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Abstract 

Climate change and air pollution are two interconnected daunting environmental challenges of the twenty-first 
century. Globally, stringent public health and environmental policies are set to mitigate the emissions of near-term 
climate forcers (NTCFs) because they double as air pollutants. While the global climate impact of NTCF mitigation 
has been investigated using coarse resolution climate models, the fine scale regional climate impacts over East Africa 
are not fully known. This study presents the first 2021–2055 downscaled model results of two future scenarios which 
both have increasing greenhouse gas emissions but with weak (SSP3-7.0) versus strong (SSP3-7.0_lowNTCF) levels 
of air quality control. NTCF mitigation is defined here as SSP3-7.0_lowNTCF–SSP3-7.0. The results reveal that NTCF 
mitigation could cause an increase in annual mean surface temperature ranging from 0.005 to 0.01 °C decade−1 over 
parts of Kenya, Ethiopia and Somalia. It could also cause an increase in annual mean precipitation ranging from 0.1 to 
1 mm month−1 decade−1 over parts of Uganda, Kenya, Tanzania, South Sudan and Ethiopia. Majority of the precipita‑
tion increase is projected to occur during the MAM season. On the other hand, Zambia, Malawi and southern Tanzania 
could also experience a decrease in annual mean precipitation by up to 0.5 mm month−1 decade−1. Majority of this 
decrease is projected to occur during the DJF season. These findings suggest that pursuing NTCF mitigation alone 
while ignoring greenhouse gas emissions will cause additional climate change over East Africa. Mitigating both of 
them concurrently would be a better policy option.
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Introduction
Near-term (short-lived) climate forcers (NTCFs) are 
atmospheric chemistry species which exert a modify-
ing effect on climate within two decades after they have 
been emitted or formed (Szopa et al. 2021). This is due to 
their short atmospheric residence times that range from 
hours to a few months for most NTCFs. Direct NTCFs 

such as aerosols, ozone (O3) and methane (CH4) exert a 
radiative forcing which influences the radiation budget 
of the atmosphere, while indirect NTCFs such as nitro-
gen oxides (NO and NO2), sulphur dioxide (SO2), carbon 
monoxide (CO) and non-methane volatile organic com-
pounds (NMVOCs) are precursors to the direct NTCFs. 
Through complex chemical processes, the indirect 
NTCFs control the atmospheric abundance of the direct 
NTCFs. For example, ozone is formed through a pho-
tochemical reaction between NOx and volatile organic 
compounds (Li et al. 2022; Lu et al. 2019), while sulphate 
and nitrate aerosols are formed through the oxidation of 
SO2 and NO2, respectively (Jacob 2021).

Besides their influence on climate, NTCFs are also air 
pollutants, and they trigger and/or exacerbate respiratory 
illnesses like lung cancer, acute lower respiratory infec-
tion and chronic obstructive pulmonary disease (World 
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Health Organization 2018). They are also associated with 
cardiovascular illnesses such as coronary artery disease, 
cardiac arrest, and heart failure (Miller and Newby 2020). 
This pollution commonly takes the form of tropospheric 
ozone and particulate matter with a diameter of less than 
2.5 µm (PM2.5). A small contribution also comes from the 
precursor gases such as NO2, SO2 and CO (Fowler et al. 
2020; Pozzer et al. 2023). Globally, ambient air pollution 
is considered the leading environmental risk factor, caus-
ing more than 50% of the deaths which is approximately 
4.2 million deaths yearly (Cohen et al. 2017; Pozzer et al. 
2023). Due to this, environmental and public health poli-
cies now target the reduction of these air pollutants to 
improve air quality.

Currently, NTCF emissions are concentrated in highly 
populated regions of the world. These include China, 
India, eastern United States, and Europe (Hoesly et  al. 
2018). Africa is also an important emission source for 
black carbon (BC) and organic (OC) aerosols which 
are associated with biomass burning. Major emissions 
of NOx and SO2 are also concentrated over the global 
oceans, along the international shipping routes (Hoesly 
et  al. 2018). Since the year 2000, Eastern and Southern 
Asia have had the highest levels of NTCF emissions due 
to industrial development (Szopa et al. 2021). By contrast, 
over North America and Europe, the emissions of some 
NTCFs such as NO2 and SO2 have declined in the past 
decade, 2010 to 2019 (Aas et  al. 2019; Jiang et  al. 2018; 
Miyazaki et al. 2017). China also had major SO2 declines 
within that decade (Zheng et al. 2018). CO abundance is 
also on a decline globally (Buchholz et  al. 2021). These 
declines were all due to adoption of policies that restrict 
the emission of NTCFs.

Adoption of these policies will cause future reductions 
in the emissions and abundances of NTCFs, which will 
have a small but important impact on climate (Allen 
et  al. 2020). This scientific domain is being explored 
using model simulations from coupled chemistry-climate 
models such as version 2 of the Community Earth Sys-
tem Model (Emmons et al. 2020; Gettelman et al. 2019; 
Tilmes et  al. 2019) and the Max Planck Institute Earth 
System Model (Tegen et al. 2019). First, idealized experi-
ments have been used to investigate the climate impact 
that will arise from the total removal of anthropogenic 
emissions of selected NTCFs (Baker et  al. 2015; Kas-
oar et al. 2016; Lelieveld et al. 2019; Samset et al. 2018). 
Secondly, coordinated modeling experiments have been 
carried out under the Aerosol Chemistry Model Inter-
comparison Project (AerChemMIP) as part of phase 6 of 
the Coupled Model Intercomparison Project (CMIP6). 
AerChemMIP is designed to quantify the climate and 
air quality impacts of aerosols and chemically reactive 
gases, specifically, NTCFs (Collins et al. 2017). The latter 

is more realistic as it offers a variety of model simulations 
which are important for quantifying model uncertainty.

To provide context of the full impact that reductions in 
NTCFs will have on climate, AerChemMIP experiments 
are compared against experiments from the Scenario 
Model Intercomparison Project (ScenarioMIP) (O’Neill 
et  al. 2016). Specifically, two future scenarios are com-
pared, these are; SSP3-7.0 from ScenarioMIP and SSP3-
7.0_lowNTCF from AerChemMIP. SSP3-7.0 has weak air 
quality control and high NTCF emissions while SSP3-
7.0_lowNTCF has strong air quality control and low 
NTCF emissions. The mathematical difference between 
these two experiments is then used to reveal the climate 
impact (Allen et al. 2020; Collins et al. 2017; Hassan et al. 
2022). It is important to note that these experiments have 
the same levels of well-mixed greenhouse gases and CH4. 
Therefore, the climate impact revealed here is due to 
changes in only non-methane NTCFs.

The first multi-model global assessment of this climate 
impact was done by Allen et  al. (2020) and it revealed 
that the mitigation of non-methane NTCF emissions 
would cause a future increase in surface temperature 
and precipitation due to the net warming effect that the 
reduction in aerosols would induce. This would also be 
accompanied by an increase in the number of hottest 
and wettest days. Over Africa, Allen et  al. (2020) noted 
that the bulk of the precipitation increase would occur 
in East Africa (Fig. 1). Though useful, their results were 
based on coarse resolution models which could only 
offer limited insight. Exploring this problem using model 
simulations at finer spatial scales might be reveal new 
insights. Therefore, this study sought to further investi-
gate these projected changes in temperature and precipi-
tation over East Africa by dynamically downscaling one 
of the CMIP6 global climate model (GCM) experiments 
analyzed by Allen et al. (2020). This is the first study to 
downscale these model experiments over East Africa.

Since most GCM output is at coarse spatial scales of 
between 100 and 500  km, they are unable to accurately 
resolve local features such complex topography, mes-
oscale circulations, land use/land cover and coastlines, 
all of which are important in determining local climate 
patterns (Giorgi and Gutowski 2015; Walton et al. 2015; 
Xu et  al. 2019). Due to this, GCM output only offers 
limited insight into local climate dynamics. To improve 
their utility, downscaling is carried out to provide finer 
detail in the spatial and temporal patterns, which offers 
several advantages. For example, the finer resolution and 
improved representation of topography allows for bet-
ter representation of near-surface temperature gradients 
and the rain shadow effect that is associated with steep 
mountain ranges (Di Luca et  al. 2012, 2015). Typically, 
for the GCM output to be useful for local applications, 
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it has to be downscaled to a resolution of at least 25 km 
or something finer than that. This is the based on recent 
downscaling studies (Fernández-Alvarez et  al. 2023; 
Rahimi et  al. 2020; Xu 2021; Yang et  al. 2023; Ye et  al. 
2022; Yu et  al. 2023). Over East Africa, the impact that 
global mitigation of NTCFs will have on temperature and 
precipitation at such fine spatial scales is not fully known. 
This study is the first attempt to investigate this impact.

Data and methods
Study area
East Africa’s climate requires keen scientific study 
because of the complex mix of factors that influence 
the region’s climate. For example, the biannual cross-
ing of the Intertropical Convergence Zone (ITCZ) cre-
ates a bimodal precipitation cycle, consisting of the long 
precipitation season that occurs from March to May 
(MAM) and the short precipitation season that occurs 
from September to November (SON) (Nicholson 2019). 
The El Niño Southern Oscillation (ENSO) and the Indian 
Ocean Dipole (IOD) enhance precipitation receipts over 
East Africa during SON, thus creating more interan-
nual precipitation variability during SON compared to 
MAM (Nicholson 2019; Wenhaji Ndomeni et  al. 2018). 
The other important factors include the Madden–Julian 
Oscillation, tropical cyclones, and the existence of moun-
tains and large inland lakes (Finney et al. 2020; Nicholson 

2017; Walker et al. 2020). There is also the East African 
climate paradox that has further confounded the study of 
the region’s climate (Mölg and Pickler 2022; Wainwright 
et al. 2019).

The historical climate trends show that East Africa’s 
precipitation has remained the same in the majority of 
the region and only changed in a few areas. For example, 
during the period 1981 to 2017, a precipitation increase 
of between 3 and 15  mm  year−1 occurred in the region 
between Uganda and Kenya that surrounds Lake Victo-
ria. A precipitation decrease of 20  mm  year−1 occurred 
near Mt. Kilimanjaro in northern Tanzania and other 
declines in precipitation of ~ 4 to 10 mm year−1 occurred 
over small regions in central Kenya, central Uganda, 
southwest Tanzania, and western Rwanda (Gebrechorkos 
et  al. 2019a; Muthoni et  al. 2019). Over Uganda alone, 
a small increasing trend in precipitation was identified 
starting in 2010 (Ngoma et al. 2021). On the other hand, 
East Africa’s temperature has shown an increasing trend 
in the majority of the region. For the 1979 to 2010 period, 
this increase reached 1.9  °C (Gebrechorkos et al. 2019a, 
b).

Concerning the future climate projections, the major-
ity of the CMIP6-based climate modeling studies over 
the region have focused on the role of well-mixed green-
house gases (Akinsanola et  al. 2021; Ayugi et  al. 2021, 
2022a; b; Makula and Zhou 2022; Vashisht et  al. 2021). 
By contrast, this study has investigated the role of NTCFs 
since they also pose a threat to East Africa’s climate.

Data
Much as statistical (Thrasher et  al. 2022) and machine 
learning-based (Baño-Medina et al. 2020) downscaling is 
possible, this study preferred a physics-based dynamical 
downscaling because its results are physically consistent 
and scientifically reliable. Therefore, this study down-
scaled the Max Planck Institute Earth System Model 
(MPI-ESM1-2-HAM) using a physics-based regional 
climate model, that is, the Weather Research and Fore-
casting (WRF) model. The downscaling was from 250 
to 23  km (Fig.  2). The two models and their data are 
described below.

MPI‑ESM1‑2‑HAM model
The MPI-ESM1-2-HAM model is a fully coupled ocean-
atmosphere model which was run for CMIP6 by the 
HAMMOZ Consortium (Mauritsen et  al. 2019; Neu-
bauer et  al. 2019). The model’s atmosphere component 
was set up with a horizontal resolution of 250  km and 
47 vertical levels up to 0.01 hPa (Neubauer et  al. 2019). 
This model used identical ozone levels in both SSP3-7.0 
and SSP3-7.0_lowNTCF experiments and only aerosol 
levels were allowed to change. Therefore, the differences 

Fig. 1  Map of East Africa showing its complex topography and 
countries. These are; Uganda (UG), Kenya (KE), Tanzania (TZ), Rwanda 
(R), and Burundi (B) along with the neighboring regions including 
South Sudan (SS), Democratic Republic of Congo (DRC), Zambia (ZA), 
Malawi (M), Mozambique (MZ), Somalia (SM) and Ethiopia (ETH). This 
is also the simulation domain used for the downscaling process in 
WRF
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in climate generated here were only due to changes in 
aerosol amounts. Further, the experiments were only run 
from 2015 to 2055 because this is the time period dur-
ing which changes in aerosol and precursor emissions are 
expected to be significant (Collins et al. 2017).

Among the nine coupled chemistry-climate models 
(Table  1) that performed both SSP3-7.0 and SSP3-7.0_
lowNTCF experiments, only MPI-ESM1-2-HAM was 
selected for the downscaling in this study. This model 
was the only one that provided outputs for both experi-
ments at a 6-hourly temporal resolution. Data at such a 
high temporal resolution was necessary for generating 
realistic boundary conditions for driving WRF. The vari-
ables used were the eastward and northward near surface 
wind, eastward and northward wind, near surface spe-
cific humidity, specific humidity, soil temperature, mois-
ture in the upper portion of the soil column, surface air 
pressure, sea level pressure, surface temperature, near 

surface air temperature, air temperature and geopotential 
height. All these data were downloaded from the Earth 
System Grid Federation (ESFG) database hosted at the 
Lawrence Livermore National Laboratory.1 To be suitable 
input data for WRF, the MPI-ESM1-2-HAM variables 
were preprocessed into 6-hourly intermediate files, with 
each file containing all the variables. This was done in 
Python 3.9.7. Thereafter, the data were interpolated onto 
the WRF model grid using the metgrid function within 
the WRF preprocessing system.

In addition to the meteorological variables, the model 
output for PM2.5 mass mixing ratio in lowest model layer 
was also obtained and analyzed to show the difference in 
PM2.5 aerosol burden between SSP3-7.0 and SSP3-7.0_
lowNTCF. The data were converted from mass mixing 

Fig. 2  Near surface air temperature on 1st July 2030 as simulated by MPI-ESM1-2-HAM (250 km) and WRF (23 km) for SSP3-7.0_lowNTCF

Table 1  The nine models that performed both SSP3-7.0 and SSP3-7.0_lowNTCF experiments under CMIP6

Model References

BCC-ESM1 Wu et al. (2019, 2020)

CESM2-WACCM Emmons et al. (2020), Tilmes et al. (2019), Gettelman et al. (2019)

CNRM-ESM2-1 Séférian et al. (2019), Michou et al. (2020)

GFDL-ESM4 Horowitz et al. (2020), Dunne et al. (2020)

MIROC6 Takemura et al. (2005, 2009), Tatebe et al. (2019)

MPI-ESM1-2-HAM Mauritsen et al. (2019), Neubauer et al. (2019), Tegen et al. (2019)

MRI-ESM2-0 Yukimoto et al. (2019)

Nor-ESM2-LM Seland et al. (2020)

UKESM1-0-LL Sellar et al. (2019)

1  https://​esgf-​node.​llnl.​gov/​search/​cmip6/.

https://esgf-node.llnl.gov/search/cmip6/
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ratio (kg  kg−1) to concentration (μg  m−3) following the 
procedure described by Gomez et  al. (2023). The quan-
tity was multiplied by air density which was calculated 
as in Eq. (1). The unit of pressure was Pascals, while that 
of temperature was Kelvins. The dry gas constant was 
287 JK−1 kg−1.

Weather Research and Forecasting (WRF) model
Version 4.3 of the WRF model, Advanced Research WRF 
dynamics solver (Skamarock et al. 2019) was used for the 
downscaling experiments. It is a regional atmospheric 
modeling system based on the physical equations. WRF 
is designed with Arakawa C-grid staggering, 2nd and 3rd 
order Runge–Kutta time integration, and a terrain-fol-
lowing hybrid sigma-pressure vertical coordinate system 
(Skamarock et al. 2019). For this study, the model was set 
up with one domain (Fig. 1) at a horizontal resolution of 
23 km (110 × 100 grids) and a vertical resolution of 31 eta 
levels ending at 50 hPa at the top.

The model was set up with the Lin microphysics (Lin 
et  al. 1983), Grell 3-D cumulus parameterization (Grell 
and Dévényi 2002), the Noah land surface model (Chen 
and Dudhia 2001), Yonsei University Scheme for the 
boundary layer parameterization (Hong et al. 2006) and 
the Rapid Radiative Transfer Model for GCMs (Iacono 
et  al. 2008) for both shortwave and longwave radiation 
parameterization. These parameterization choices were 
based on previous studies focused on East Africa (Nooni 
et al. 2022; Otieno et al. 2019). The model was run from 
2021 to 2055 at intervals of 1 month while using 1 extra 
day for model spin-up.

WRF generates about 255 different output variables, 
but the ones that are associated with precipitation are the 
accumulated total cumulus precipitation and the accu-
mulated total grid scale precipitation. The two compo-
nents were summed up to obtain the total accumulated 
precipitation value that was analyzed here. Furthermore, 
the variable directly associated with surface tempera-
ture is the 2-m temperature variable. The other variables 
include the eastward and northward surface wind, east-
ward and northward wind at model levels, surface pres-
sure, total pressure, surface mixing ratio and geopotential 
height. The full list of variables can be found in Skama-
rock et al. (2019).

SSP3‑7.0 and SSP3‑7.0_lowNTCF emissions
The SSP3-7.0 scenario assumes a future with high ine-
quality between and within countries, the so-called 
‘regional rivalry’. It is envisaged that there will be weak 

(1)

Air density =

(

Surface pressure

Surface temperature × Dry gas constant

)

× 1e9

and non-uniform air pollution legislation and no green-
house gas mitigation (Fujimori et al. 2017). Consequently, 
the world under this scenario will have the highest emis-
sion levels of NTCFs and substantially high levels of 
greenhouse gases. The latter is the reason why some lit-
erature refer to this scenario as ‘lacking climate policy’ 
(Fujimori et  al. 2017; Gidden et  al. 2019). By contrast, 
the SSP3-7.0_lowNTCF scenario uses the same assump-
tions as SSP3-7.0 except that it assumes a world where 
stringent policies are enacted to mitigate NTCFs but 
while completely ignoring greenhouse gas emissions. 
Therefore, NTCF emissions decrease while greenhouse 
gas emissions continue to increase (Gidden et al. 2019). 
SSP3-7.0_lowNTCF assumptions for NTCFs are simi-
lar to those under the sustainability scenario, SSP1. For 
example, it uses the same CH4 emission reduction rates 
and the same emissions factors for the other air pollut-
ants, that is, NOx, CO, BC, OC, NH3, VOC and sulfur 
(Gidden et al. 2019). For this study, the NTCF emissions 
used for SSP3-7.0 and SSP3-7.0_lowNTCF were 
obtained from the input forcing data for CMIP6 (Gid-
den et  al. 2018a, b). These data were also downloaded 
from the ESFG database hosted at the Lawrence Liver-
more National Laboratory.2 The data for 2015 to 2055 
were plotted to show the difference in NTCF emissions 
between the two experiments.

Methods
Difference variable
The difference variable (Willmott et al. 1985) was applied 
to the model output from both SSP3-7.0 and SSP3-7.0_
lowNTCF as demonstrated in earlier studies (Allen et al. 
2020; Collins et al. 2017; Hassan et al. 2022). The effect of 
NTCF mitigation was calculated as shown in Eq. 2.

Mann–Kendall trend test and Sen’s slope estimator
Two non-parametric tests, that is, Mann–Kendall (Ken-
dall 1975; Mann 1945) and Sen’s slope estimator (Sen 
1968) were applied in both spatial and temporal context 
to test for the existence of a trend at a significance level 
of 95%. This implies that the standard normal statistic, 
Z would have limits as + 1.96 and − 1.96. These methods 
have previously been applied in a similar way to mete-
orological time series data and were found adequate in 
revealing the trend (Alemu et  al. 2015; Gebrechorkos 
et  al. 2019a; Gocic and Trajkovic 2013; Muthoni et  al. 
2019; Ngoma et  al. 2021; Onyutha 2016). In this study, 

(2)
NTCF mitigation = SSP3_7.0_lowNTCF − SSP3_7.0

2  https://​esgf-​node.​llnl.​gov/​proje​cts/​input​4mips/.

https://esgf-node.llnl.gov/projects/input4mips/
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the methods were applied to PM2.5, temperature and 
precipitation data. All the data covered 35 years (2021 to 
2055). For temperature and precipitation, the temporal 
trends were only done for countries whose geographical 
extent was fully contained within the study area. These 
were; Uganda, Kenya, Tanzania, Rwanda and Burundi. 
For the neighboring countries; DRC, South Sudan, Ethio-
pia, Somalia, Mozambique, Malawi and Zambia, the tem-
poral trend statistic would not make complete scientific 
sense as only small portions of the geographical areas of 
these countries were contained within the study region.

Results and discussion
SSP3‑7.0 and SSP3‑7.0_lowNTCF emission differences
Figure 3 shows the global average emission estimates of 
major NTCFs from 2015 to 2050. Under SSP3-7.0, the 
emissions of CO and BC are projected to increase until 
2040 after which they will start to decrease. OC emis-
sions will also increase until 2040 and remain fairly con-
stant until 2050. Emissions of VOC will increase from 
2015 to 2050. NOx emissions will increase up to 2020 and 
remain fairly constant until 2030, after which they will 
decrease. SO2 emissions are projected to decrease. The 
decrease from 2015 to 2020 will be stronger than from 
2020 to 2050. The increase in the majority of the NTCF 

emissions under SSP3-7.0 are estimated to mainly come 
from central Africa and southeast Asia and are associ-
ated with the continued reliance on fossil fuel sources for 
energy, transport and cooking needs (Gidden et al. 2019).

Under SSP3-7.0_lowNTCF, the emissions of CO, BC 
and OC remain constant until 2020 after which they start 
to decrease until 2050. The NOx emissions follow a simi-
lar trajectory, although they show a small decrease from 
2015 to 2020. Emissions of VOC increase from 2015 to 
2020 after which they decrease until 2050. Lastly, the SO2 
emissions will decrease sharply from 2015 to 2050. These 
NTCF emission reductions will be due to adoption of air 
pollution reduction policies.

Changes in PM2.5
Figure  4 shows the projected changes in annual global 
average PM2.5 from 2015 to 2055. Within the model 
framework, PM2.5 is generated by the direct contribution 
of all fine aerosol varieties including nitrate, sulphate, 
carbonaceous, ammonium, dust and sea salt. The differ-
ence in PM2.5 between SSP3-7.0 and SSP3-7.0_lowNTCF 
will be most apparent starting in 2045. That is when the 
mitigation efforts are estimated to start showing large 
benefits. Furthermore, as expected, NTCF mitigation 
will cause a significant decrease in PM2.5 at a rate of 

Fig. 3  Global average anthropogenic emission estimates (kg m−2 s−1) of major NTCFs from 2015 to 2050. These were the emission trajectories used 
for SSP3-7.0 and SSP3-7.0_lowNTCF experiments. The horizontal black line shows the 2015 value
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0.0045 μg m−3 decade−1 over the 2015 to 2055 period and 
this expected to generate large benefits for air quality.

Downscaled temperature
Figure  5 shows the spatial trend of the projected mean 
surface temperature over the 2021 to 2055 period under 
annual, December–January–February (DJF), March–
April–May (MAM), June–July–August (JJA) and Sep-
tember–October–November (SON) aggregations. 
Both SSP3-7.0 and SSP3-7.0_lowNTCF show signifi-
cant warming across most of the region. This projected 
warming generally ranges from 0.001 to more than 
0.015 °C decade−1 and is associated with increasing CO2 
and CH4 levels in both scenarios (Allen et  al. 2020). A 
small but insignificant cooling is also projected during 
SON over Lake Malawi under SSP3-7.0.

The resultant NTCF mitigation signal shows warming 
in the majority of the region. The annual mean warm-
ing ranges between 0.005 and 0.01  °C  decade−1 and its 
mostly significant over parts of Kenya, Ethiopia, Soma-
lia, and the Indian Ocean. DJF, MAM, JJA and SON 
have areas of both warming and cooling, although only 
the warming was significant. During MAM the warming 
intensifies to over 0.015 °C decade−1 over southern Ethio-
pia and northern Tanzania. A similar warming trend hap-
pens during JJA over Ethiopia and Lake Victoria. During 
the same season, warming ranging between 0.005 and 
0.01  °C  decade−1 occurs over the ocean. This projected 
warming due to NTCF mitigation results from global 
increase in the effective radiative forcing when aero-
sol loadings are reduced. Consequently, the cooling that 
comes from aerosol–radiation and aerosol–cloud inter-
actions is reduced, and this causes the warming (Allen 
et al. 2020; Smith et al. 2020; Westervelt et al. 2015).

Surface temperature changes during DJF were not sig-
nificant. Further, surface temperature was also averaged 
over selected countries to obtain time series of annual 
and seasonal aggregations for the 2021 to 2055 period 
(Fig.  6). When the Mann–Kendall test and Sen’s slope 

estimator were applied in this context, no trends were 
found (Table 2).

Downscaled precipitation
Figure  7 shows the trend of projected accumulated 
precipitation over the 2021 to 2055 period. Under 
SSP3-7.0, the region is dominated by a decrease in 
annual mean precipitation ranging between 0.1 and 
0.5  mm  month−1  decade−1. This was most signifi-
cant over the southern Kenya–northern Tanzania 
area and over the upper region of the Indian Ocean. 
This projected decrease is emphasized during JJA and 
SON. A significant precipitation decrease of about 
0.5 mm month−1 decade−1 is seen over South Sudan and 
the Indian Ocean during JJA and over large parts of Zam-
bia, Tanzania, Kenya and Somalia during SON. During 
both seasons, a stronger precipitation decrease ranging 
from 0.7 to over 1.5 mm month−1  decade−1 is seen over 
Lake Victoria and the coastal areas of Kenya and Tanza-
nia. The DJF season differs from the other seasons, as it is 
dominated by precipitation increase ranging from 0.1 to 
over 1.5 mm month−1 decade−1. This was significant over 
central Uganda and the Lake Victoria shores, northeast-
ern Kenya, Somalia, parts of South Sudan and Ethiopia 
and parts of western and southern Tanzania.

Under SSP3-7.0_lowNTCF, the region is domi-
nated by increase in annual mean precipitation. This 
is between 0.1 and 0.5  mm  month−1  decade−1 over 
Rwanda, northern Tanzania, southern and northern 
Uganda, west and central Kenya, parts of Ethiopia and 
South Sudan. The largest increase ranging from 1 to 
over 1.5 mm month−1 decade−1 is over Lake Victoria and 
the southern shore of Tanzania that borders the Indian 
Ocean. A small decrease in annual mean precipitation is 
seen over Zambia, Malawi and southern Tanzania. This 
decrease ranges from 0.1 to 0.5 mm  month−1  decade−1. 
These precipitation changes are emphasized during dif-
ferent seasons. Precipitation increase over the southern 
coast of Tanzania is emphasized during DJF and MAM 

Fig. 4  a Projected changes in annual global average PM2.5 concentration under SSP3-7.0 and SSP3-7.0_lowNTCF. b Projected changes due to NTCF 
mitigation. The plot includes the Mann–Kendall (MK) statistic and Sen’s slope at a 95% confidence level
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while the increase over Lake Victoria and the land areas 
is emphasized during MAM and SON. On the con-
trary, the precipitation decrease over the land areas is 

emphasized during SON, where large parts of Zam-
bia, Malawi, southern Tanzania and northern Mozam-
bique show a precipitation decrease of between 0.5 and 

Fig. 5  Projected annual and seasonal mean surface temperature trend over the 2021 to 2055 period. Stippling denotes Mann–Kendall trend 
significance at the 95% confidence level
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1  mm  month−1  decade−1. Precipitation decrease over 
the Indian Ocean is emphasized during JJA. There is also 
a precipitation increase over the ocean during MAM 
although not significant.

The resultant NTCF mitigation signal shows that 
the region is dominated by an increase in annual mean 
precipitation. This projected increase ranges from 

0.1 to 1  mm  month−1  decade−1 over northeastern 
Uganda, west and central Kenya, northern Tanzania 
and parts of South Sudan and Ethiopia. However, there 
is also a decrease in annual mean precipitation of up to 
0.5  mm  month−1  decade−1 in parts of Zambia, Malawi 
and southern Tanzania. This projected decrease in pre-
cipitation is emphasized during DJF, where it ranges 

Fig. 6  Time series of area-averaged, projected surface temperature due to NTCF mitigation. The trend values are shown in Table 2

Table 2  Mann–Kendall test, standard normal statistic (Z) and Sen’s slope (°C decade−1) for surface temperature

The results are presented as Z/Sen’s slope. There were no significant trends at the 95% confidence level

Annual DJF MAM JJA SON

Uganda 0.51/0.0013 0.11/0.0002 − 0.08/− 0.0001 0.62/0.0019 − 0.02/− 6.3211

Kenya 1.87/0.0037 0.45/0.0011 1.95/0.0053 0.88/0.0030 1.76/0.0044

Tanzania 1.07/0.0024 0.96/0.0018 1.59/0.0045 0.22/0.0009 0.79/0.0025

Rwanda 1.84/0.0025 1.05/0.0038 0.28/0.0009 0.34/0.0013 1.24/0.0040

Burundi 1.70/0.0033 1.39/0.0033 − 0.17/− 0.0012 1.30/0.0042 0.79/0.0024
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Fig. 7  Projected annual and seasonal trends in accumulated precipitation over the 2021 to 2055 period. Stippling denotes Mann–Kendall trend 
significance at the 95% confidence level
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from 0.5 to over 1.5  mm  month−1  decade−1. In the 
same season, other areas are seen to experience a pre-
cipitation decrease. These are central Uganda at about 
0.5  mm  month−1  decade−1, the Lake Victoria shore at 
about 1.5 mm month−1 decade−1 and northeastern Kenya 
at about 0.5 mm month−1 decade−1. There is also a small 
area in southern Kenya which has an increase in precipi-
tation of up to 0.5 mm month−1 decade−1.

The bulk of the precipitation increase is projected to 
happen during MAM and JJA. During MAM, it ranges 
from 0.1 to 1  mm  month−1  decade−1 over Rwanda, 
Burundi, western Tanzania, northeastern Uganda, 
western Kenya and Somalia. In the same season, larger 
increases of over 1.5  mm  month−1  decade−1 are seen 
over Lake Victoria, the upper coastal region of Kenya 
and Somalia, the southern coast of Tanzania and over 
the ocean. During JJA, the precipitation increase ranges 
from 0.1 to just over 1  mm  month−1  decade−1 and is 

mostly over western Kenya, Ethiopia and South Sudan. A 
stronger increase of about 1.5 mm month−1  decade−1 is 
also seen over Lake Victoria. The precipitation increase 
during SON is largely insignificant. Furthermore, the 
spatially averaged precipitation time series for selected 
countries were also obtained and tested for a trend (Fig. 8 

Fig. 8  Time series of area-averaged, projected accumulated precipitation due to NTCF mitigation. The trend values are shown in Table 3

Table 3  Mann–Kendall test, standard normal statistic (Z) and 
Sen’s slope (mm month−1 decade−1) for precipitation

The results are presented as Z/Sen’s slope. Significant trends at the 95% 
confidence level are denoted by bold font

Annual DJF MAM JJA SON

Uganda 2.44/0.196 − 1.44/− 0.166 1.53/0.275 1.76/0.295 1.76/0.336

Kenya 2.78/0.116 − 0.08/− 0.005 2.35/0.278 1.27/0.056 1.50/0.163

Tanzania 1.70/0.075 − 0.19/− 0.027 1.87/0.163 0.19/0.008 0.88/0.078

Rwanda 2.32/0.187 0.11/0.032 2.95/0.285 1.70/0.059 0.68/0.172

Burundi 1.56/0.097 0.00/− 0.005 2.44/0.265 1.67/0.017 1.13/0.204
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and Table  3). An increasing precipitation trend occurs 
over Uganda, Kenya and Rwanda at rates of 0.196, 0.116 
and 0.187  mm  month−1  decade−1 respectively. Signifi-
cant increments also occur during the MAM season over 
Kenya, Rwanda and Burundi at rates of 0.278, 0.285 and 
0.265 mm month−1 decade−1 respectively.

The changes in aerosol–radiation and aerosol–cloud 
interactions also explain the increase and decrease in 
precipitation, although the stronger signal is the increase. 
This study aligns well with prior studies that show that 
aerosols have had and continue to have an important 
influence on East African precipitation (de Graaf et  al. 
2010; Mmame et al. 2023; Scannell et al. 2019). Further, 
this study has also shown that in addition to causing 
an increase and decrease in the precipitation over East 
Africa, NTCF mitigation will specifically cause the bulk 
of the precipitation increase during MAM. These results 
contradict Allen et al. (2020) who highlighted that NTCF 
mitigation only causes an increase in precipitation and 
mainly during DJF. This contradiction probably exists 
because the present study only downscaled one CMIP6 
model and yet the results of Allen et al. (2020) are based 
on a multi-model ensemble of nine CMIP6 models. Fur-
thermore, downscaling with WRF introduces additional 
biases and uncertainty to those already existing in the 
raw CMIP6 model output. Quantifying this model bias 
could help refine the results but it has not been addressed 
in the current scope of the study. Despite this, both stud-
ies agree on the increase in surface temperature.

Summary and conclusions
This study downscaled the MPI-ESM1-2-HAM global 
climate model output using the WRF regional climate 
model. Model experiments for two future scenarios, 
that is, one with weak air quality control (SSP3-7.0) 
and the other with strong air quality control (SSP3-7.0_
lowNTCF) were downscaled from 250 to 23 km in order 
to study the local-scale projected climate change over 
East Africa due to global mitigation of NTCFs. This study 
concludes that global efforts to mitigate NTCFs could 
indeed improve air quality but it could also cause signifi-
cant climate change in East Africa. Specifically, it could 
cause an increase in surface temperature in large parts of 
Kenya and some parts of Ethiopia and Somalia. It could 
also cause an increase in precipitation in several parts of 
the region, including Uganda, Kenya and Rwanda. Major-
ity of the increase is projected to occur during the MAM 
season. On the other hand, parts of Zambia, Malawi and 
southern Tanzania could also experience a decrease in 
precipitation especially during the DJF season. Therefore, 
to avoid such a future in which air quality is improved but 
climate change worsened, it is recommended that both 
NTCFs and greenhouse gases be mitigated concurrently, 

both locally and on a global scale. If such policies are 
used, it will help achieve a double benefit of improving 
air quality and combating climate change.

For further understanding of the possible climate 
change due to NTCF mitigation, future studies should 
be done using daily values of the meteorological varia-
bles. This will make the calculation of the climate change 
indices (Karl et  al. 1999) possible. This was not possi-
ble in the present study because the assessments were 
based only on monthly values. If possible, future stud-
ies could also downscale model experiments that have 
all NTCFs including CH4. Such results can be used to 
reveal the climate impact of CH4 mitigation alone and/
or the mitigation of all NTCFs plus CH4. Since CH4 has a 
positive radiative forcing, its mitigation could cause cool-
ing which might offset the warming caused due to the 
mitigation of the other NTCFs. This kind of investigation 
was not possible in the present study because the MPI-
ESM1-2-HAM model did not perform the experiment 
that included CH4 mitigation. In addition, the results 
presented here are thought to have a level of bias but this 
was not quantified within the current scope of the study. 
Future studies could cover this as well. Lastly, in future, 
NTCF emission estimates will be improved and updated 
using new methodologies. This will help improve the 
model simulations and advance our understanding of the 
climate impact of NTCF mitigation.
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