0.10 ± 0.04 0.10 ± 0.04 0.18 ± 0.09

MDIST-ML 0.06 ± 0.05 0.06 ± 0.05 0.08 ± 0.04 0.23 ± 0.09

MVELO 0.73 ± 0.03 0.77 ± 0.18 1.59 ± 0.83 4.91 ± 2.29

MVELO-AP 0.49 ± 0.03 0.52 ± 0.13 1.03 ± 0.52 3.02 ± 1.5

MVELO-ML 0.42 ± 0.02 0.45 ± 0.11 1.08 ± 0.53 3.19 ± 1.5

RDIST 0.12 ± 0.03 0.13 ± 0.03 0.17 ± 0.05 0.46 ± 0.22

RDIST-AP 0.09 ± 0.03 0.1 ± 0.03 0.12 ± 0.05 0.24 ± 0.14

RDIST-ML 0.08 ± 0.09 0.06 ± 0.05 0.10 ± 0.05 0.36 ± 0.20

95% CC AREA 0.442 ± 0.00 0.443 ± 0.00 0.50 ± 0.145 1.18 ± 0.82

Unit: mm

Fig. 6 Force plate test results showing a comparison between figures (due to large differences, overly low values were compressed as they could
not be taken into account easily. The figure is divided into two parts for easier judgment of values)

Table 2 p value of COP metrics for the static posture

OB–CB OB–OO OB–CO CB–OO CB–CO OO–CO

TOTEX 0.57 0.001* 0.002* 0.001* 0.005* 0.478

TOTEX-AP 0.594 0.001* 0.006* 0.001* 0.011* 0.496

TOTEX-ML 0.345 0.001* 0.001* 0.001* 0.002* 0.46

MDIST 0.005* 0.003* 0.001* 0.012* 0.001* 0.001*

MDIST-AP 0.004* 0.001* 0.001* 0.001* 0.001* 0.001*

MDIST-ML 0.053 0.233 0.001* 0.496 0.001* 0.001*

MVELO 0.591 0.001* 0.001* 0.001* 0.001* 0.001*

MVELO-AP 0.695 0.001* 0.001* 0.001* 0.001* 0.001*

MVELO-ML 0.393 0.001* 0.001* 0.001* 0.001* 0.001*

RDIST 0.025* 0.001* 0.001* 0.001* 0.001* 0.001*

RDIST-AP 0.046* 0.002* 0.001* 0.002* 0.001* 0.004*

RDIST-ML 0.151 0.01* 0.001* 0.001* 0.001* 0.001*

95% CC AREA 0.002* 0.001* 0.001* 0.001* 0.001* 0.001*

*Significance, p < 0.05
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the results indicate that the sensor has difficulty distin-
guishing whether a subject’s eyes are opened or closed
but can distinguish whether they are standing on one
foot or two.
When compared to other features, ZCR and CBA did

not identify differing results for a variety of static bal-
ance measurement actions and could not recognize the
differences between situations.

Results of multiscale entropy analysis
MSE can be used to quantify complexity in widely varying
timescales. Whether greater MSE values mean higher com-
plexity, greater physiological complexity indicates a greater
degree of adaptability to the external environment or vice
versa. Results of the MSE analysis of COP and acceleration
are presented in Table 5. As complexity becomes higher,
adaptability becomes better. Table 7 shows that all ML-AP
conditions with COP showed significant differences. In
addition, Fig. 8 shows that condition OO (open eyes and
standing on one foot) has the highest complexity. There-
fore, as shown in Table 5, condition OO shows higher

complexity at the X, Y, and Z axes for acceleration than the
other conditions, whereas the force plate results showed
that the ML axis is higher for COP than for others.
A Wilcoxon signed-rank test analysis was also performed

on the MSE results; results for each measurement tool con-
dition are presented in Table 6. Almost all experimental ac-
tions were identifiable by AP COP data, whereas ML data
could only be used to identify OB–CO and CB–CO. Only
OB–OO, OB–CO, and CB–OO were distinguishable in
the Y-axis using an inertial sensor as the balance measure-
ment tool, whereas in the X and Z axes, OB–OO and
CB–OO could be distinguished. In the Z-axis, OO–CO
was distinguishable. Thus, MSE could not be used to
discern OB–CB regardless of whether a force plate or
acceleration sensor was used. For the preliminary OO
and cases OB–OO, CB–OO, and OO–CO, MSE could
be used to identify differences between standing on one
foot and standing on two feet.
Different experimental actions were distinguishable by

all different axial data from the force plate, whereas the
inertial sensor could not be used to distinguish the X–Z
axial data, as summarized in Table 7.

Fig. 7 Inertial sensor results (due to the value calculated by different indexes, the range size is too large, so the graph is divided into two parts)
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Discussion
The force plate and inertial sensor measurements indi-
cated which index and feature had the most results with
similar trends. A cursory observation of the index scores
of force plate and acceleration showed that the smaller
values were better. Force plate measurements indicated
that subjects were most stable under the condition of
OB, whereas inertial sensor measurement features indi-
cated they were most stable under CB. In our study, we
found that better results were obtained without visual
aid. The reason for this difference from our expectation
is because Cooper et al. [44] reported in a test involving
standing on one leg with eyes closed that men and
women who could hold the position for < 2 s were thrice
more likely to die than those who could hold the pos-
ition for ≥10 s; however, individuals who could not per-
form the test were around 12 times more likely to die in
the following 13 years. They concluded that the under-
lying message is that “even a little helps – at least as far
as physical activity is concerned.” We obtained a

conclusion that closing eyes can enable subjects to
understand their own physical status and predict risk. In
addition, some subjects in our study may have been sub-
healthy, a characteristic that cannot be visually observed,
resulting in differences from what we expected. This dif-
ference also indicates that equipment types can influence
experimental results. This also shows that if an experi-
mental task contains visual feedback in static balance,
then COP data can distinguish the difference. This is
mainly because to maintain postural stability, humans
will control the stability of both their feet so that their
body stays on the underlying surface [6]. Song et al. [8]
found from COP that visual feedback can aid subjects in
adjusting their body posture to maintain the body bal-
ance, which is explained in Table 2 wherein in condi-
tions OB–CO and CB–CO show differences for all
indexes, indicating that it is difficult to maintain
self-balance based on proprioception when input from
the visual system is lost. Thus, if a task contains visual
feedback in static balance, COP data can be used to

Table 3 Inertial sensor results

OB CB OO CO

MALA–X 0.44 ± 0.20 0.36 ± 0.38 1.24 ± 0.78 3.05 ± 1.48

MALA–Y 0.56 ± 0.11 0.55 ± 0.11 1.42 ± 1.23 3.05 ± 2.03

MALA–Z 0.74 ± 0.21 0.68 ± 0.22 1.26 ± 0.81 2.65 ± 1.51

MALA–XYZ 1.75 ± 1.11 1.62 ± 1.05 3.937 ± 2.48 8.75 ± 4.89

RMS–X 0.59 ± 0.22 0.53 ± 0.21 1.92 ± 1.80 4.88 ± 2.43

RMS–Y 0.70 ± 1.4 0.71 ± 1.03 2.21 ± 2.05 5.42 ± 3.52

RMS–Z 0.94 ± 0.20 0.88 ± 0.21 1.89 ± 1.69 4.72 ± 2.56

RMS–XYZ 1.47 ± 0.86 1.39 ± 0.871 3.57 ± 3.16 8.55 ± 4.74

MAD–X − 0.59 ± 0.59 −0.43 ± 0.39 −1.08 ± 0.62 −3.00 ± 1.86

MAD–Y −0.95 ± 2.19 −0.88 ± 2.18 −1.83 ± 2.35 −3.14 ± 2.26

MAD–Z −0.59 ± 0.59 −0.87 ± 0.75 −1.38 ± 1.59 −2.54 ± 2.06

MAD–XYZ −2.12 ± 1.97 −2.15 ± 2.05 −4.32 ± 3.24 −8.69 ± 5.57

SMA of Range–X 1.42 ± 0.53 1.31 ± 0.44 7.33 ± 7.40 18.21 ± 9.62

SMA of Range–Y 1.41 ± 1.11 1.44 ± 1.04 3.59 ± 6.60 21.80 ± 14.63

SMA of Range–Z 1.88 ± 0.41 1.85 ± 0.30 5.91 ± 4.47 15.88 ± 11.42

SMA of Range–XYZ 2.57 ± 0.96 6.30 ± 9.88 12.89 ± 10.86 35.23 ± 22.70

SMA of Variance–X 0.0013 ± 0.0010 0.0013 ± 0.0011 0.39 ± 1.41 0.18 ± 1.631

SMA of Variance–Y 0.0010 ± 0.0007 0.0010 ± 0.0006 0.06 ± 0.15 0.29 ± 0.32

SMA of Variance–Z 0.0028 ± 0.0010 0.0026 ± 0.0008 0.04 ± 0.11 0.15 ± 0.17

SMA of Variance–XYZ 0.0013 ± 0.0010 0.0013 ± 0.0011 0.27 ± 0.76 1.15 ± 1.05

ZCR–X 0.31 ± 0.28 0.29 ± 0.29 0.46 ± 0.17 0.48 ± 0.12

ZCR–Y 0.24 ± 0.27 0.23 ± 0.21 0.4 ± 0.16 0.45 ± 0.07

ZCR–Z 0.45 ± 0.31 0.29 ± 0.24 0.47 ± 0.24 0.52 ± 0.17

CBA–XY 0.12 ± 0.16 0.17 ± 0.23 0.24 ± 0.11 0.42 ± 0.18

CBA–XZ 0.43 ± 0.28 0.43 ± 0.28 0.24 ± 0.13 0.51 ± 0.14

CBA–YZ 0.16 ± 0.15 0.14 ± 0.16 0.22 ± 0.12 0.35 ± 0.19

All units: 1/100 g = 9.8 m/s2; ZCR, CBA unit: 100%
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distinguish the difference. As one grows older and pro-
prioception weakens, vision becomes more important
for balance control [45, 46]. Thus, it is suggested that
the elderly used a force plate to measure static balance
because of the visual system. Otherwise, based on each
index’s results, MDIST, MDIST-AP, RDIST, RDIST-AP,
and 95% CC presented differences in each situation. This
may be because average calculation indexes more easily
distinguish differences in chosen indexes.

Inertial sensor indexes presented results that were
slightly different from those of the force plate. Case
OB–CB showed no difference other than the SMA of
Range–XYZ, but showed significant differences for
cases CB–OO and CB–CO. Furthermore, accelerom-
eter data were indistinguishable between the open and
closed eyes (OB–CB) tests but could be used to determine
whether the subject was standing on one foot or both feet
(OB–OO). Thus, this indicates that while it is easier to
measure lower limbs using a sensor, the sensor is less
likely to be affected by the visual system. This result agrees
with findings from previous studies wherein a sensor was
strapped to the lower back, including the pelvis, sacrum,
and the L3 to L5 vertebrae [11, 47, 48]. The accelerometer
is generally worn on the waist because the person moves
as a whole during physical activity and the waist is closer
to the body’s center of gravity. Thus, the detected value is
closer to the actual amount of physical activity [14, 42,
49]. When investigating postural stability based on the

Table 4 p values of inertial sensor for static posture

OB–CB OB–OO OB–CO CB–OO CB–CO OO–CO

MALA–X 0.334 0.001* 0.001* 0.001* 0.001* 0.003*

MALA–Y 0.532 0.001* 0.005* 0.001* 0.005* 0.027*

MALA–Z 0.363 0.005* 0.001* 0.003* 0.001* 0.005*

MALA–XYZ 0.334 0.001* 0.001* 0.001* 0.001* 0.008*

RMS–X 0.281 0.001* 0.001* 0.001* 0.001* 0.006*

RMS–Y 0.82 0.001* 0.002* 0.001* 0.002* 0.017

RMS–Z 0.307 0.001* 0.001* 0.001* 0.002* 0.008*

RMS–XYZ 0.256 0.001* 0.001* 0.001* 0.001* 0.011*

MAD–X 0.334 0.028* 0.001* 0.001* 0.001* 0.003*

MAD–Y 0.126 0.001* 0.011* 0.001* 0.009* 0.053

MAD–Z 0.069 0.027* 0.002* 0.233 0.005* 0.009*

MAD–XYZ 0.712 0.001* 0.003* 0.001* 0.003* 0.023*

SMA of Range–X 0.363 0.001* 0.001* 0.001* 0.001* 0.008*

SMA of Range–Y 0.589 0.001* 0.001* 0.001* 0.001* 0.005*

SMA of Range–Z 0.755 0.001* 0.001* 0.001* 0.001* 0.005*

SMA of Range–XYZ 0.012* 0.001* 0.001* 0.047* 0.001* 0.005*

SMA of Variance–X 0.789 0.001* 0.001* 0.001* 0.001* 0.012*

SMA of Variance–Y 0.645 0.001* 0.001* 0.001* 0.001* 0.006*

SMA of Variance–Z 0.527 0.001* 0.001* 0.001* 0.001* 0.009*

SMA of Variance–XYZ 0.288 0.001* 0.001* 0.001* 0.001* 0.009*

ZCR–X 0.865 0.065 0.029* 0.041* 0.017* 0.221

ZCR–Y 0.925 0.039* 0.025* 0.002* 0.005* 0.125*

ZCR–Z 0.105 1.000 0.513 0.01* 0.003* 0.181

CBA–XY 0.414 0.017* 0.003* 0.149 0.013* 0.009*

CBA–XZ 1.001 0.025* 0.256 0.069 0.394 0.001*

CBA–YZ 0.239 0.099 0.02* 0.083 0.013* 0.023*

*Significance, p < 0.05

Table 5 Results of multiscale entropy analysis

OB CB OO CO

COP-ML 1.21 ± 0.36 1.22 ± 0.31 1.80 ± 0.36 0.69 ± 0.36

COP-AP 1.05 ± 0.19 1.03 ± 0.17 1.01 ± 0.33 0.83 ± 0.32

Acceleration-X 1.27 ± 0.32 1.3 ± 0.39 1.8 ± 0.36 1.57 ± 0.36

Acceleration-Y 0.94 ± 0.41 1.04 ± 0.33 1.41 ± 0.39 1.29 ± 0.44

Acceleration-Z 1.35 ± 0.26 1.32 ± 0.33 1.85 ± 0.37 1.56 ± 0.43
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visual system, a force plate is often used for data collection
because a subject controls their stability with both feet to
maintain balance [45]. Song et al. [8] found from COP
data that visual feedback helps subjects adjust posture to
maintain balance.
There are no clear results for ZCR, probably because

the original application of the zero-crossing rate is the
regular motion of measuring the number of steps of walk-
ing. However, in this experiment, the irregular motion is
not good as the characteristic value. All four experiment
actions had very low CBA correlation coefficients and a
very large standard deviation, indicating that the data was
insufficiently accurate. Further, ZCR and CBA could not
be used to distinguish between the OB–OO and CB–OO
cases. These results were not as expected as these indexes
were thought to be suitable for measuring static balance
[50]. We infer that the original eigenvalue was derived
from that of the gait experiment and belongs to the mo-
tion law experimental type. These facts may be respon-
sible for this feature’s poor results.
The statistical Wilcoxon signed-rank test with experi-

mental actions, force plate data, and inertial sensor axial
data are used for calculating MSE. In comparison with

the balance data obtained by the inertial sensor, the MSE
data obtained by the force plate allowed us to distinguish
the actions studied more easily. When using the force
plate as a balance measurement tool, almost all ex-
perimental actions could be distinguished in the for-
ward–backward direction. Inertial sensors have less
commonality, but there were no differences in mea-
surements between actions with or without vision.
The force plate allowed for easy distinguishing be-
tween two axes for OO. Although it is possible to
distinguish actions in the YZ axial with the inertial
sensor, there is no experimental action that allows for
distinguishing the XZ axes. However, both YZ and
XA axes can be distinguished with the force plate. In
addition, previous research [21, 43] demonstrates that
trials in which subjects stand on two legs with their
eyes open exhibit the best performance, with features
similar to those of force plate measurements performed
herein. However, this was not the case for most
sensor-related features. Thus, a force plate is recommended
to evaluate postural stability based on the results of static
equilibrium force measurements.

Fig. 8 Results of multiscale entropy analysis

Table 6 Identification of four experimental actions with axial data

OB–CB OB–OO OB–CO CB–OO CB–CO OO–CO

ML 0.488 0.932 0.008* 0.629 0.011* 0.074

AP 0.82 0.012* 0.006* 0.009* 0.005* 0.035*

X 0.91 0.002* 0.078 0.006* 0.125 0.083

Y 0.116 0.008* 0.023* 0.012* 0.125 0.307

Z 0.572 0.002* 0.164 0.002* 0.233 0.047*

*Significance, p < 0.05

Table 7 Identifying force plate and inertial sensor axial data
from experimental actions

COP Acceleration

ML-AP X–Y X–Z Y–Z

OB 0.017* 0.030* 0.594 0.005*

CB 0.023* 0.118 0.975 0.099

OO 0.001* 0.003* 0.320 0.001*

CO 0.001* 0.003* 0.712 0.005*

*Significance, p < 0.05
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Using MSE as a common feature for examining the
findings showed that the results obtained with the force
plate, inertial sensor, and MSE are not mutually consist-
ent. The force plate results show that the best postural
stability was achieved under the OB condition, whereas
the inertial sensor results show that the best postural
stability was achieved under the CB condition. The MSE
results indicated that the sensor of acceleration X, Y, Z
lead to the best adaptability under the OO condition as
well as the best adaptability under the force plate-ML of
the OB condition. Based on the results presented in
Table 6, the MSE results were significantly different in
the cases containing OO (OB–OO, CB–OO, and OO–
CO). Thus, MSE can be used to distinguish different ac-
tions. The complexity of MSE can be used to understand
the adaptability of postural stability [51], especially the AP
of the force plate, and the Z-axis (forward/backward) of
the inertial sensor. These results indicate that standing on
one foot with eyes open shows better results than standing
on two feet with both eyes open. These results can be ex-
plained in two parts. Sun and Lee [17] found that in the
static balance for postural stability challenge exergame,
subjects felt that the dynamic humanoid frame (standing
on one foot with eyes open) is easier than the static hu-
manoid frame (standing on both feet with eyes open) be-
cause it is easier to maintain postural stability. In addition,
their study found that when subjects stood on both feet
with eyes open, their postural stability control was better
when the time duration was shorter. In our study, we have
tried to discuss the different measurements of postural
stability. The respective durations for the four actions de-
signed in our study were 30 s each; all our subjects were
healthy and young. The results of the balance tests con-
ducted with visual assistance were non-challenging. The
results correspond with those of Cooper et al. [44], who
reported that closing the eyes can enable subjects to
understand their physical status, improve risk prediction,
and let young subjects predict signs of early warning in
terms of any difficult situations. On the other hand, we
may be able to reduce the time for further evaluation of
warning signs in the experiment or in the community ser-
vices. Otherwise, considering that we hypothesize Cooper
et al.’s [44] findings, it is suggested that the use of a com-
bination of physical performance measurements increases
prognostic power in the analyses of middle-aged popula-
tions. We can further discuss the assessment of different
measurements of postural stability and whether the same
associations are present.
Under static conditions, the force plate was found to be

more sensitive to actions influenced by the visual system.
In contrast, under acceleration, the inertial sensor was
more sensitive to experimental actions that were influ-
enced by the lower limbs, as was found by Keshner et al.
[3]. Thus, when the visual environment changes while

standing still, the head and torso (sensor) movements of
the subject will be greater than those of the lower extrem-
ities. To maintain balance, the subject controls the
double-foot stability to maintain their lower limbs, but the
head and torso posture is still be affected by visual
changes as shown by subjects taking normal strides while
walking during the test.

Conclusions
This study aimed to (1) investigate different equipment
types for balance testing in healthy subjects and (2) ex-
plore the conditions that would affect subjects’ postural
stability using multiscale complexity analysis. It was antici-
pated that our findings would suggest performing investi-
gations on different evaluation tool choices that can be
easily adapted to suit different needs. The results for the
complexity index and traditional balance indicators are
comparable in their implications on different conditions.
The experimental findings suggest that it is better to use a
force plate if the task is based on the visual system,
whereas an inertial sensor should be used for lower limb
tasks. From the MSE results, we can see that both force
plate and accelerations showed condition OO (open eyes
and standing on one foot) as the best condition, from
which axial directions can be identified. Our study is dif-
ferent from previous studies, in that previous studies have
used MSE to determine the physiological and pathological
events of aging [11, 12, 18–21, 51, 52], whereas we used
MSE to determine the equipment that measures the per-
formance of postural stability. We attempted to generalize
the applications of complexity index to tasks [53] and
training characteristics and to explore different tools to
obtain different results.
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