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Abstract 

Although clinker has been used for many years, complicated mineralogical properties of clinker pose challenges 
for the precise quantification. In this study, the mineralogical and crystallographic properties of nine different clink‑
ers according to grinding procedures were investigated. With the dry-grinding for 2 h, particle size reduction to 3 μm 
of median particle size with a substantial phase transition to an amorphous phase observed, to which alite (C3S) 
mainly contributed to the transition. Meanwhile, the crystallographic properties of the clinker phases were barely 
changed during the wet-grinding. In the wet-grinding program, the amount of ferrite solid solution (C4AF) with a high 
linear absorption coefficient was not underestimated. Furthermore, well-corrected preferred orientation effect 
on C3S was positively contributed to the analysis result of clinkers with the wet-grinding. Hence, it was suggested 
that the crystallographic effects observed in the wet-grinding program could produce more reliable results in phase 
analysis for the clinkers.
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1  Introduction
Worldwide, approximately 4 billion tons of Portland 
Cement (PC) is being consumed every year because of 
its suitable material performance and price competitive-
ness (Alyaseen et  al., 2023; Bamigboye et  al., 2020; Li 
et al., 2003; Shah et al., 2023; Tran et al., 2023). PC con-
sists of various minerals, such as alite (C3S), belite (C2S), 
aluminate (C3A) and ferrite solid solution (C4AF). The 
type of cement varies and is classified based on the con-
tent of clinker phases. Depending on the relative contents 
of these minerals, the material properties of PC develop 

differently (Miller, 2018; Xie & Visintin, 2018). Hence, 
the minerals present in cement should be thoroughly 
calculate to design the performance of cement-based 
materials. For instance, to understand the mineralogical 
characteristics and hydration of cement, thermogravi-
metric analysis, nuclear magnetic resonance, and X-ray 
powder diffraction (XRPD) techniques have been actively 
utilised (Alarcon-Ruiz et al., 2005; Hesse et al., 2011; Naik 
et  al., 2006; Parry-Jones et  al., 1988). Amongst them, 
XRPD is one of the most adopted methods for analysing 
the mineralogical properties of PC (Goergens et al., 2020; 
Scarlett et al., 2001; Scrivener et al., 2004).

For the optimal investigation of XRPD, various factors 
must be considered, such as measurement condition, 
analysis method, and sample preparation. The adequate 
measurement conditions including X-ray scanning range, 
spinning speed, type of slit, maximum sample thickness, 
and step size should be determined empirically or theo-
retically (Wang, 1994; Whitfield & Mitchell, 2009). One 
analysis method, the Rietveld refinement method, is 
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used to quantify the crystalline and amorphous phases 
combined with the internal standard or external stand-
ard method. If the amorphous phase is contained in the 
powder, then the crystalline and amorphous content 
can be indirectly quantified with the known information 
of a standard material (Fiebich & Mutz, 1999; Phillips, 
1997; Scarlett et al., 2002; Shafi et al., 1997; Young, 1993). 
Accordingly, various discussion and proposals on the 
optimal measurement conditions and subsequent analy-
sis method for quantitative XRPD (QXRPD) have been 
reported (Brindley, 1945; De la Torre & Aranda, 2003; 
Taylor et al., 2002; Whitfield & Mitchell, 2009).

Likewise, the effect of the particle size distribution 
in XRPD analysis has been also investigated (Gordon 
& Harris, 1955; Mitchell et al., 2007; Taylor et al., 2002; 
Whitfield & Mitchell, 2009). A large particle size could 
introduce errors into the XRPD pattern, which is closely 
related to the large crystallite size and the poorly refined 
preferred orientation (Dongxu et  al., 2000; Ermolovich 
& Ermolovich, 2016; Kumar et al., 2004; Mejdoub et al., 
2017). If the linear absorption coefficient of the spe-
cific crystalline phase is higher than those of the other 
phases, then the phase content of the phase can be 
underestimated (Guirado et  al., 2000; Peterson et  al., 
2006). In addition, it was reported that larger parti-
cle size of clinker may yield the different shapes of pat-
terns for identical measurement. Therefore, the patterns 
would not be able to be well-unified (Whitfield & Mitch-
ell, 2009). Therefore, the accuracy of the XRPD analysis 
is highly affected by the particle size distribution of the 
powder. Recently, research has investigated whether 
the amorphous phase is contained in ordinary Portland 
Cement (PC), focusing on the factors mentioned above 
(León-Reina et al., 2009; Suherman et al., 2002; Walenta 
& Füllmann, 2004). Torre et  al. reported that a remark-
able amount of amorphous content was found in PC. 
Using the QXRPD technique combined with the internal 
standard method, the amount of the amorphous phase 
was calculated. And, to identify the degree of error, the 
amount of contained internal standard powder and the 
scan range of the XRPD pattern were assigned to experi-
mental parameters. It was concluded that PC and clinker 
contained significant amounts of amorphous content (De 
la Torre et  al., 2001). However, Jensen et  al. conducted 
investigations into the effect of the physical properties 
of C3S in QXRPD analysis. In addition, the reliability of 
QXRPD combined with the internal standard and exter-
nal standard methods was discussed. It was concluded 
that amorphous content was not found in PC (Jansen 
et  al., 2011). Furthermore, the effect of the particle size 
distribution of powder was investigated by Snellings et al. 
(). To verify the reliability of the QXRPD results, Snell-
ings and colleagues adopted the external and internal 

standard methods, and two types of software (i.e. High-
score and TOPAS software) for QXRPD were employed 
to cross-check the results: but the significant differences 
were not confirmed. It has been also reported that the 
amorphous content was not included in the investigated 
PC in the study.

As summarised above, there is a still active debate on 
the nature of amorphous phase in PC. It is due to the ana-
lytical complexity of QXRPD and material uncertainty or 
variability of PC. To elucidate the issue, nine as-received 
clinkers (not PC) were investigated with two different 
programs of dry- and wet-grindings. It includes particle 
size analysis and the amount of the amorphous phase 
which was investigated by quantitative Rietveld analysis 
with the internal standard method. The increase of amor-
phous phase by the dry-grinding process was correlated 
with the decrease of certain mineral phase in the clinkers. 
The crystallographic difference in different grinding pro-
grams was interpreted with the degrees of preferred ori-
entation of monoclinic C3S (M3) and micro-absorption 
of C4AF in the clinkers with different particle size.

2 � Materials and Experimental Methods
Nine types of clinker were collected from different 
cement plants in the Republic of Korea. Clinker powders 
were pre-treated as follows. The acquired clinker nodules 
underwent an actual cement grinding process. In spe-
cific, the nodules were initially crushed in a roll crusher, 
a preliminary grinding process, without the addition 
of gypsum. Subsequently, the obtained coarse clinker 
powder was pulverised into a very fine powder using a 
cement ball mill, which is the main grinding facility. Last, 
pulverised homogeneous powder forms of clinkers were 
prepared with a Henschel mixer. Particle size distribu-
tions of the as-received clinkers will be compared with 
those of micro-ground clinker in Sect. 3.1. The X-ray flu-
orescence results (S8 Tiger, Bruker Co. Ltd., Land Baden-
Württemberg, Germany) are presented in Table  1, with 
the loss of ignition (LOI) obtained from a weight loss 
percentage by heating at 1050 °C for 2 h. The variations 
were observed in Al2O3, Fe2O3, and MgO content accord-
ing to the type of clinker. Al2O3 variations could be linked 
to both cooling rate and the addition of a significant Fe 
source. Discrepancies in Fe2O3 are likely due to variations 
of content of raw material, a crucial iron source in clinker 
production.

Dry- or wet-grinding programs were performed 
using lab-scale micro-ball mill equipment (XRD-Mill 
McCrone, Retsch Co. Ltd., Retsch-Allee, Germany) 
with a 125-mL jar and 48 cylindrical grinding balls were 
adopted for grinding clinker powders. Based on the pre-
liminary experiments, 5  g of clinker was pulverised for 
2  h for dry-grinding and methanol solution (6  mL) was 
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added for wet-grinding program. In more detail, the 
grinding time was determined based on numerous pre-
liminary experiments, set at the minimum duration 
where the preferred orientation effect of C3S remains 
constant. After wet grinding, the powders were separated 
from methanol using a negative pressure machine and 
then dried for 40  min at 70  °C. The grinding durations 
were separated for 1 min after 10 min of grinding to pre-
vent potential temperature rise. To measure the particle 
size distribution of the clinkers, the particle size analyser 
(Malvern Instrument Ltd., Malvern, UK) was used. Two 
measurements were taken per sample, and the measure-
ments were made after achieving sufficient dispersion in 
isopropanol. The as-received clinker, dry-ground clinker, 
and wet-ground clinker are notated as ARC, DGC, and 
WGC, respectively.

XRPD patterns were measured with an X-ray dif-
fractometer (D2 Phaser, Bruker Co. Ltd., Land Baden-
Württemberg, Germany), and the obtained patterns are 
presented in Additional file  1: Figs. S1–S3. The device 
was equipped with Cu-Kα radiation (λ = 1.5418  Å), and 
the measurement range was set from 5˚ to 60˚ (2θ) with 
an optimal step size of 0.02˚ per 2θ. The generator voltage 
and the tube current were assigned to 30 kV and 10 mA, 
respectively (Jeong et al., 2020; Maheswaran et al., 2016). 
The goniometer radius used was 141 mm. To mitigate the 
effects of X-ray scattering at a low angle range, a slit with 
a size of 0.1 mm was inserted on the generator side. The 
clinker samples were rotated to improve particle statistics 
(Shi et al., 2017; Sun & Vollpracht, 2018).

TOPAS software version 7.0 (Bruker Co. Ltd., Land 
Baden-Württemberg, Germany) was used to conduct 
the QXRPD analysis of the clinkers. The clinkers were 
measured three times for one sample in the form of 
lightly pressed powder for assuring the reliability of 

measurement. The background of the XRPD pattern 
was determined with the Chebyshev polynomial func-
tion and 1/X term in the TOPAS software. The scale fac-
tors, lattice parameters, and full-width at half-maximum 
(FWHM) factors were carefully refined to stabilise the 
Rietveld refinement. In particular, except for the C3S, 
C2S, and C4AF phases, the FWHM profile parameters 
were constrained with the value established in the pre-
vious literature (Chaix-Pluchery et al., 1987; De la Torre 
& Aranda, 2003; Hazen, 1976b; Mondal & Jeffery, 1975; 
Smyth, 1975). March-Dollase preferred orientation cor-
rections were refined to the phases of C3S (M3) and oli-
vine (Dollase, 1986). The simulated diffraction patterns 
for ARC7 and WGC 7 are presented in Fig.  1a and b, 
respectively.

To quantify the exact amount of the crystalline phase 
and the amorphous phase contained in the clinkers, the 
internal standard method was adopted (Sakai et al., 2005; 
Shanahan & Zayed, 2007). The internal standard and the 
clinker samples were mixed with a specific weight ratio 
(internal standard reference: clinker powder = 1:9) by 
hand mixing for 30  min, with a mortar. The calibration 
process for the weight fractions was calculated according 
to Eqs. (1–2) (Guirado et al., 2000):

where Corr(Wa), STDknown, STDmeasured, and Wamorphous 
represent the corrected weight percentage, weighed con-
centration of the standard, analysed concentration of the 
standard, and weight percentage of amorphous mate-
rial, respectively. Zincite (NIST SRM 674b) was used 

(1)Corr(Wa) = Wa
STDknown

STDmeasured

(2)Wamorphous = 1−

∑
Corr(Wx)

Table 1  X-ray fluorescence results for clinkers

Phase (unit %) Clinker1 Clinker2 Clinker3 Clinker4 Clinker5 Clinker6 Clinker7 Clinker8 Clinker9

SiO2 21.7 21.8 19.8 21.8 20.3 20.8 20.6 20.1 20.2

Al2O3 4.7 4.8 4.5 4.6 5.7 5.4 5.0 4.8 4.4

Fe2O3 3.7 3.3 3.2 3.5 3.5 3.3 3.2 4.0 3.2

CaO 63.5 63.7 63.5 64.5 63.6 64.0 63.4 63.0 63.3

MgO 2.4 3.5 4.0 2.8 2.5 4.1 4.2 4.7 5.4

SO3 1.0 0.4 0.8 0.4 0.7 0.3 0.7 0.7 0. 6

K2O 1.2 1.0 1.5 1.0 1.5 0.7 1.1 1.0 0.9

Na2O 0.3 0.1 0.1 0.2 0.4 0.2 0.4 0.2 0.2

MnO 0.1 0.2 0.3 0.1 0.1 0.2 0.2 0.1 0.4

TiO2 0.3 0.3 0.2 0.2 0.4 0.3 0.2 0.3 0.2

P2O5 0.3 0.2 0.5 0.1 0.4 0.2 0.2 0.4 0.4

SrO 0.1 − 0.1 0.1 0.1 − 0.1 0.1 0.1

LOI 0.9 0.75 1.6 0.8 0.9 0.7 0.8 0.8 1.1
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as the internal standard reference (Chrysochoou et  al., 
2010; Gualtieri et  al., 2012; Snellings et  al., 2010). The 
QXRPD results of ARC, DGC, and WGC are presented 
in Tables 2, 3, and 4, respectively.

Furthermore, the effect of inclusion of C3S polymorphs 
(M3, triclinic [T1], and gamma [γ]) on the QXRPD ana-
lytical result of all samples of ARC, DGC, and WGC was 
investigated. Since the powder diffraction peaks corre-
sponding to the C3S polymorphs are severely overlapped 
in the 32.1˚ and 32.6˚ for 2θ, it is challenging to accu-
rately identify the existence of minor C3S polymorphs 
(T1 and γ) in the clinker (Bigare et al., 1967; Dunstetter 
et  al., 2006; Jansen et  al., 2011). Therefore, the minor 
C3S polymorphs were generally excluded in qualita-
tive XRPD analysis (Jansen et  al., 2011; Snellings et  al., 
2014; Whitfield & Mitchell, 2009). However, in this study, 
QXRPD analysis has been conducted twice (i.e. with the 

minor C3S polymorphs and without the polymorphs). 
The QXRPD analysis result without the minor C3S pol-
ymorphs is shown in Tables  2, 3 and 4. The analytical 
results with the inclusion of C3S polymorphs of T1 and 
γ have been presented in Additional file 1: Tables S1–S3.

3 � Result and Discussion
3.1 � Effects on the Particle Size Distribution of Clinker 

Powder According to Dry‑ or Wet‑Grinding Program
The particle size distributions of all investigated clink-
ers are presented in Fig.  2(a-i). In the case of ARC, the 
particle size distribution is wider than the other samples. 
It was observed that the particle size range was between 
3 μm and 395 μm, and it exhibited 2 peaks. Furthermore, 
the median particle size of ARC ranged from 20  μm to 
60 μm. For the DGC samples, a narrow particle size dis-
tribution ranging from 1 μm to 8 μm was observed, with 

Fig. 1  Rietveld refinement result of XRPD pattern of ARC7 (a) and WGC 7 (b)
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a median particle size of about 3 μm. Meanwhile, in the 
case of the WGC sample, a broad particle size distribu-
tion was observed, and two peaks were identified. How-
ever, a significant particle size reduction effect was noted 
when compared to that of the ARC. The median particle 
size for these samples was around 10  μm. Therefore, a 
substantial reduction in particle size was clearly con-
firmed in all clinkers, regardless of the type of grinding 
program.

Interestingly, differences were observed in the particle 
size depending on the type of grinding program (Fig. 3). 
The particle size distributions of the DGC were smaller 
than those of the WGC. This trend suggests that high-
volume energy supplied by the ball mill can directly 
transfer to the clinker powder, and thus the particles 
could be finely pulverised with dry-grinding process. In 
addition, it should be noted here that the particle size 
distribution of the WGC was wider than that of the DGC 

(Fig.  2). In particular, in the case of the WGC, it was 
confirmed that there were significant amounts of par-
ticles between 0.2 μm and 1.0 μm, which indicated as a 
2nd mode size (Figs.  2 and  3). This phenomenon might 
occur due to the difference in brittleness according to the 
type of clinker phase. In other words, it was shown that 
the particles containing a number of clinker phases with 
relatively low micro-structural stability were partially and 
more finely pulverised in a state of saturation with meth-
anol (Le Saoût et al., 2011).

3.2 � Qualitative X‑ray Diffraction Analysis Results 
According to the Inclusion of C3S Polymorphs

C3S has known to have seven different polymorphs (i.e. 
M3, M2, M1, T3, T2, T1, and γ) (Bigare et al., 1967; Dun-
stetter et al., 2006). However, all the polymorphs are not 
usually considered in the QXRPD analysis with a medium 
resolution X-ray source (De Noirfontaine et al., 2006; Ren 

Table 2  QXRPD analysis results of ARC​

The averaged weight percentage and standard deviation of three analysed results are presented

Phase (wt.%) ARC1 ARC2 ARC3 ARC4 ARC5 ARC6 ARC7 ARC8 ARC9

Alite (M3) (Mumme, 1995) 56.2
(0.7)

51.3
(1.9)

62.2
(0.8)

58.9
(2.0)

55.4
(0.9)

56.4
(0.7)

44.7
(4.0)

41.6
(2.5)

54.5
(1.3)

Belite (Beta) (Mumme et al., 1995) 16.0
(1.8)

20.6
(0.4)

6.6
(0.2)

12.5
(0.7)

11.2
(1.6)

13.2
(1.3)

10.7
(1.4)

17.8
(0.0)

10.2
(0.6)

Ferrite (Colville & Geller, 1971) 13.5
(1.1)

13.0
(0.4)

13.6
(0.3)

13.1
(0.2)

11.5
(0.1)

11.5
(1.8)

9.2
(0.7)

12.2
(0.6)

10.1
(0.1)

Aluminate (cubic) (Mondal & Jeffery, 1975) 1.8
(0.4)

2.2
(0.2)

1.3
(0.0)

1.8
(0.2)

3.1
(1.1)

3.4
(0.0)

2.7
(0.2)

1.7
(0.2)

2.0
(0.0)

Aluminate (orthorhombic) (Nishi & Takeuchi, 1975) 1.1
(0.1)

1.0
(0.1)

– 0.6
(0.1)

1.5
(0.7)

– 0.4
(0.3)

– –

Wollastonite (Yang & Prewitt, 1999) 2.9
(0.2)

2.8
(0.3)

3.8
(0.5)

4.5
(0.1)

1.7
(0.7)

5.1
(0.2)

2.9
(0.6)

3.4
(1.2)

4.1
(0.5)

Periclase (Hazen, 1976a) 1.1
(0.1)

3.0
(0.6)

6.0
(1.5)

1.4
(0.3)

1.7
(0.0)

3.5
(0.0)

3.4
(0.3)

3.9
(0.0)

4.7
(0.0)

Ca-ferrite (Lazić et al., 2006) 1.2
(0.1)

– – – 0.1
(0.0)

0.4
(0.4)

– – –

Hydrogrossular (Basso, 1983; Ferro et al., 2003) 1.1
(0.1)

1.6
(0.1)

1.6
(0.7)

0.9
(0.8)

3.0
(1.0)

1.5
(0.0)

0.1
(0.1)

1.3
(1.4)

1.2
(0.2)

Olivine (Hazen, 1976b; Smyth, 1975) 3.0
(0.1)

2.2
(0.9)

2.7
(0.3)

3.3
(0.3)

3.6
(0.4)

3.8
(0.1)

2.8
(0.7)

0.2
(0.2)

3.6
(0.1)

Dolomite (Steinfink & Sans, 1959) 0.2
(0.2)

0.3
(0.1)

0.3
(0.3)

0.3
(0.0)

1.0
(0.3)

0.4
(0.1)

0.3
(0.4)

0.7
(0.3)

–

Arcanite (McGinnety, 1972) 0.6
(0.1)

0.6
(0.1)

0.8
(0.2)

0.4
(0.1)

0.5
(0.2)

0.1
(0.0)

0.3
(0.2)

0.3
(0.1)

0.5
(0.0)

Pyrite (Bayliss, 1989; Buerger, 1937) 0.1
(0.0)

0.2
(0.2)

– – – – 0.1
(0.1)

0.1
(0.0)

–

Syngenite (Corazza & Sabelli, 1967) 0.4
(0.0)

– – – – – – 0.1
(0.1)

–

Portlandite (Chaix-Pluchery et al., 1987) 0.2
(0.2)

0.2
(0.0)

0.3
(0.3)

0.1
(0.1)

– 0.5
(0.1)

0.3
(0.1)

– –

Amorphous 0.6
(0.1)

1.0
(3.9)

0.8
(1.5)

2.2
(2.7)

5.7
(0.4)

0.2
(1.2)

22.1
(7.0)

16.7
(0.8)

9.1
(1.2)

Rwp 10.1 9.9 10.0 10.1 10.5 9.7 9.8 8.6 10.1
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et  al., 2017). Since not only some of C3S (M3, T1, and 
γ) polymorphs were severely overlapped in the range of 
32˚–38˚, but the patterns of two polymorphs of C2S (beta 
[β] and gamma [γ]) also exist in that range. Therefore, 
it is challenging to quantify the existing amounts of the 
polymorphs of C3S and C2S. In this regard, the effect of 
the inclusion of C3S polymorphs on the QXRPD result 
should be tested for optimal interpretation of subsequent 
measurements. From the conducted QXRPD of the all 
nine clinkers, the averaged values of weighted profile 
R-factor (RWP) were compared in Fig.  4. When the cal-
culated RWP indices are about 10.0, it can be considered 
that the result of QXRPD is reliable (Toby, 2006). The 
calculated RWP values of QXRPD considering three types 
of C3S (M3, T1, and γ) were lower than that of QXRPD 
considering only one polymorph of C3S (M3) for all three 
grinding conditions (ARC, DGC, and WGC). It shows 
that less accurately refined C3S area can underestimate 

the total amount of C3S compared to the case where 
only one polymorph was considered during the QXRPD 
analysis.

When the C3S polymorphs (T1 and γ) are included in 
the QXRPD analysis, the amount of C3S (γ) was quite 
high in the WGC (Table 4 and Additional file 1: Table S3). 
However, it was reported that the negligible amount of 
C3S (γ) generally exists in a clinker owing to low thermo-
dynamic stability at very high temperature (De Noirfon-
taine et al., 2006; Dunstetter et al., 2006). This abnormal 
phenomenon also led to underestimate the amount of 
C2S. Simply, the overestimation of C3S (γ) makes the 
actual amount of C2S underestimated. Although the 
RWP indices of QXRPD results without C3S polymorphs 
were higher than those analysed with C3S polymorphs, 
more reasonable results were derived when the C3S 
polymorphs were excluded in the analysis. The higher 
RWP value of the QXRPD results of WGC without C3S 

Table 3  QXRPD analysis results of DGC

The averaged weight percentage and standard deviation of three analysed results are presented

Phase (wt.%) DGC1 DGC2 DGC3 DGC4 DGC5 DGC6 DGC7 DGC8 DGC9

Alite (M3) (Mumme, 1995) 38.5
(2.3)

42.0
(3.9)

46.2
(0.0)

47.9
(0.1)

41.5
(0.7)

39.1
(0.6)

42.5
(0.7)

36.5
(1.5)

45.0
(2.8)

Belite (Beta) (Mumme et al., 1995) 12.1
(1.9)

17.5
(4.5)

5.5
(1.6)

7.3
(0.0)

11.5
(0.6)

12.2
(0.5)

7.3
(0.5)

11.0
(0.9)

5.7
(0.1)

Ferrite (Colville & Geller, 1971) 10.5
(0.1)

11.5
(1.1)

10.1
(0.2)

10.2
(1.2)

9.1
(0.2)

10.8
(1.1)

8.2
(0.1)

10.8
(1.0)

7.8
(0.1)

Aluminate (cubic) (Mondal & Jeffery, 1975) 1.0
(0.2)

1.2
(0.2)

0.7
(0.2)

2.6
(0.8)

1.9
(0.3)

2.6
(0.2)

0.9
(0.1)

0.4
(0.4)

1.5
(0.3)

Aluminate (orthorhombic) (Nishi & Takeuchi, 1975) 0.3
(0.3)

0.5
(0.6)

0.9
(0.4)

0.7
(0.3)

1.4
(0.2)

1.2
(0.9)

1.1
(0.0)

0.5
(0.3)

1.0
(0.7)

Wollastonite (Yang & Prewitt, 1999) 2.0
(0.5)

2.4
(0.2)

2.0
(0.5)

3.5
(0.2)

2.2
(0.1)

2.6
(0.3)

1.9
(0.0)

2.8
(0.4)

1.5
(0.2)

Periclase (Hazen, 1976a) 0.8
(0.2)

1.5
(0.4)

2.5
(0.4)

0.6
(0.1)

1.1
(0.4)

2.6
(0.1)

2.5
(0.1)

3.2
(0.5)

3.6
(0.2)

Ca-ferrite (Lazić et al., 2006) – 1.2
(0.4)

– – – 1.3
(0.3)

0.8
(0.2)

1.0
(0.0)

0.3
(0.3)

Hydrogrossular (Basso, 1983; Ferro et al., 2003) 2.1
(0.2)

0.5
(0.5)

1.2
(0.6)

1.8
(0.3)

3.5
(0.5)

– 1.3
(0.2)

0.5
(0.4)

0.9
(0.4)

Olivine (Hazen, 1976b; Smyth, 1975) 1.0
(1.1)

2.5
(0.1)

1.7
(0.3)

2.8
(0.1)

2.0
(0.3)

1.4
(0.0)

2.6
(0.0)

1.9
(0.0)

2.3
(0.2)

Dolomite (Steinfink & Sans, 1959) 0.8
(0.3)

0.6
(0.1)

0.5
(0.1)

0.5
(0.0)

1.1
(0.1)

0.4
(0.1)

– 0.1
(0.1)

0.4
(0.0)

Arcanite (McGinnety, 1972) 0.2
(0.1)

0.3
(0.1)

0.4
(0.0)

0.5
(0.1)

0.2
(0.1)

0.2
(0.1)

0.3
(0.0)

1.0
(0.0)

0.1
(0.1)

Pyrite (Bayliss, 1989; Buerger, 1937) 0.2
(0.1)

0.1
(0.0)

– 0.4
(0.1)

0.3
(0.1)

– 0.4
(0.1)

– 0.1
(0.1)

Syngenite (Corazza & Sabelli, 1967) – – – 0.9
(0.1)

– 0.2
(0.2)

– – 0.2
(0.2)

Portlandite (Chaix-Pluchery et al., 1987) 0.2
(0.2)

0.1
(0.1)

0.1
(0.1)

0.4
(0.0)

– 0.4
(0.0)

– 0.4
(0.1)

0.1
(0.1)

Amorphous 30.3
(2.4)

18.1
(10.7)

28.2
(3.1)

19.9
(0.5)

24.2
(1.3)

25.0
(1.1)

30.2
(0.6)

29.9
(2.9)

29.5
(5.2)

Rwp 9.9 9.2 10.2 10.0 10.1 9.3 9.4 10.1 9.7
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polymorphs can be caused by the existence of incomplete 
C3S (M3) superstructure (Courtial et  al., 2003; De La 
Torre et al., 2002; Nishi et al., 1985; Snellings et al., 2014).

3.3 � Effects of Dry‑ or Wet‑Grinding Program on QXRPD 
Analysis

As can be seen in Fig.  5a, an unusually high C3S peak 
was observed at 32.1˚ for 2θ in the XRPD pattern of the 
ARC, unlike in the previous studies (De La Torre et  al., 
2002; Mumme, 1995; Stutzman et al., 2016). It might be 
caused by the preferred orientation effect [i.e. reflected 
by a March-Dollase coefficient of 0.84 for all ARC of C3S 
(M3)] originating from the large crystallite size of C3S, 
in which the crystals were preferably developed in the 
[0 0 1] direction. It can yield a partial error in quantifica-
tion of phases at the QXRPD analysis stage (De la Torre 
& Aranda, 2003; Snellings et  al., 2014). As a result, the 
amorphous content calculated in the ARC using QXRPD 

ranges from 0.2 wt.% to 23.4 wt.% (Table  2). There was 
no correlation between particle size and the calculated 
amount of amorphous content in the ARC. To investi-
gate micro-grinding effect on the mineralogical proper-
ties of clinkers, grinding time should be chosen. Based 
on several preliminary tests, it was confirmed that 2 h of 
grinding yield consistent amount of amorphous content 
in three identical measurements either by dry- or wet-
grinding program.

The calculated amount of amorphous phase after 2 h of 
micro-grinding is presented in Fig. 6. A noticeable trend 
was observed depending on the selected grinding pro-
gram. In the case of the DGC, the amount of amorphous 
phase substantially increased compared to the ARC case. 
On the other hand, it decreased to a negligible quantity 
in the WGC. These results can be explained as follows. 
When the dry-grinding program was additionally applied 
to the ARC for 2 h, it had a significant effect on the XRPD 

Table 4  QXRPD analysis results of WGC​

The averaged weight percentage and standard deviation of three analysed results are presented

Phase (wt.%) WGC1 WGC2 WGC3 WGC4 WGC5 WGC6 WGC7 WGC8 WGC9

Alite (M3) (Mumme, 1995) 54.9
(0.2)

54.9
(0.8)

61.4
(0.7)

68.0
(0.3)

54.0
(1.2)

55.2
(1.0)

57.7
(2.2)

57.1
(0.3)

57.2
(1.0)

Belite (Beta) (Mumme et al., 1995) 17.3
(0.4)

12.5
(2.8)

3.6
(0.1)

3.9
(0.6)

11.3
(0.3)

10.5
(1.5)

8.3
(1.4)

12.5
(0.1)

6.2
(0.6)

Ferrite (Colville & Geller, 1971) 14.6
(1.9)

16.6
(0.4)

15.3
(0.4)

14.9
(0.9)

13.8
(0.4)

17.4
(1.1)

13.6
(1.1)

14.7
(0.1)

11.5
(0.0)

Aluminate (cubic) (Mondal & Jeffery, 1975) 1.5
(0.1)

0.8
(0.2)

3.7
(0.0)

2.6
(0.7)

3.0
(0.1)

3.4
(0.2)

2.6
(0.8)

0.7
(0.0)

2.3
(0.4)

Aluminate (orthorhombic) (Nishi & Takeuchi, 1975) 0.1
(0.1)

2.2
(0.2)

0.2
(0.1)

1.0
(0.2)

2.3
(0.1)

1.6
(0.3)

2.5
(0.8)

0.1
0.0

2.0
(0.3)

Wollastonite (Yang & Prewitt, 1999) 2.2
(0.1)

3.2
(0.8)

2.5
(0.0)

2.3
(0.7)

2.8
(0.3)

2.3
(0.2)

2.8
(0.3)

2.0
(0.0)

2.5
(0.3)

Periclase (Hazen, 1976a) 1.0
(0.0)

1.0
(0.4)

1.8
(0.0)

0.7
(0.0)

0.8
(0.1)

2.7
(0.3)

2.4
(0.3)

4.1
(0.0)

4.4
(0.0)

Ca-ferrite (Lazić et al., 2006) 2.3
(0.1)

2.4
(1.0)

3.4
(0.2)

1.1
(1.0)

1.0
(0.1)

0.9
(0.3)

1.7
(0.8)

1.3
(0.0)

4.6
(1.4)

Hydrogrossular (Basso, 1983; Ferro et al., 2003) 2.5
(0.1)

2.1
(0.7)

2.8
(0.0)

0.5
(0.2)

3.7
(0.8)

1.8
(0.4)

2.4
(0.0)

3.5
(0.0)

3.7
(0.0)

Olivine (Hazen, 1976b; Smyth, 1975) 2.4
(0.1)

0.4
(0.1)

0.8
(0.0)

1.4
(0.5)

0.4
(0.4)

0.3
(0.2)

0.8
(0.2)

1.8
(0.0)

1.7
(0.5)

Dolomite (Steinfink & Sans, 1959) – 0.5
(0.4)

0.5
(0.0)

0.5
(0.2)

0.9
(0.3)

0.2
(0.1)

0.3
(0.1)

0.2
(0.0)

0.1
(0.1)

Arcanite (McGinnety, 1972) 0.4
(0.0)

1.0
(0.1)

1.4
(0.1)

0.3
(0.1)

0.6
(0.2)

0.1
(0.1)

1.0
(0.6)

0.2
(0.0)

0.6
(0.3)

Pyrite (Bayliss, 1989; Buerger, 1937) – 1.0
(0.4)

1.8
(0.0)

0.4
(0.3)

1.4
(1.0)

0.3
(0.1)

0.2
(0.2)

– 0.6
(0.5)

Syngenite (Corazza & Sabelli, 1967) – 0.4
(0.3)

– 0.8
(0.7)

1.8
(0.3)

0.2
(0.2)

1.2
(0.1)

0.2
(0.0)

0.2
(0.2)

Portlandite (Chaix-Pluchery et al., 1987) 0.3
(0.3)

0.9
(0.4)

0.5
(0.0)

1.5
(0.7)

2.1
(1.4)

1.7
(0.1)

1.9
(1.1)

0.7
(0.0)

0.9
(0.0)

Amorphous 0.5
(0.6)

0.1
(0.1)

0.3
(1.3)

0.1
(0.5)

0.1
(0.3)

1.4
(0.2)

0.6
(0.4)

0.9
(0.6)

1.5
(2.6)

Rwp 8.4 9.6 9.4 9.5 8.6 9.9 9.5 9.1 9.8
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measurement results. Overall, the intensity of almost all 
clinker phases got lower than those of the ARC (Fig. 5a). 
In particular, the intensity of one of the main peaks (32.1° 
of C3S) was significantly reduced whilst the relative inten-
sity was measured similarly as reported in the previous 

studies (Jansen et  al., 2011; Stutzman et  al., 2016). The 
reduction of the intensities of these XRPD peaks defi-
nitely affected the quantification analysis. The amount of 
amorphous phase surprisingly increased, which ranges 
from 18.7 wt.% to 30.9 wt.% (Fig. 6).

Fig. 2  Particle size distribution of the clinkers. ARC, WGC, and DGC indicate as-received clinker, wet ground clinker, and dry ground clinker, 
respectively
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Fig. 2  continued

Fig. 3  Changes in the average and standard deviation of the particle 
size of the clinker according to grinding program Fig. 4  Averaged weighted profile R-factor of QXRPD results
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This result can be explained by not only applying the 
high-volume energy delivered by the ball mill to particle 
size reduction but also by partially modifying the crys-
tallographic information of the clinker phases (Huang 
et al., 2017; Mejdoub, Hammi, Khitouni, Suñol, & M’nif, 
2017). That is, crystallographic defects such as the dislo-
cation and vacancies of atoms could arise during the dry-
grinding program. These abnormal variations are sources 
that could change the crystalline phase to the amor-
phous phase (Dongxu et  al., 2000; Juhász & Opoczky, 
1990; Mejdoub, Hammi, Khitouni, Suñol, & M’nif, 2017; 

Snellings et al., 2014). In particular, it was confirmed that 
the increased amount of amorphous phase was remark-
ably correlated with the decreased amount of C3S (Fig. 7). 
As the prolonged dry-grinding program was introduced, 
the preferred orientation of C3S (M3) to the (0 0 3) plane 
was substantially reduced which could be confirmed by 
the increased March-Dollase coefficient value (i.e. fitted 
to 0.91 for DGC). Therefore, it is safe to conclude that 
C3S, which has relatively lower spatial stability (Le Saoût 
et  al., 2011), substantially contributed to the observed 
amorphisation of clinkers.

When wet-grinding program was applied to the ARC, 
well-corrected preferred orientation effect of C3S was 
observed, and it was also confirmed by identically meas-
ured XRPD patterns for the same sample. The obtained 
March-Dollase coefficients for the ARC, DGC, and WGC 
were about 0.84, 0.91, and 0.96, respectively. In the case 
of WGC, the biased crystal growth with specific direction 
was hard to be observed (i.e. the fitted coefficient was 
almost close to 1.0 (Whitfield & Mitchell, 2009)). Fur-
thermore, the broadness of the XRPD peaks of the WGC 
was wider than those of the ARC with lowered intensi-
ties. This result can be well-explained by the reductions 
of the particle size as well as the crystallite size of the 
clinker phases (Pourghahramani & Akhgar, 2015; Uvarov 
& Popov, 2007).

However, in the case of C4AF (i.e. an interstitial min-
eral), the opposite result was observed by the wet 
grinding. When the crystallite size decreased, the peak 
broadened and as such the intensity should have been 
lowered. However, the intensity was measured to be 
rather high for the C4AF. The obtained results originated 
from the high linear absorption coefficient of C4AF (). 
Guirado et  al., 2000; Peterson et  al., 2006In the case of 
C4AF, the linear absorption coefficient is high at about 

Fig. 5  Comparison of XRPD patterns of the ARC7 and DGC7 (a) 
and the ARC7 and WGC7 (b). Symbols A, B, F, and T represent C3S, C2S, 
C4AF, and C3A, respectively

Fig. 6  Quantification of amorphous content according 
to the grinding programs

Fig. 7  Relation between C3S and the amorphous phase according 
to the dry-grinding program
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500 cm−1, but for other clinker phases, it is mostly low at 
300 cm−1. Accordingly, in the case of C4AF, which has a 
large crystallite size, the amount could be underestimated 
because it absorbs a relatively large amounts of irradi-
ated X-rays. That is, the effect of reducing the degree of 
absorption of X-rays is more dominant than the effect of 
decreasing the peak intensity owing to the decrease in 
the crystallite size (De la Torre & Aranda, 2003). There-
fore, the phenomenon observed in WGC (i.e. particle 
size reduction without causing the amorphisation effect), 
was possibly owing to the reduced preferred orientation 
of the C3S (M3) phase, and the mitigated effect of lin-
ear absorption coefficient of C4AF in finer size. There-
fore, unlike the QXRPD analysis of the ARC and DGC, 
the amorphous content was substantially reduced in the 
results of the WGC (Fig. 8).

3.4 � The Crystallographic Variations of C3S (M3) and C4AF 
Phases Induced by the Grinding Program

The averaged crystallite size can be calculated based 
on the value corresponding to the FWHM or the inte-
gral breadth of the XRPD peak. In general, as the peak 
intensity decreases and broadens, the crystallite size 
decreases (Pourghahramani & Akhgar, 2015; Uvarov & 
Popov, 2007). These shape changes of C3S (M3) and C4AF 
could be identified in Fig. 9a and b. More quantitatively, 
the variation of calculated FWHM by grinding program 
was analysed using peaks at 29.4˚ and 12˚ for C3S (M3) 
and C4AF, respectively (Fig. 9c). Under the dry-grinding 
program, no noticeable change of the FWHM was con-
firmed. However, the value of C3S (M3) was significantly 
increased with the wet-grinding program. The increase 
in FWHM of C3S (M3) indicated that the existing pre-
ferred orientation was appropriately corrected in the 
WGC, which had a bias concerning crystallinity in the 

[0 0 1] direction in ARC. On the other hand, the FWHM 
of C4AF slightly increased in the DGC but decreased in 
WGC. The result of WGC found herein was not an effect 
normally caused by the grinding process (Pourghah-
ramani & Forssberg, 2006; Radoi et al., 2004; Sheng et al., 
2011). It can be explained by the micro-absorption coef-
ficient of C4AF. When the wet-grinding program was 
applied, the characteristics of X-ray absorption were 
significantly alleviated, and as a result, the decrease in 
particle size had a remarkable effect on the XRPD pat-
terns (De la Torre & Aranda, 2003; Snellings et al., 2014). 
Therefore, unlike the C3S (M3) phase, the C4AF phase 
would not have been able to confirm the variations in the 
fine FWHM by the effect of pattern change due to the 
correction of micro-absorption by wet-grinding.

4 � Conclusions
This study systematically investigated the nature of 
amorphous content in clinkers under different grinding 
programs, an issue still under debate. The relationship 
between the amorphous phase contained in the clinkers 
and the two types of grinding methodologies was cov-
ered through particle size measurement and QXRPD 
analysis. The conclusion of this study is as follows:Fig. 8  Relation amongst C3S, C4AF and amorphous phases according 

to the wet-grinding program

Fig. 9  Variations of C4AF (a) and C3S (M3) (b) peaks according 
to grinding program. Averaged value of FWHM of C4AF and C3S (M3) 
peaks (c)
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When the C3S (M3, T1, and γ) polymorphs were 
included in the QXRPD analysis, the improved RWP 
indices were obtained. In particular, it is mostly 
enhanced in the WGC. However, it was due to the mis-
fitted C3S (γ) when all C3S polymorphs were included. 
It led to the overestimated amount of C3S(γ) and unre-
alistic amount of C2S. Therefore, it was proposed that 
QXRPD without considering the C3S polymorphs is 
more reliable method and it was adopted for the subse-
quent analyses.

In the case of the DGC, the median particle size 
reduction to 3  μm resulted in a significant change in 
the QXRPD analysis results. It was confirmed that the 
intensity of the XRPD peaks was lowered, suggesting the 
amorphisation effect of clinker phases. In particular, a 
remarkable amorphisation effect of C3S was confirmed.

Meanwhile, the wet-grinding program produced the 
median particle size of 10  μm. The correction of pre-
ferred orientation effect was supported by the crystal-
lite size reduction of the C3S (M3) phase in the WGC. In 
addition, the amount of C4AF could be accurately calcu-
lated in the WGC owing to the particle size reduction. 
That is, the reduced degree of absorption of X-rays as 
the particle size decreases favourably contributed to the 
optimal estimation of C4AF in WGC. There was negligi-
ble amount of amorphous phase estimated in the WGC. 
On the other hand, substantial amorphisation including 
C4AF was observed in DGC and the amount of C4AF was 
underestimated in ARC with large particle sizes.

The implementation of the method demonstrated in 
this study suggests that the wet-grinding program can be 
an adequate sample treatment methodology for obtain-
ing more accurate mineralogical composition of clinker 
materials. In specific, it can lead to the negligible amount 
of amorphous phase and the more accurate estimation of 
C4AF amount. Along with the application of this meth-
odology to clinkers, it can be extended to quantitatively 
analyze the complex hydration reaction of PC especially 
focusing on the degree of reaction of C3S and C4AF.
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