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Abstract 

Modeling the current distribution and predicting suitable habitats of threatened species support proper planning 
processes for conservation and restoration. The aim of this study was thus to model the actual distribution and 
predict environmentally suitable habitats for Podocarpus falcatus, a locally threatened native tree species in Ethiopia. 
To realize this objective, species’ presence samples, BIOCLIMATIC, and topographic predictors were combined to run a 
MaxEnt model. Finally, a model-generated habitat suitability map was produced with AUC accuracy of 0.783. Among 
the variables used for modeling, elevation range was found to be a key predictor of Podocarpus distribution, followed 
by precipitation of the driest quarter and isothermality. An extensive area (> 48%) of the studied landscape has been 
predicted to be environmentally suitable for the target species. However, only a small portion open-land area is 
practically available for rehabilitation since the area has been intensively cultivated to support the densely inhabited 
population. Therefore, potential areas for a small-scale plantation of Podocarpus trees remain to be pocket sites in 
religious places and around farmers’ homesteads. So far, many farmers in this area have demonstrated a successful 
experience of growing this degraded native tree species. Thus, encouraging privately owned small-scale plantations 
could enhance rehabilitation and more sustainable conservation of the locally threatened native tree species.
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Introduction
Podocarpus falcatus is a native tree species to African 
countries including Ethiopia, while it is exotic to India 
(Orwa et  al. 2009). This tree is known by the scientific 
and common names of Podocarpus falcatus, Afrocarpus 
falcatus, African yellow wood, and ‘Zigba’ in Amharic 
(Bekele 2007; Negash 2010; Doffana 2014). The general 
ecological range of P. falcatus was claimed to be 1550–
3000 m above sea level (masl) altitude, 13–20 °C annual 
mean temperature, and 1200–1800  mm annual mean 
rainfall, over well-drained mainly humus-rich sandy soils 

(Gilman and Watson 1994; Orwa et  al. 2009). However, 
moderately different elevation ranges that limit the dis-
tribution of the species were reported in different geo-
graphic regions. While its ecological limit descends to 
low altitudes from subtropical/tropical moist lowlands to 
subtropical/tropical moist montane in South Africa rang-
ing from 10 to 1700  masl (Farjon 2013), it was claimed 
to dominantly found in Afromontane forest ecosystems 
with altitudinal ranges of 1550–2800  masl in Ethiopian 
(Tesfaye et al. 2002; Negash 2010; Teketay 2011).

This native tree is one of the most important tree spe-
cies in Ethiopia, economically and ecologically, offer-
ing pervasive ecosystem functions, a source of food and 
shelter for wildlife, and yields high quality timber (Vivero 
et al. 2005; Bekele 2007; Teketay 2011). However, because 
of its multipurpose use and excellent softwood product, 
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it has been under intensive exploitation for several dec-
ades, both legally and illegally from the natural forests of 
Ethiopia (Vivero et al. 2005; Teketay 2011). Some pieces 
of  evidences indicate that this tree species was unsus-
tainably exploited beginning in  the 1920s from the dry 
Afromontane forests of Ethiopia (Teketay 1992). Fol-
lowing such increased overexploitation, it has continued 
to decline and is  subsequently classified under the cate-
gory of serious conservation concern within the country 
(Vivero et al. 2005; Teketay 2011).

After the species has already become rare or signifi-
cantly declined, a banning proclamation was ratified by 
the Transitional Government of Ethiopia (TGE 1994) 
to prohibit further cutting of its remnants. However, it 
was reported that despite the ratification of such a legal 
prohibition, illegal felling of the tree has continued unre-
stricted, causing a  more threatening decline (Teketay 
2011). In addition, there are neither large-scale planta-
tions nor known planned programs to rehabilitate this 
locally threatened native tree species (Teketay 2011). On 
the other hand, in spite of such a continuous shrinking in 
the extent of Podocarps forest cover, quantitative empiri-
cal information on the current distribution of its rem-
nants and potentially suitable habitats is lacking. So that 
there is a need for a detailed survey of its remaining pop-
ulations to estimate its present distribution and also pre-
dict its suitable habitat or potential distributions, which 
may help to establish the foundation for future rehabilita-
tion and sustainable conservation plans.

While knowledge on the geographic distribution and 
suitable habitats of threatened species is crucial for con-
servation planning, detailed data on species’ actual and 
potential distribution is usually lacking, as collecting 
such data is costly and labor-intensive. Conservationists 
thus largely rely on predictive models for identifying the 
location and patterns of species distribution for develop-
ing future conservation plans (Elith et  al. 2011; Phillips 
et al. 2006). When reliable species’ data are available, spe-
cies distribution models (SDMs) enable to overcome the 
aforementioned constraints, as SDMs predict species’ 
geographic distribution by establishing a relationship 
between species’ presence sites and the environmental 
conditions prevailing at these locations (Phillips et  al. 
2006; Kumar and Stohlgren 2009; Elith et al. 2011; East-
man 2012).

Species distribution modelling (SDM) has stimulated 
the development of numerous statistical models hav-
ing broad application potentials in biogeography, con-
servation biology, and ecological sciences (Elith et  al. 
2011; Castilho 2015). Several SDM algorithms are avail-
able currently, depending on the nature of species’ data 
at hand (Eastman 2012). The relevant species’ data are 
categorized as presence-absence, presence-only, and 

abundance data. Presence-only data consists of species’ 
occurrence samples, where the target species is known to 
inhabit; presence-absence data includes both samples of 
species’ presence and absence locations; while abundance 
data indicates the numbers of species found at each site 
per unit area. Since presence–only records are the most 
readily available type of species’ data, obtained from 
field-work or museum collections (example, from the 
Global Biodiversity Information Facility: www.​gbif.​org), 
modeling algorithms that require presence-only data are 
preferred more often (Phillips et al. 2006; Elith et al. 2011; 
Castilho 2015). As a result, these modeling approaches 
have been extensively studied and proven to be useful 
for modelling species´ distributions that greatly enhance 
conservation planning programs. Among the presence-
only modeling approaches, the maximum entropy (Max-
Ent) algorithm has received increased attention, which 
has been widely used attributed to its comparatively bet-
ter prediction performance (Phillips et  al. 2004, 2006; 
Elith et al. 2006; Kumar and Stohlgren 2009; Girma et al. 
2015; Abrha et al. 2018). MaxEnt has demonstrated bet-
ter predictive performance than other presence-only 
species distribution models, specifically the Genetic 
Algorithm for Rule-Set Prediction (GARP) (Phillips et al. 
2006; Elith et  al. 2006). For that reason, this algorithm 
was chosen to characterize the actual and potential dis-
tribution of Podocarpus falcatus at a catchment level. 
This study offers valuable insights on the distribution 
and suitable habitats of Podocarpus falcatus, which could 
support future rehabilitation plans.

Materials and methods
Study area
This study was conducted in part of the Southeastern 
Escarpment of the Main Ethiopian Rift, occupying a 
geographic location between 6.52o and 6.94° north 
and 38.24° to 38.64° east. As depicted by the one-arc-
second Shuttle Radar Topography Mission Digital 
Elevation Model (SRTM DEM Fig.  1), it is character-
ized by a wider altitudinal variation, ranging from 1397 
to 3213  m above sea level. Since the catchment is 
dominantly occupied by highland areas, it exhibits a 
cool-tropical type of climate (Moat et  al., 2017). This 
catchment is contained in the Gidabo river basin, char-
acterized by average monthly temperature variations of 
11.5 to 25  °C (Mechal et al., 2016). The area receives a 
bimodal rainfall pattern with peaks in April and May 
during the short rainy season, and in September and 
October during the main rainy season. Based on a bias-
corrected CHIRPS rainfall, the climatological annual 
mean rainfall of this catchment calculated over 1981–
2010 varies from 1078.85  mm in the downstream to 
1430.71 mm in the upstream areas (Tesfamariam et al. 
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2019). The marked altitudinal variations and associated 
physical features across the landscape  have given  rise 
to the spatial variation in rainfall distribution over the 
catchment.

Since this area comprises one of the known agro-
ecological zones in Ethiopia, where P. falcatus grows 
naturally (Vivero et al. 2005; Teketay 2011), it was con-
sidered appropriate and chosen for modeling the pre-
sent distribution and suitable habitats of P. falcatus. As 
such the watershed contains highly scattered remnant 
trees and a pocket Podocarpus forest, which were found 
useful for the species’ distribution modelling and pre-
diction of its suitable habitats in this area.

Species’ occurrence data
Species’ presence points instead of presence-absence 
data were collected, as the MaxEnt modeling algorithm 
applied in this study needs presence-only samples (Phil-
lips et al. 2006). To properly estimate the geographic dis-
tribution along with the accompanying environmental 
conditions considered suitable for the study species, the 
occurrence data should represent a  random sample of 
suitable conditions to the possible degree (Phillips et al. 
2017). Because species’ occurrence localities allow estab-
lishing the relationship between the species’ geographic 
distribution and associated environmental conditions 
across the rest of the study area (Phillips et al. 2006; Elith 
et  al. 2011). To that end, a field survey was conducted 
over the study catchment to identify and geographically 
record presence localities of the target species. Moving 
along transects throughout the landscape, geographic 
locations (longitude, latitude) and elevation of presence 
samples were recorded using a hand-held Global Posi-
tioning System (GPS receiver), where a total of 76 sam-
ple points were collected (Fig. 1). In the study watershed, 
the presence localities of the target species were found 
concentrated between 1625 and 2120 masl over the sur-
veyed area. While no Podocarpus tree was found below 
1625  masl in the watershed, sample collection over a 
mountain with an  elevation higher than 2120  masl was 
constrained by physical inaccessibility (i.e., topographic 
barriers). Nevertheless, the size of this mountainous area 
is negligible compared to the extent of the surveyed area. 
On the other hand, except the protected pocket Podo-
carpus forest located at a hilly terrain that we surveyed 
and sampled it, the majority of the presence samples have 
been concentrated around homesteads of private hold-
ings and religious places.

Selection of environmental predictors
Environmental predictors impose constraints on the geo-
graphic distribution of the species and represent our eco-
logical assumption that these features characterize the 

major environmental factors that limit the spatial distri-
bution of the species (Phillips et al. 2006). Thus, the ulti-
mate goal of species distribution and habitat modeling is 
to estimate the inhabited and potentially suitable envi-
ronmental conditions for the target species. This suggests 
the need for a careful selection of relevant environmental 
variables in order to generate reliable predictions (Phil-
lips et  al. 2017). Relevant variables representing various 
environmental dimensions were selected as potential 
predictors of the actual and potential distribution of the 
species. These comprise topographic variables (Eleva-
tion, slope, and aspect), soil texture, geological map, and 
the WorldClim bioclimatic variables which are among 
other potential applications designed for species distribu-
tion modelling (https://​www.​world​clim.​org/​data). These 
bioclimatic variables (Table  1) represent near-current 
climatic conditions averaged over 30  years from 1970 
to 2000 (Hijmans et  al. 2005; Fick and Hijmans 2017). 
In addition to their biological relevance to plant species 
distributions, these environmental variables (covariates) 
were chosen in accordance with related previous studies 
(Hijmans et al. 2005; Girma et al. 2015; Fick and Hijmans 
2017; Abrha et al. 2018).

The raster-based bioclimatic variables were originally 
derived from monthly temperature and rainfall datasets 
that include the driest, wettest, coldest, and warmest 
extremes as well as intermediate and mean precipitation 
and temperature values representing biologically mean-
ingful climate variables (Hijmans et  al. 2005; Fick and 
Hijmans 2017). However, since the WorldClim precipi-
tation data has been recognized to be less reliable over 
areas with sparse rain gauge stations, which characterizes 
the present study area, the precipitation variables used in 
this study were derived from a bias-corrected CHIRPS 
rainfall product, averaged over 1981–2010 (Tesfamar-
iam et al. 2019). To bring all the environmental layers to 
the same resolution, the CHIRPS rainfall grid was down-
scaled, while the USGS SRTM DEM was upscaled to 
1-km pixel size. The DEM was then used to derive three 
topographic variables (i.e., elevation, slope, and aspect).

Methods of reducing correlated and less important 
variables
A  multicollinearity test using a variance inflation fac-
tor (VIF) and jackknife test of variable importance were 
employed as methods of feature reduction in order to 
filter out highly correlated and less important variables. 
Reduction or removal of (multi) collinear and less impor-
tant variables, while retaining the less correlated and 
more important environmental predictors, helps to get 
more reliable results and improve the  prediction accu-
racy of the model (Girma et  al. 2015). Multicollinearity 
generally occurs when high correlations exist between 

https://www.worldclim.org/data
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two or more predictor variables. When two independ-
ent variables contain redundant information largely, lit-
tle is gained by using both in the model; rather it leads to 
unstable and unreliable (biased) predictions, as it tends 
to increase the variances of regression coefficients. Thus, 
the solution is to keep only one of the two highly corre-
lated independent variables in the model (Yoo et al. 2014; 
Marco and Júnior 2018). Accordingly, after a multicollin-
earity test, those variables having VIF > 5 were removed 
because of their strong correlation with other variables. 
These include eight continuous variables consisting of 
BIO1, BIO5, BIO6, BIO8, BIO9, BIO10, BIO11, and 
BIO16.

Additionally, other non-collinear variables were 
reduced due to their little contribution (low gain) to the 
MaxEnt model based on a jackknife importance test, 
which consists of BIO4, BIO12, BIO13, BIO14, BIO15, 
aspect, geology, and soil texture. Since none of these vari-
ables contains useful information that is not contained in 
the other remaining variables, omitting each variable one 
by one did not decrease the training and test gains of the 
model. Finally, the MaxEnt model was run using 8 less 
correlated and more important variables derived from 
temperature (BIO2, BIO3, BIO7), precipitation (BIO17–
BIO19), and topography (elevation, and slope). Measured 
in their relative contribution and jackknife importance 
test, these variables were found to be more relevant in 

Fig. 1  Location map of the study watershed

Table 1  Description of Bioclimatic variables preliminarily 
selected as predictors

Label Variable Unit

BIO1 Annual mean temperature Degrees Celsius

BIO2 Mean diurnal range [mean of monthly (max-
temp − min-temp)]

Degrees Celsius

BIO3 Isothermality (BIO2/BIO7) × 100 Percent

BIO4 Temperature seasonality (standard devia-
tion) × 100

Percent

BIO5 Max temperature of warmest month Degrees Celsius

BIO6 Min temperature of coldest month Degrees Celsius

BIO7 Annual temperature range (BIO5–BIO6) Degrees Celsius

BIO8 Mean temperature of wettest quarter Degrees Celsius

BIO9 Mean temperature of driest quarter Degrees Celsius

BIO10 Mean temperature of warmest quarter Degrees Celsius

BIO11 Mean temperature of coldest quarter Degrees Celsius

BIO12 Annual precipitation Millimeters

BIO13 Precipitation of wettest month Millimeters

BIO14 Precipitation of driest month Millimeters

BIO15 Precipitation seasonality (coefficient of varia-
tion)

Millimeters

BIO16 Precipitation of wettest quarter Millimeters

BIO17 Precipitation of driest quarter Millimeters

BIO18 Precipitation of warmest quarter Millimeters

BIO19 Precipitation of coldest quarter Millimeters
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characterizing the environmental conditions related to 
the species’ distribution (Table 2).

Description of maximum entropy (MaxEnt) algorithm
Maximum entropy (MaxEnt) is an efficient modeling 
algorithm for making predictions from incomplete infor-
mation that is particularly designed for applications 
demanding presence-only data on species’ distribution 
(Phillips et  al. 2006). It determines how the environ-
mental conditions at the species’ occurrence localities 
relate to the environmental conditions across the rest of 
the study area. The central idea in MaxEnt is to search 
for a probability distribution having a maximum entropy 
(most spread out), subject to the constraints imposed by 
the available information on species’ presences and the 
associated environmental conditions across the study 
area (Phillips et al. 2006; Elith et al. 2011). MaxEnt uses a 
deterministic sequential-update algorithm that iteratively 
picks and adjusts weights of predictors, which is guar-
anteed to converge to the maximum entropy probability 
distribution (Phillips et al. 2004, 2006).

MaxEnt employs a probability distribution that belongs 
to the family of Gibbs distributions (exponential distribu-
tions), where these probability distributions are derived 
from a set of features f1... fn, parameterized by weights 
λl... λn. (Phillips and Dudı´k 2008). The MaxEnt prob-
ability distribution is guaranteed to converge to the best 
Gibbs distribution, as long as the occurrence sites are 
drawn independently at random (Phillips et  al. 2006; 
Phillips and Dudı´k 2008).

In practice, a regularized probability distribution 
is recommended to reduce overfitting to the training 
data. Regularization is a common modern approach in 
general and not specific to MaxEnt, which is a way of 
penalizing the coefficients (weights of features) to pro-
duce a simpler model that balances fit and complexity 
to enhance the generalization of independent test data. 
The probability assigned to each pixel in MaxEnt is 
typically very small, as the total values must sum to 1 
over all the pixels in the study area. Thus, the probabil-
ity distribution is displayed in terms of ‘gain’, computed 
as the log of the probability of the presence samples, 

Table 2  Environmental variables used as predictors (selected after multicollinearity and jackknife importance test)

Label Variable Unit Description

BIO2 Mean diurnal range [mean of monthly (max-temp − min-
temp)]

Degrees Celsius Helps to assess species distribution in relation to diurnal tem-
perature fluctuations

BIO3 Isothermality (BIO2/BIO7) × 100 Percent Evaluates how large the day-to-night temperatures oscillates 
relative to annual temperature range

BIO7 Annual temperature range (Max temperature of warmest 
month minus Min temperature of coldest month)

Degrees Celsius Enables to assess whether ranges of extreme temperature 
conditions affect the species’ distribution

BIO17 Precipitation of driest quarter mm Describes how precipitation amount during the driest quarter 
of the year may affect distribution of the species

BIO18 Precipitation of warmest quarter mm Helps to understand how the amount of precipitation during 
the warmest quarter of the year may affect distribution of the 
species

BIO19 Precipitation of coldest quarter mm Enables to characterize how the amount of precipitation dur-
ing the coldest quarter may affect distribution of the species

– Elevation Meters Identifies the altitudinal range where the species could inhabit

– Slope Degree Describes whether the species’ distribution is affected by slope 
differences

Table 3  Relative contribution of the variables in predicting species’ distribution

To temperature

Labels Variable % contribution

Elevation Elevation 37.5

BIO17 Precipitation of driest quarter 30.8

BIO3 Isothermality (mean diurnal range/annual temperature range) × 100 13.5

BIO19 Precipitation of coldest quarter 7.9

BIO7 Annual temperature range (Max To of warmest month − Min To of coldest month) 4.4

BIO2 Mean diurnal range [mean of monthly (max-temp − min-temp)] 2.9

Slope Slope 2.5

BIO18 Precipitation of warmest quarter 0.6
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minus a constant that makes the uniform distribution 
has a zero gain (Phillips and Dudı´k 2008; Elith et  al. 
2011). MaxEnt generates a probability distribution over 
the pixels in the grid, starting from a uniform distribu-
tion (i.e., gain starts at zero) and repeatedly improves 
the fit to the data. At the end of the run, the gain indi-
cates how closely the model is concentrated around the 
presence samples. For instance, if the gain is 2, it means 
that the average likelihood of the presence samples is 
exp (2) ≈ 7.4 times higher than that of a random back-
ground pixel (Phillips 2017). The gain increases itera-
tion by iteration until the change from one iteration to 
the next falls below the convergence threshold, or until 
maximum iterations have been performed (Phillips 
et al. 2006; Phillips and Dudı´k 2008).

Unlike generalized linear models (GLM) and gener-
alized additive (GAM) models, MaxEnt, requires spe-
cies’ presence records and its output involves a natural 
probabilistic interpretation with a smooth gradation 
ranging from most to least suitable environmental con-
ditions (Phillips et al. 2004, 2006). Still, where a binary 
prediction is desired, MaxEnt is flexible in the choice 
of a threshold (Phillips et  al. 2006). Conversely, in no 
sense are pixels without species’ records interpreted 
as absences in the probability distribution of MaxEnt 
models. Because the current species’ distribution and 

its suitable habitat depend on the interplay of various 
factors, including knowledge on past disturbances, dis-
persal limitations, and biotic interactions; as well as 
the scale of analysis (Elith et al. 2011). Above all, previ-
ous comprehensive studies have substantiated the out-
performing predictive power of MaxEnt compared to 
the commonly used presence-only models of Genetic 
Algorithm for Rule-Set Prediction (GARP) (Phillips 
et al. 2006; Elith et al. 2006).

Therefore, the latest version of MaxEnt software (ver-
sion 3.4.1) was used in the present study to model the 
current distribution and suitable habitats for P. falcatus 
tree species. From the three types of replicate run options 
in the MaxEnt software (Subsample, Crossvalidate, and 
Bootstrap), the ‘subsample’ option was chosen for its 
convenience to randomly divide the species’ presence 
sample into a user-defined proportion of training and test 
samples (Phillips 2017). The 76 points of total presence 
samples were thus partitioned to 75% and 25%, for model 
training and testing, respectively. Applying a default reg-
ularization multiplier (i.e., 1) to reduce overfitting, the 
MaxEnt logistic regression was run with 100 replicates 
and 500 iterations to allow the model has a sufficient time 
for convergence (Girma et  al. 2015; Abrha et  al. 2018). 
Finally, the species distribution and habitat suitability 
map was produced by averaging the 100 replicate runs.

Fig. 2  Species’ distribution and habitat suitability map of P. falcatus 
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Accuracy assessment of model performance
The receiver operating characteristics (ROC) area under 
the curve (AUC), a widely used and robust approach of 
model evaluation was employed to assess the accuracy of 
the model prediction (Pearson et al. 2004; Phillips et al. 
2006; Aguirre-Gutie´rrez et al. 2013; Girma et al. 2015). 
This was performed with independent test data, consist-
ing  of 25% (19) of the total samples (Girma et  al. 2015; 
Abrha et  al. 2018). AUC characterizes the performance 
of a model at all possible levels, independent of any par-
ticular threshold. It quantifies how a random positive 
instance and a random negative instance are correctly 
ordered by the classifier (with random ordering in the 
case of ties), in which a perfect classifier attains an AUC 
of 1, while the AUC value of 0.5 corresponds to a random 
prediction (Phillips et al. 2006; Girma et al. 2015).

For all possible thresholds, AUC is depicted by plot-
ting sensitivity on the y-axis and 1–specificity on the 
x-axis (Phillips et al. 2006; Girma et al. 2015). Sensitivity 
shows the proportion of test localities correctly predicted 
present (1–extrinsic omission rate), while 1–specificity 
corresponds to the proportion of all pixels predicted to 
have suitable conditions for the species. In other words, 
sensitivity represents a true positive rate whereas 1–
specificity represents a false positive rate (commission 
error). Contrastingly, when presence-only data is used 
(as the case in MaxEnt), ROC curve seems to be inappli-
cable. Because without absences, there will be no source 
of negative instances with which to measure specificity. 

However, this can be solved by using a different clas-
sification scheme to distinguish presences from ran-
dom (background), instead of presences from absences. 
Accordingly, to use the ROC curve with presence-only 
data, we have to label all the pixels with no occurrence 
localities as negative instances, even if they support good 
environmental conditions for the species. The maximum 
achievable AUC for models using presence-only data is, 
therefore, less than one (Wiley et al. 2003; Phillips et al. 
2006), and is also smaller for species with a broader range 
of environmental conditions (Phillips et  al. 2004). As a 
result, since the MaxEnt program uses presence-only 
data, the value 1–specificity represents the ‘fractional 
predicted area’ (fraction of the total study area predicted 
present), instead of the more standard commission rate 
(fraction of absences predicted present) (Phillips et  al. 
2006; Phillips 2017).

Results and discussion
Prediction of species’ distribution and habitat suitability
The MaxEnt model generated species’ distribution map 
of P. falcatus was produced at a 1-km spatial resolution, 
maintaining the pixel size of the input data. To classify 
the species’ distribution map into suitability classes, we 
have used the minimum predicted value assigned to any 
of the presence samples, following a related approach by 
Phillips et al. (2006). This minimum predicted probabil-
ity value (i.e., > 0.26) was obtained by averaging 100 rep-
licate MaxEnt runs. Indeed, the areas labeled as suitable 

Fig. 3  Sensitivity versus 1-specificity for P. falcatus averaging 100 replicate models
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in the species distribution and habitat suitability map 
(Fig. 2) fulfills, at least, the minimum environmental con-
ditions currently inhabited by the species, as exhibited in 
the presence localities. Alternatively, the areas labeled as 
unsuitable in this map should be interpreted cautiously, 
as  some locations might marginally support the  growth 
of the species.

In modeling species distribution and habitat suitabil-
ity, understanding the ecological concepts of ‘fundamen-
tal niche’ and ‘realized niche’ helps to properly interpret 
model predictions (Phillips et  al. 2006). A  fundamental 
niche comprises a set of all environmental conditions 
that satisfy the long-term survival of a particular species, 
while the environmental space that the species actually 
occupies constitutes a realized niche. In other words, a 
species’ fundamental niche represents its potential distri-
bution, whereas the space it actually inhabits constitutes 
its realized distribution (Hutchinson 1957). Because of 
human influence, biotic interactions, or geographic bar-
riers which might hinder further dispersal, the species’ 
realized niche may become smaller than its fundamental 

niche with respect to the environmental conditions being 
modeled (Phillips et  al. 2006). For this reason, the pre-
dicted area of species’ presence is usually larger than its 
realized distribution. Therefore, in this study, the geo-
graphic space classified to be suitable (Fig. 2) dominantly 
covers potentially suitable areas, with the species’ present 
distribution constituting a smaller portion.

On the other hand, despite the presence of an extensive 
environmentally suitable area that accounts for greater 
than 48% of the studied landscape, a smaller open space 
is actually available for the restoration of P. falcatus tree 
species. Because of high population density, the land-
scape has been intensively cultivated, dominantly cov-
ered by agroforestry crops extending up to steep-sloped 
terrains. As a result, except the pocket fragmented open 
spaces within the existing protected Podocarpus for-
est, potential open areas for a small-scale rehabilitation 
of this native tree species are mostly found at religious 
sites and around homesteads of individual farmers. In 
connection with this, as we realized in our field survey 
conducted in 2018/2019, many farmers in this area have 

Fig. 4  Jackknife importance of variables in predicting distribution of P. falcatus: a for training data b for test data
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a successful experience of growing the tree around their 
homesteads as well as in the compounds of religious 
places. Moreover, the farmers who have implemented a 
small-scale plantation of this degraded native tree species 
have got government recognition. Thus, the local gov-
ernment office of forestry has been encouraging them by 
providing seedlings regularly during the rainy season for 
further plantation and rehabilitation of the degraded tree 
species.

Accuracy of model prediction
Accuracy of the MaxEnt model prediction was assessed 
using the receiver operating characteristics area under 
the curve (AUC). After 100 replicate runs, an average 
of training and test AUC of 0.783 with a standard devia-
tion of 0.03 was attained (i.e., mean ± study in Fig.  3). 
This indicates the probability that a randomly selected 
presence point is located in a raster cell with a prob-
ability value representing the species occurrence than a 
randomly generated point is 78.3%. Compared to those 
involving presence-absence data, the maximum achiev-
able AUC for models using presence-only data, is nor-
mally lower (Wiley et al. 2003; Phillips et al. 2006), which 
is also smaller for species characterized by wider range 
of environmental conditions (Phillips et al. 2004). In this 
regard, while the accuracy is significantly better than a 
random prediction, this relatively smaller value of AUC 
could be attributed to the wide environmental range of 
the species (Tesfaye et al. 2002; Teketay 2011), in addition 
to the inherent characteristics of modeling with pres-
ence-only data (Wiley et al. 2003; Phillips et al. 2006). As 
shown below (Fig. 3), sensitivity corresponds to the pro-
portion of test localities correctly predicted present (1–
extrinsic omission rate), whereas 1–specificity (fractional 
predicted area) represents the proportion of all pixels 
predicted to have suitable conditions supporting the spe-
cies (Phillips et al. 2006; Phillips 2017).

Major environmental predictors determining Podocarpus 
tree distribution
The principal application of species’ distribution mod-
eling is to empirically answer which variable(s) matter 
most in predicting the species being modeled (Phillips 
2017). To that end, the MaxEnt’s jackknife importance 
test (both for the training and test data) and relative per-
cent contribution were applied. Comparatively, eleva-
tion range has scored the highest relative contribution 
(37.5%), followed by precipitation of the driest quarter 

(30.8%), and isothermality (13.5%) (Table 3). By contrast, 
precipitation of the warmest quarter has contributed the 
least (i.e., 0.6%).

The jackknife importance score of the training and test 
data have revealed that elevation has contributed the 
highest gain to the model when used in isolation, demon-
strating that it has the most useful information by itself. 
Elevation was also the variable that most decreased the 
model gain when it was omitted, and the most effective 
single variable in predicting the distribution of the inde-
pendent test data. Therefore, based on its relative contri-
bution and jackknife importance test, elevation appears 
to be the key predictor, as it contains the most useful 
information that is not present in the other predictor var-
iables. This agrees with the recent SDM study conducted 
in northern Ethiopia for Juniperus procera, a tree species 
characterized by a similar environmental condition as 
Podocarpus falcatus. In this study, which has involved all 
the 19 bioclimatic variables and elevation as environmen-
tal predictors, Abrha et al. (2018) reported that elevation 
range was found to be one of the key predictors of the 
distribution and suitable habitats of Juniperus procera. 
In the present study, precipitation of the driest quarter 
(BIO17) and mean diurnal temperature range (BIO2) 
were also found to be useful to a certain extent follow-
ing elevation gradient, as demonstrated by a decreased 
model gain when one of them was omitted (Fig. 3a, b).

Response curves of individual predictors also provide 
more specific and useful information that character-
izes the species’ distribution. These curves show how 
the predicted probability of the species’ distribution 
changes with the  variation of each predictor, keeping 
all other variables at their average sample value. The 
curves show the mean response of the 100 replicate 
MaxEnt runs (red) and the mean ± one standard devia-
tion (blue shades). Below are the response curves of 
the three predictors with the greatest contribution to 
the MaxEnt model. Based on the minimum predicted 
value assigned to any of the presence samples used for 
prediction, the response curve of elevation range shows 
that the maximum probability of species’ occurrence 
exists from 1600 to 2000  masl (Fig.  4a). This indicates 
that suitability increases with elevation gradient from 
about 1600–1900  masl, while it gradually declines 
after it reaches a peak around 1900  masl. Similarly, 
the  response curve  of the driest quarter precipitation 
amount indicates that the species could exist in areas 
with 100  to about 150  mm quarterly rainfall during 

(See figure on next page.)
Fig. 5  Individual response curves of major environmental predictors: a elevation, b precipitation of driest quarter c isothermally



Page 10 of 12Tesfamariam et al. Environmental Systems Research            (2022) 11:4 

Fig. 5  (See legend on previous page.)
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the driest period, with the maximum probability of 
presence being around 140  mm (Fig.  5b). The species 
could also tolerate from 75 to above 90% isothermality 
variations (the degree of diurnal to annual temperature 
oscillations), even though its probability of occurrence 
declines rapidly after about 88% (Fig. 5c). 

Conclusions
Based on the MaxEnt model generated result, above 
48% of the study catchment has been predicted to be 
potentially suitable for restoration of the threatened P. 
falcatus native tree species. From the eight variables 
used to run the MaxEnt model, elevation range was 
found to be a  key environmental predictor of the pre-
sent distribution and suitable habitats of P. falcatus, fol-
lowed by precipitation of the driest quarter and mean 
diurnal temperature range ((Isothermality). Thus, the 
predicted distribution and potentially suitable habi-
tats are  found dominantly occupying a highland agro-
ecological zone with elevation differences ranging from 
1600 to 2200  masl and slope gradients varying from 0 
to 25  degrees. This potentially suitable area is charac-
terized by climate conditions of 16–21 °C annual mean 
temperature (ranging from 7 to 28  °C), and annual 
mean rainfall of 1070–1418  mm. These climatic and 
topographic conditions are consistent with the environ-
mental characteristics prevailing at the protected natu-
ral P. falcatus forest site found at an altitude of 2120 m 
within the study catchment. These are also in line with 
the known general environmental conditions support-
ing the species distributions (Gilman and Watson 1994; 
Tesfaye et al. 2002; Orwa et al. 2009; Teketay 2011; Far-
jon 2013).

On the other hand, although an extensive portion of 
the study catchment was predicted to be environmen-
tally suitable for rehabilitation of the target tree spe-
cies, the largest portion of this area has been found to be 
intensively cultivated and unlikely to be practically avail-
able for tree planting. Since the study area is among the 
densely populated parts of the country, it has been inten-
sively cultivated and dominantly covered with a  tradi-
tional agroforestry system extending up to steeply sloped 
terrains. For this reason, large-scale restoration of this 
threatened tree species is unlikely to be practically imple-
mented. Therefore, some pocket open spaces within the 
existing protected P. falcatus forest site, compounds of 
religious places, and pocket areas around homesteads 
of farmers have been identified as potential areas for 
small-scale rehabilitation of this seriously declined native 
tree species. In fact, the local government office of for-
estry has been encouraging farmers  by providing seed-
lings  regularly during the wet season to undertake  and 
expand small-scale plantations of this target tree species. 

Moreover, in addition to the successful experiences that 
many farmers have demonstrated so far in conserv-
ing this native tree, privately-owned plantations may 
enhance more sustainable management and conservation 
of this degraded tree species.
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