
Ahmed et al. Environ Syst Res            (2020) 9:32  
https://doi.org/10.1186/s40068-020-00195-0

REVIEW

Integration of remote sensing 
and bioclimatic data for prediction of invasive 
species distribution in data-poor regions: 
a review on challenges and opportunities
Nurhussen Ahmed1* , Clement Atzberger2 and Worku Zewdie1

Abstract 

Prediction and modeling using integrated datasets and expertise from various disciplines greatly improve the man-
agement of invasive species. So far several attempts have been made to predict, handle, and mitigate invasive alien 
species impacts using specific efforts from various disciplines. Yet, the most persuasive approach is to better control 
its invasion and subsequent expansion by making use of cross-disciplinary knowledge and principles. However, the 
information in this regard is limited and experts from several disciplines have sometimes difficulties understanding 
well each other. In this respect, the focus of this review was to overview challenges and opportunities in integrat-
ing bioclimatic, remote sensing variables, and species distribution models (SDM) for predicting invasive species in 
data-poor regions. Google Scholar search engine was used to collect relevant papers, published between 2005–2020 
(15 years), using keywords such as SDM, remote sensing of invasive species, and contribution of remote sensing in 
SDM, bioclimatic variables, invasive species distribution in data-poor regions, and invasive species distribution in 
Ethiopia. Information on the sole contribution of remote sensing and bioclimatic datasets for SDM, major challenges, 
and opportunities for integration of both datasets are systematically collected, analyzed, and discussed in table and 
figure formats. Several major challenges such as quality of remotely sensed data and its poor interpretation, inap-
propriate methods, poor selection of variables, and models were identified. Besides, the availability of Earth Obser-
vation (EO) data with high spatial and temporal resolution and their capacity to cover large and inaccessible areas 
at a reasonable cost, as well as progress in remote sensing data integration techniques and analysis are among the 
opportunities. Also, the impacts of important sensor characteristics such as spatial and temporal resolution are crucial 
for future research prospects. Similarly important are studies analyzing the impacts of interannual variability of vegeta-
tion and land use patterns on invasive SDM. Urgently needed are clearly defined working principles for the selection 
of variables and the most appropriate SDM.
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Introduction
Invasive species are a serious worldwide threat to biodi-
versity (Paz-Kagan et  al. 2019; Somers and Asner 2012; 
Truong et  al. 2017). They moreover negatively affect 
livelihoods (Shackleton et  al. 2014, 2015), density, rich-
ness, and diversity of native woody species, and quality 
and distribution of water (Bekele et al. 2018). They have 
also a huge capacity to invade all land use types at high 
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invasion rates such as watercourses, highways, irrigated 
areas, forests, degraded lands, and agricultural land (Shif-
eraw et al. 2019c) in particular if the invaded areas have 
low diversity (Ilukor et  al. 2016; Sun et  al. 2015). The 
negative impact of invasive species is generally increas-
ing over time as it usually requires huge amounts of labor 
and costs to eradicate infested areas (Bekele et al. 2018). 
In particular, relatively poor countries often don’t have 
the necessary means to remove areas invaded by invasive 
species. Any deferment, however, further aggravates the 
problem (Vilà et al. 2011).

Currently, the adverse impacts of invasive species 
are in most countries by far greater than their positive 
return. In Ethiopia, the negative impact of Prosopis Juli-
flora (hereafter Prosopis) outweighs its positive contribu-
tion both to the ecosystem and livelihood (Iluker et  al. 
2014; Wakie et  al. 2014). Currently, in Ethiopia, around 
4.56 million hectares of land is highly suitable for Pros-
opis distribution (Sintayehu et  al. 2020). In addition, in 
the Afar region, Prosopis has invaded about 1.17 million 
hectares of land and is expected to increase at a rate of 
8.3% annually (Shiferaw et  al. 2019b). It invades native 
species and grasslands that were an important source 
of fodder for the locality (Ayanu et al. 2014; Wakie et al. 
2014). Economically, an expected 535 billion dollars net 
loss may occur under poor management (Iluker et  al. 
2014). Hence, as eradication of invasive species is dif-
ficult and costly, early detection and prevention, using 
an integrated data source, need to be prioritized for its 
management (Paz-Kagan et  al. 2019; West et  al. 2014; 
Zimmermann et  al. 2007). Although mapping current 
distribution and modeling of suitable habitat for invasive 
species are of particular interest, published reports are 
limited (Fischer et al. 2013; Ng et al. 2018).

Species distribution modeling (SDM) has a great 
potential for the identification of suitable habitats and 
modeling prediction of invasive species (Bradley 2014; 
Filho et al. 2010; Feilhauer et al. 2012; Truong et al. 2017). 
They are also useful for planning and management of 
conservation efforts involving at a range of different 
scales. They also help to address important policy and 
strategic concerns on a global scale (Cayuela et al. 2009). 
Even though invasive SDM makes field inventories more 
efficient and effective, their prediction potential is often 
limited by spatial bias, lack of spatially explicit predictor 
variables, and unavailability of species absence data (Cay-
uela et al. 2009; Filho et al. 2010; He et al. 2015). In view 
of this, the prediction of invasive species requires great 
care (Václavík and Meentemeyer 2012).

Advancements in remote sensing technology and 
statistical modeling increasingly support the predic-
tion efficiency of SDM by reducing SDM-inherent limi-
tations (He et  al. 2015). Remotely sensed rainfall and 

temperature data are available at the different temporal 
and spatial resolutions but are not yet widely used (Amiri 
et al. 2020; Deblauwe et al. 2016; Fernandez et al. 2013). 
Normalized Difference Vegetation Index (NDVI), Leaf 
Area Index (LAI), Enhanced Vegetation Index (EVI), 
and other EO derived data are still under-used in SDM 
though their potential is unquestionable (Feilhauer et al. 
2012; He et  al. 2015; Klerk and Buchanan 2017). This 
is particularly important for data-poor regions such 
as Ethiopia where weather stations are scarcely found 
(Deblauwe et al. 2016; Truong et al. 2017). Most studies 
in Ethiopia were carried out using survey data which is 
costly and time-consuming. Though the use of remote 
sensing data is at its infant stage, in recent years some 
few studies were carried out using remote sensing and 
bioclimatic variables (Ayanu et  al. 2014; Shiferaw et  al. 
2019a; Wakie et al. 2014).

Besides the contributions of remotely sensed environ-
mental variables, bioclimatic variables are equally impor-
tant for predicting invasive species distribution (Amiri 
et al. 2020; Bradley et al. 2018; Deblauwe et al. 2016; Fer-
nandez et al. 2013). Though it has the coarse resolution, 
climate variables alone have great potential to predict 
invasive species while the presence of remotely sensed 
environmental variables supports to provide spatial 
detail (Truong et al. 2017; Zimmermann et al. 2007). So 
far, several review articles have been published regard-
ing SDM (e.g.; Kissling et al. 2018; Urbina-Cardona et al. 
2019), and invasive species (e.g.; Bartz and Kowarik 2019; 
Kapitza et al. 2019; Shackleton et al. 2015; Vilà et al. 2011) 
and role of remote sensing in invasive SDM (e.g.; (Brad-
ley 2014; He et al. 2015; Huang and Asner 2009; D. Roc-
chini et al. 2015a, b; Royimani et al. 2018; Transon et al. 
2018)). For example, Thamaga and Dube (2018a, b) have 
provided an overview of remote sensing on water hya-
cinth. Similarly, Matongera et  al. (2016) have reviewed 
the advancement and challenges of remote sensing in 
mapping and sensing Bracken fern invasive species. Brad-
ley et al. 2014 also provides a detailed description of the 
spectral, textural, and phenological approach of remote 
detection of invasive plants. Some review papers also 
focused on the impacts of climate-based variables in 
invasive species distribution (e.g.; Tricarico 2016; Zhao 
et al. 2013). However, to the best of our knowledge, stud-
ies to highlight the integration of different disciplines for 
accurate prediction of SDM are still missing. In light of 
this, Cord et al. (2013) wrote a commentary on the need 
for bridging disciplinary perspective for better use of 
their full potential. As the integration of remotely sensed 
environmental data sources, bioclimatic variables and 
SDM could be an effective and reliable tool to predict and 
map invasive species distribution; this review paper pro-
vides a review of the state-of-the-art in this field.
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Methods
The Google Scholar search engine was used to identify 
relevant papers. The following keywords/phrases were 
used alone and in combination to search published arti-
cles in the past 15 years:

• SDM
• Remote sensing of invasive species
• Contribution of remote sensing in SDM
• Bioclimatic variables
• Invasive species distribution in data-poor regions
• Invasive species distribution in Ethiopia

In this way, 442 papers were retrieved, published 
between 2000–2020. Out of these papers, 112 stud-
ies, published between 2005–2020 (March), were finally 
selected (Fig.  1). The main aim of the review was to 
describe challenges and opportunities in combining (bio) 
climatic (both in situ and/or remote sensing based) and 
EO derived variables with SDM for predicting invasive 
species distribution. In particular, the role of EO in the 
prediction of invasive species was thoroughly examined. 
Varied views of integrating these datasets with SDM 
were also explored. Major challenges and opportunities 

associated with the process of integrating these datasets 
were highlighted. Finally, recommendations were dis-
tilled out of the body of published work, providing some 
guidance concerning the design of future studies. To 
prepare this review paper, we first define the methodol-
ogy used to select and analyze published (SCI) papers. 
Thereafter, in two separate chapters, we summarize the 
sole use of either (bio) climatic or EO data for SDM. The 
next chapter follows a summary of the combined use of 
the two datasets for SDM, followed by a review chapter 
on the use of such data for invasive species modeling in 
Ethiopia. Finally, we highlight the challenges and oppor-
tunities offered by a combined analysis of EO and (bio) 
climatic data. The review concludes with chapters on rec-
ommendations and conclusions.

Results and discussion
Contribution of remote sensing in SDM
Remote sensing is the most cost-effective approach to 
monitor vegetation cover and its changes over time, as 
it provides wide spatial coverage and repeated meas-
urements over a short period, which are difficult to 
achieve otherwise (Paz-Kagan et al. 2019; Rocchini et al. 
2015a, b; Rocchini et  al. 2015a, b). The availability of 

56 studies used to prepare figures 

46 studies used to prepare tables 

183 studies excluded after reading

their title

Studies collected using google 

scholar search engine (n=442) 

112 studies (published between 

2005-2020) used for the 

preparation of the review paper  

148 studies excluded after reading

their abstract

259 papers selected to read their

abstract

Fig. 1 Selection process of articles used for the review paper
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multi-temporal satellite data at varied spatial resolution 
has immense importance in modeling the distribution 
of invasive species (Bradley 2014; Buermann et al. 2008; 
Paz-Kagan et  al. 2019; Saatchi et  al. 2008; Truong et  al. 
2017). Several studies used multi-temporal and high spa-
tial resolution data for mapping and modeling of invasive 
species (Evangelista et  al. 2008; Huang and Asner 2009; 
Ng et al. 2017; Shiferaw et al. 2019a; Somers and Asner, 
2012; Wakie et al. 2014).

Importantly, ongoing developments in remote sens-
ing technologies lead to steadily improved sensors that 
have the potential to better support predictions of inva-
sive species (Buermann et  al. 2008; Huang and Asner 
2009; Leitão and Santos 2019; Truong et al. 2017). With 
the availability of freely available Copernicus satel-
lites (in particular Sentinel-2), unprecedented detail is 
offered every 5 days at the equator, for the identifica-
tion of invasive species, (Ng et al. 2017; Rajah et al. 2018, 
2019; Thamaga and Dube 2018a, 2018b) as well as crop 
and vegetation mapping (Immitzer et al. 2019; Shoko and 
Mutanga 2017; Vuolo et al. 2018; Wessel et al. 2018). The 
tremendous additional potential is offered by a steadily 

growing fleet of commercial satellites, UAV, and hyper-
spectral sensors (Feilhauer et  al. 2013; Piiroinen et  al. 
2018).

Spectral characteristics of remotely sensed images per-
mit to identify invasive species from native ones (Asner 
et al. 2008; Bradley 2014; Ouyang et al. 2013; Singh et al. 
2013; Somers and Asner 2012). This is possible as EO 
data capture distinct spectral features stemming from 
(subtle) spectral characteristics of leaves and canopies of 
Morella faya and Psidium cattleianum (Asner et al. 2008; 
Somers and Asner 2012), Lantana camara L. (Oumar 
2016), and Pteridium aquilinum L. (Singh et  al. 2013), 
Spartina alterniflora (Ouyang et al. 2013), and Centaurea 
solstitialis L. (Ge et al. 2006).

As an example, Fig. 2, presents the spectral character-
istics of invasive (I), nitrogen-fixing invasive (IN), native 
(H), and nitrogen-fixing native (HN) species in Hawaii 
in varied seasons. It shows that invasive species have (I) 
higher reflectance than native species (H).

The provision of inter-annual satellite data offers addi-
tional profound advantages for the separation of individ-
ual species in different phenological cycles (Asner et  al. 

Fig. 2 Mean (± S.D.) spectral reflectance of Invasive (I), native Hawaiian non-nitrogen-fixer (H), and native nitrogen-fixer (HN), and invasive nitrogen 
fixer (IN) species (Asner et al. 2008). It clearly describes the spectral separability of invasive and native species and the role of remote sensing in its 
identification is very high
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2008; Bradley 2014; Ge et  al. 2006; Somers and Asner 
2012). By observing the same target (pixel) multiple times 
during a growing cycle, additional (multi-temporal) indi-
cators and features can be extracted, further benefiting 
the species identification. Understory invasive species 
that have a longer growing season in the early spring and 
late fall seasons for example can be identified from other 
trees using remote sensing (Bradley 2014).

Furthermore, EO data has a great potential to quantify 
environmental properties, biodiversity conservation, and 
detecting long-term change of ecosystem, often impossi-
ble to quantify otherwise (Cord et al. 2013; Prates-Clark 
et  al. 2008; Taddese 2014). Moreover, the availability 
of multi-temporal remote sensing data permits ecolo-
gists to design SDM beyond climatic variables, by add-
ing remotely sensed environmental variables (Cord and 
Rodder 2011). It has been pointed out that, incorporating 
remotely sensed environmental variables increases the 
acceptance of SDM for the prediction of invasive species 
(Leitão and Santos 2019). Climate and weather variables 
can also be derived from EO sensors and used for the 
prediction of invasive SDM, though published reports 
using this kind of application are limited (Deblauwe et al. 
2016; Fernandez et al. 2013; Truong et al. 2017). Gener-
ally, the application of remote sensing products and their 
integration with climate data can create a better under-
standing of the field of SDM (Cord et  al. 2013; Truong 
et al. 2017).

Contribution of bioclimatic data in SDM
For the better prediction of invasive species using SDM, 
it is necessary to include climate variables. Climate vari-
ables are one of the major contributing factors for pre-
dicting invasive species (Deblauwe et al. 2016; Fernandez 
et  al. 2013; Re et  al. 2020). SDMs perform better when 
climate data are used (either partially or completely) 
for model predictions (Ahmadi et al. 2020; Guisan et al. 
2007; Truong et al. 2017; Zimmermann et al. 2007). Pro-
jection of invasive species distribution can also be pos-
sible using climate models (Heshmati et al. 2019). Unlike 
remote sensing, which mainly leverages the spectral 
signature of vegetation, climate data can provide infor-
mation about environmental factors affecting species. 
Biophysical properties of vegetation can provide basic 
information on vegetation (Amiri et  al. 2020; Deblauwe 
et  al. 2016). For example, invasive species (Acacia mel-
anoxylon R., Gleditsia triacanthos L.) often spread more 
widely in the dry season due to their unique biophysical 
characteristics to cope with water limitations (Godoy 
et al. 2011). Overlooking this will create inconsistencies 
in the prediction of invasive species distributions (Amiri 
et al. 2020; Bellard et al. 2018; Truong et al. 2017).

There are different sources of climate data sets that 
can be used for predicting invasive species. These data 
sources are either spatially interpolated (e.g.; World-
Clim, Climatic Research Unit (CRU)), or satellite-based 
estimates of climatic variables (e.g.; Tropical Rainfall 
Measuring Mission (TRMM) and Moderate Resolution 
Imaging Spectrometer (MODIS). For example, in World-
Clim, climate data is spatially interpolated using spline 
interpolation. This data is very popular to use for invasive 
SDM (Hijmans et  al. 2005; Vega et  al. 2017). However, 
there are some uncertainties in this product as it can be 
affected by closeness to weather stations, inter-annual 
variability, and topographic heterogeneity (Amiri et  al. 
2020; Fernandez et  al. 2013). As a result, WorldClim as 
well as other station-based climate data is always uncer-
tain for the prediction of invasive species distribution 
when ground weather stations are sparse (Amiri et  al. 
2020; Deblauwe et al. 2016). In such cases, the inclusion 
of satellite-based climate data improves the prediction of 
invasive species compared to models that only consider 
spatially interpolated climate data (Engler et  al. 2013). 
Figure  3 describes a methodological flow chart on how 
to derivate bioclimatic variables from remotely sensed 
datasets. Even if remotely sensed climate data has great 
potential in providing better temporal and spatial reso-
lution, the EO should always be examined and validated 
using station based climate data to check their accuracy 
(Loew et al. 2017; Richter and Hank 2012).

Integration of remote sensing and bioclimatic variables
Invasive SDM can benefit from using bioclimatic, sur-
vey, remote sensing data, and/or integration of all with 
SDM. Predicting the risk of invasive species at different 
scales can be quantified by readily available remote sens-
ing products in conjunction with climate data and SDM 
(Wakie et  al. 2014; Zimmermann et  al. 2007). However, 
there is no consensus among scientists whether the inte-
gration of both datasets with SDM can enhance the pre-
diction of species distribution or not. Some researchers 
argue that integration of both datasets with SDM has 
huge potential for efficient mapping of species distri-
bution, compared to using remotely sensed or climate 
data alone (Arogoundade et  al. 2019; Buermann et  al. 
2008; Prates-Clark et  al. 2008). Other papers revealed 
that the integration of both datasets could even decrease 
the accuracy of modeling due to the quality of remotely 
sensed environmental variables (land cover) (Engler et al. 
2013; Truong et al. 2017; Zimmermann et al. 2007).

In addition, a study by Truong et al. (2017), evaluated 
the performance of bioclimatic and remote sensing 
data separately and in combination using the MaxEnt 
model. They concluded that despite the challenges, the 
integration of both datasets had a promising future for 



Page 6 of 18Ahmed et al. Environ Syst Res            (2020) 9:32 

invasive SDM. Similarly, a study by Wakie et al. (2014), 
employed the MaxEnt model for integration of 19 bio-
climatic variables with remotely sensed environmental 
parameters. Their study revealed that the integration 
of both datasets enhances the prediction of invasive 
species, particularly in areas where sufficient ground 
survey is difficult to undertake. Besides, a study by Feil-
hauer et al. (2012) combined 19 WorldClim bioclimatic 
data with MODIS NDVI time-series data to determine 
species distribution at coarse spatial resolution. They 
indicated that there is a strong improvement in spe-
cies prediction when data are combined. However, 
completely ignoring EO variables and fully depending 
on climate data, or even excess of climate variables, 
might lead to unreliable results (Li et al. 2014). Hence, 
combining spatially interpolated ground stations with 
remotely sensed climate data has profound importance 
to accurately utilize their respective benefits sides while 
reducing their limitations. Besides, for an improved 
prediction of invasive species several requirements are 
of utmost importance:

• High spatial, temporal, and spectral resolution satel-
lite products (Engler et al. 2013; Truong et al. 2017)

• Proper selection of environmental variables (Cord 
and Rodder 2011; Zimmermann et al. 2007), and

• Appropriate techniques to integrate both data sets 
(Cord et al. 2013; Guisan et al. 2007)

Several studies followed the below flowchart (Fig.  4) 
to integrate remote sensing and bio (climatic) variables 
for a particular species distribution modeling. The first 
requirement is to select remote sensing and bio (climatic) 
datasets. Once the datasets are selected the next step is 
to select the best-performed variables. After appropri-
ate variables are selected the next step is to choose the 
modeling technique. Moreover, model performance 
can be computed using different approaches and best-
performed variables from both models can be selected 
for the integration of remote sensing with bio (climatic) 
based model. The overall process to integrate both data-
sets is presented in Fig. 4.

Furthermore, a few papers are summarized in Table 1 
that focuses on the prediction of species using both data-
sets. This yields insights on the kind of variables and 
SDM was most often used in combining the two datasets 
for the prediction of invasive species.

From Table 1, the following observations are extracted:

• There is poor agreement on the process of selecting 
variables and SDM for the prediction of invasive spe-
cies distribution.

Pre-processing such as radiometric, 

geometric corrections and validations 

against ground truth 

Pre-processing such as radiometric, 

geometric corrections and validations 

against ground truth 

Derivation of temperature based bioclimatic 

variables such as annual mean temperature (°C), 

mean diurnal range (°C). This can be done in 

different tools such as ArcGIS and R software’s 

Derivation of rainfall based bioclimatic variables 

such as annual precipitation (mm), precipitation of 

wettest month (mm). This can be done in different 

tools such as ArcGIS and R software’s 

Variable selection using different 

variable selection techniques (table 2) 

Modelling using different modelling 

techniques 

Temperature based satellite remote sensing 

datasets such as MODIS Land Surface 

temperature (LST) gridded data 

Rainfall based satellite remote sensing 

datasets such as TRMM and CHIRPS 

gridded data

Fig. 3 Derivation of bioclimatic variables from remotely sensed data (adapted from Amiri et al. 2020; Deblauwe et al. 2016)
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• Justifications to select (or ignore) variables and 
SDM are overlooked.

• Although integration of remotely sensed environ-
mental variables, bioclimatic variables, and SDM 
are highly valuable for studying species distribu-
tion, methods that specifically work on the integra-
tion of EO and bioclimatic variables are requiring.

Experiences in Ethiopia
More than 35 invasive alien species are reported in Ethio-
pia (Shiferaw et al. 2018; Tamiru 2017). However, only a 
few attempts were made to map their distribution. For 
example, Prosopis (Ayanu et al. 2014; Hundessa and Fufa 
2016; Shiferaw et  al. 2019a; Wakie et  al. 2014), Mimosa 
diplotricha (Wakjira 2011); Parthenium hysterophorus 

Map outputs on 

species distribution 

Map outputs on 

species distribution 

Map outputs on 

species distribution 

Remote sensing datasets Bioclimatic datasets 

Model prediction for remote 
sensing based model using 

different models such as random 

forest

Evaluation of model 

performance using different 

techniques such as cross 

validation 

Pre-processing such as image 

mosaicking, sub-setting, 

atmospheric and radiometric 

corrections 

Pre-processing such as sub-

setting 

Variable selection using different 

techniques such as variable 

inflation factor

Variable selection using 

different techniques such as 

variable inflation factor

Field data on species 

presence and absence or 

presence only records 

Model prediction for bioclimatic 
dataset using different models 

such as random forest  

Identifying best 

performed variables 

Evaluation of model 

performance using different 

techniques such as cross 

validation 

Model prediction for 

integrated datasets using 

different models such as 

random forest

Evaluation of model 

performance using 

different techniques such 

as cross validation 

Identifying best 

performed variables 

Identifying best 

performed variables 

Fig. 4 Methodological flowchart used in several studies to integrate remote sensing and bioclimatic based models (adapted from Engler et al. 
2013; Truong et al. 2017; Zimmermann et al. 2007)
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L. (Beyene and Tessema 2015) are to mention most. Out 
of the papers retrieved for this review, 23 focused on the 
distribution of invasive species in Ethiopia. However, 
only seven of those studies employed satellite data or bio-
climatic data and/or a combination of both datasets. The 

rest used survey data to map the distribution of invasive 
species, which is very difficult and time-consuming. For 
example, (Beyene and Tessema 2015; Hundessa and Fufa 
2016; Tola and Tessema 2019; Wakjira 2011) followed the 
same methodology for various invasive species. These 

Table 1 Variables, SDM, and species used in combination of both datasets of some researches

Variables SDM References

Climate variables (mean annual rainfall, mean monthly tem-
perature, monthly land surface temperature during day and 
night time)

Remote sensing variables (monthly land surface temperature 
during the day and nighttime, panchromatic reflectance, 
red reflectance, near-infrared reflectance, shortwave 
infrared band 6 reflectance, NDVI, elevation, slope, relief, 
landform, rugged, and distance to River)

Survey data (distance to road, distance to village)

Random Forest (RF) Shiferaw et al. (2019a)

Climate variables (temperature seasonality)
Remote sensing variables (elevation, landform, lithology, 

distance to water, distance to urban areas)
Survey data (distance to road)

RF, MaxEnt, logistic regression, Bayesian networks, Ensemble Ng et al. (2018)

Climate variables (19 WorldClim bioclimatic variables)
Remote sensing variables (bedrock, bulk density, cation 

exchange capacity, soil texture fraction clay, coarse frag-
ments volumetric, soil organic carbon stock, soil organic 
carbon content, soil pH, soil texture fraction silt, soil texture 
fraction sand, land cover, gross primary productivity, coef-
ficient of variation, gross primary productivity, elevation)

MaxEnt Truong et al. (2017)

Climate variables (WorldClim variables and MODIS land 
surface temperature)

Remote sensing variables (long term EVI, surface reflectance 
including blue, red, near-infrared, and middle infrared wave-
lengths and land cover data)

MaxEnt Cord et al. (2014a, b)

Climate variables (WorldClim bioclimatic variables)
Remote sensing variables (monthly NDVI and EVI), elevation 

and slope

MaxEnt Wakie et al. (2014)

Climatic variables (growing degree days, mean temperature 
of the coldest month, summer moisture index, summer 
sum of precipitations, winter sum of precipitations, yearly 
solar radiation, summer solar radiation, soil water balance, 
topographic wetness index, topographic position

Remote sensing variables (NDVI, Renormalized Difference 
Vegetation Index (RDVI), Modified Simple Ratio index (MSR), 
Modified Chlorophyll Absorption Ratio Index 1 (MCARI1), 
blue band, green band, red band, near-infrared band, slope 
and topographic position, distance to the nearest water 
body)

9 SDM including Generalized Linear Model (GLM), RF, Artifi-
cial Neural Network, and Ensemble model

Engler et al. (2013)

Climatic variables (WorldClim bioclimatic variables)
Remote sensing variables (NDVI)

Partial Least Squares regression Feilhauer et al. (2012)

Climatic variables (WorldClim bioclimatic variables)
Remote sensing variables (LAI, vegetation density, seasonality, 

and net primary productivity, forest cover, and heteroge-
neity, surface moisture, and roughness (forest structure), 
seasonality, topography, and ruggedness)

MaxEnt Buermann et al. (2008)

Climatic variables (WorldClim bioclimatic variables)
Remote sensing variables (monthly NDVI, monthly LAI, percent 

tree cover, scatter meter backscatter monthly composites at 
1 km, elevation)

MaxEnt Prates-Clark et al. (2008)

Climatic variables (Bioclimatic variables derived from DAYMET)
Remote sensing variables (NDVI)

GLM Zimmermann et al. (2007)
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authors gathered survey data at 10 km intervals; ignoring 
remote sensing and bioclimatic variables.

In the Afar region  Ayanu et al. (2014), employed long 
term satellite data to provide basic information on the 
historical distribution of Prosopis and land-use changes 
and conclude that the role of long term remote sensing 
data has great contribution to manage invasive Prosopis 
distribution. In addition, Shiferaw et  al. (2019a) used 
long term satellite data to quantify Prosopis distribu-
tion and its impact on land-use changes and ecosystem 
services and conclude that remote sensing data has a 
great contribution to quantify land cover changes and 
ecosystem services. Similarly, Wakie et  al. (2014) and 
Shiferaw et  al. (2019a) took into account both biocli-
matic and remotely sensed variables for prediction of 
invasive Prosopis using MaxEnt and RF models respec-
tively, and conclude that the use of integrated datasets 
has great importance in studying invasive species dis-
tribution and prediction. Shiferaw et  al. (2019a) pro-
vided a comparison study on the performance of SDM 
in the prediction of Prosopis and conclude that the use 
of the best-performing machine learning algorithm 
provides better accuracy than the ensemble model. 
Moreover, West et  al. (2014) provided extensive infor-
mation on the potential distribution of Prosopis in Ethi-
opia using the Landsat 8 and MaxEnt model (Fig.  5). 
Overall, remotely sensed satellite data and bioclimatic 
variables have been scarcely used for mapping invasive 
species distribution in Ethiopia, indicating that the use 
of these data is still in its infancy in the country.

Challenges in the combination of EO and climate datasets
Combining EO and climate data is not without chal-
lenges. Major problems relate to:

1. The nature of species (invasive species are more 
difficult than native ones) (Evangelista et  al. 2008; 
Václavík and Meentemeyer 2012),

2. Poor methodology in the selection of variables 
(Guisan et al. 2007),

3. Inappropriate selection of models (Guisan et  al. 
2007),

4. Quality issues of the data (Cord and Rodder 2011; 
Truong et al. 2017; Tuanmu and Jetz 2014), and

5. The difficulty of interpretation of remotely sensed 
data (Cord and Rodder 2011).

Unlike other species, mapping and modeling of inva-
sive species require the highest care as it violates major 
assumptions known in SDM (Václavík and Meentemeyer 
2012). Besides, remote sensing limitations such as failure 
to detect all plants, the trade-off between spatial with 
temporal and spatial with spectral resolutions negatively 
affects SDM application (He et al. 2015). It is also pointed 
out that, it is difficult to find reliable, high-quality land 
cover remotely sensed information at any time is also a 
great challenge (Bradley and Fleishman 2008; Prates-
Clark et  al. 2008). In addition to quality concern, the 
interpretation of remotely sensed signals is also challeng-
ing and disturbs the accuracy of other variables (Cord 
and Rodder 2011; Zimmermann et al. 2007).

Another major challenge relates to the fact that remote 
sensing toolset consists of sensors with widely vary-
ing sensor characteristics (Saatchi et  al. 2008; Tuanmu 
and Jetz 2014). For example, the spatial resolution has 
a strong impact on the prediction of invasive species. 
The coarse spatial resolution of satellites limits certainly 
details of the map, whereas fine resolution brings its own 
problem in relation to cost, preprocessing, and intra-class 
variability (Boyd and Foody 2011).

Sample size and design in presence and absence data is 
also another challenge in SDM (Fithian et al. 2014; Roc-
chini et  al. 2015a, b). Most researchers used the only 
presence or pseudo absence data for modeling prediction 
of species distribution as absence data for invasive spe-
cies are difficult to obtain (Ng et  al. 2018; Václavík and 
Meentemeyer 2012). In addition, employing a reasonable 
sample size using appropriate techniques can enhance 
the prediction of species distribution (Xie et al. 2008).

Proper selection of SDM can significantly increase the 
efficiency of prediction. Selecting a specific model needs 
to provide justifiable criteria as it can affect the result 
(Sakate and Kashid 2016). However, in most cases, mod-
els are selected without providing significant justification. 

Fig. 5 Habitat suitability for distribution of Prosopis in Ethiopia using 
combined (EO and climate parameters) and MaxEnt model (West 
et al. 2014)
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Some researchers use single models for mapping and 
predicting invasive species distribution (e.g.; MaxEnt 
model used by Truong et  al. 2017; Wakie et  al. 2014). 
Some other researchers first compare different mod-
els and then use the best performing model for predic-
tion (e.g. Engler et al. 2013; Ng et al. 2018; Shiferaw et al. 
2019a). Other papers suggest that ensemble models are 
preferable over single models (e.g.; Früh et  al. 2018; Ng 
et al. 2018)). Figure 6 depicts various SDM employed bio-
climatic data, remote sensing data, or their combination. 
Maximum entropy (MaxEnt), RF, GLM, Multivariate 
Adaptive Regression Splines (MARS), Generalized Addi-
tive Model (GAM), Gradient Boosted Model (GBM), 
ensemble model, and Support Vector Machine learning 
(SVM) are analyzed within about 49 studies.

As indicated in Fig.  5, GLM and MaxEnt are largely 
used in bioclimatic and remote sensing based research. 
This might be attributed to the challenge of collecting 

absence data for invasive species (Ng et al. 2018; Václavík 
and Meentemeyer 2012). MaxEnt is popular in SDM, 
through evaluating the quality of SDM is difficult (Filho 
et  al. 2010; West et  al. 2014). From the presence and 
absence of data models, the RF is the most employed 
model in bioclimatic, remote sensing, and integrated 
datasets.

Variable selection methods
To ensure a non-bias variable selection, it is important 
to determine variable correlation through a set of stand-
ardized tests (Phillips et  al. 2006). It is hard to know; 
however, in which environmental variables are most 
appropriate and useful for predicting species distribution 
(Aranda and Lobo 2011). The importance of environ-
mental variables is dependent on the type, nature of spe-
cies, and its topography (Cord et  al. 2013). Due to this, 
we can’t see consistent variables used by researchers for 

0
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4

5

6

7

8

Maxent RF GLM MARS GAM GBM SVM Ensemble

Bioclima�c Remote sensing Combined
Fig. 6 Species distribution models (SDM) and their use of bioclimatic, remote sensing, and combined data. Maxent, GLM, MARS, GAM, and GBM use 
presence-only data whereas RF and SVM use both presence and absence data

Table 2 Variable selection techniques used in the integration of remote sensing and bioclimatic based variables

S.no Variable selection methods References

1 Correlation (Pearson, Kendall, Spearman) Buermann et al. (2008); Engler et al. (2013); Gormley et al. (2011); Ng et al. 
(2018); Saatchi et al. (2008); Truong et al. (2017); Wakie et al. (2014); West 
et al. (2014); Zimmermann et al. (2007)

2 Principal component analysis Deblauwe et al. (2016); Feilhauer et al. 2012; Jensen et al. (2020)

3 Variance inflation factor Ahmadi et al. (2020); Ng et al. (2018); Shiferaw et al. (2019c)

4 Weighted mean fitted analysis approach Shiferaw et al. (2019a)

5 Permutation importance Wilson et al. (2013)

6 Expert knowledge Beaumont et al. (2005); Jones (2012); Ng et al. (2018)
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the prediction of species distribution even with similar 
climate, species, and study locations. The selection of sig-
nificant variables is a crucial step and can determine the 
accuracy of models (Beaumont et  al. 2005; Elkind et  al. 
2019). The following are (Table  2) among the variable 
selection methods used in several studies.

Furthermore, the following variables were selected in 
many invasive species prediction studies using the above 
variable selection techniques.

From Table  3, bioclimatic variables, long-term NDVI, 
EVI, elevation, and slope are most widely used for the 
prediction of invasive species. Generally, challenges in 
integrating bioclimatic and remote sensing variables with 
SDM are the results of the overall problems listed above.

Opportunities for combining climate and EO datasets
Despite its challenges, integration of climate and EO 
data sets with SDM for invasive species has a promis-
ing future. The availability of fine resolution and multi-
temporal remote sensing data is a unique opportunity 
for SDM (Cord et  al. 2014a, b). This is particularly the 
case as more and more EO data become freely available, 
and both data quality and information content increase 
through time (Saatchi et al. 2008).

The development of techniques to check and vali-
dated the accuracy of SDM is also an important research 
opportunity (Václavík and Meentemeyer 2012). Many 
SDM that support the adoption of remote sensing data 
for invasive species distribution are available. Ensemble 
SDM is considered as a major way forward in the field of 
SDM (Früh et al. 2018; Ng et al. 2018).

The application of Unmanned Aerial Vehicle (UAV) 
in SDM is a great asset as it provides fine resolution at 

minimum cost for species-level monitoring (Fritz et  al. 
2018), as long as the area of interest is relatively small 
(< 1km2). An image fusion technique that integrates dif-
ferent sensors to provide better temporal and spatial 
resolution is considered as a good forward for better 
prediction (Xie et  al. 2008). Advancements in satellite-
based (bio) climate data, and techniques to integrate 
with ground-based weather stations, are also considered 
useful for better prediction of invasive species (Amiri 
et al. 2020; Deblauwe et al. 2016; Fernandez et al. 2013) 
(Table 4).

Recommendations
Through advancements in remote sensing science, tech-
nology, application, and machine learning provide a 
better prediction of invasive species, more research 
in ecology and remote sensing experts is needed. This 
includes on one hand a better understanding of distribu-
tion patterns of invasive species and on the other hand 
an improved knowledge about the most important spec-
tral bands and acquisition times to permit an effective 
and robust identification of the target species. There is 
moreover a strong need to develop basic working prin-
ciples and procedures in the selection of environmental 
variables and SDM. Such a selection needs to consider 
the nature of species, SDM, and available datasets.

On the remote sensing side, detailed information can 
be obtained at high spatial and temporal resolution owing 
to the open access policy of most satellite data owners. 
Freely available Sentinel-2, Landsat, and MODIS data 
are particularly necessary for developing countries as the 
cost of high-resolution images are difficult to justify. The 
fusion of image data from multiple sensors will lead to an 

Table 3 Variables and their data sources used for integrating (bio) climatic and remote sensing data

Variables Data sources References

Bioclimatic variables WorldClim database Buermann et al. (2008); Cord et al. (2014a, b); Feilhauer et al. (2012); Ng et al. (2018); 
Prates-Clark et al. (2008); Truong et al. (2017); Wakie et al. (2014)

Long term NDVI Landsat, MODIS, Airborne Digital Sensor Engler et al. (2013); Evangelista et al. (2008); Feilhauer et al. (2012); Ng et al. (2018); 
Shiferaw et al. (2019a); Shiferaw et al. (2019c); Wakie et al. (2014)

Long term EVI MODIS Cord et al. (2014a, b); Wakie et al (2014)

LAI MODIS Buermann et al. (2008); Engler et al. (2013); Prates-Clark et al. (2008); Saatchi et al. (2008)

Near-Infrared band Landsat, Airborne Digital Sensor Engler et al. (2013);  Shiferaw et al. (2019a); Zimmermann et al. (2007)

Land cover Tuanmu and Jetz 2014 Truong et al. (2017); Tuanmu and Jetz (2014)

Vegetation density Tuanmu and Jetz 2014 Truong et al. (2017); Buermann et al. (2008)

Elevation SRTM, ASTER, GTOPO30 Bradley and Mustard (2006); Buermann et al. (2008); Ng et al. (2018); Prates-Clark et al. 
(2008); Saatchi et al. (2008); Shiferaw et al. (2019a); Truong et al. (2017)

Slope SRTM, ASTER Ng et al. (2018); Shiferaw et al. (2019a)

Distance from road Survey data Ng et al. (2018); Shiferaw et al. (2019a)

Distance from water SRTM Engler et al. (2013); Ng et al. (2018); Shiferaw et al. (2019a)

Distance to Village Landsat, Survey data Ng et al. (2018); Shiferaw et al. (2019a)
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important advancement, as the integrating of different 
sensors will not only permit a better temporal and spatial 
resolution but will also leverage synergies from different 
band settings (Rajah et  al. 2018). Furthermore, evaluat-
ing and boosting the capability of machine learning algo-
rithms for the prediction of invasive species is necessary.

Bioclimatic variables derived from the WorldClim 
database are a good source of information for the predic-
tion of invasive species. However, these records need to 
be updated using recent climate data as the latest version 
considers interpolation of climate data only from 1970 to 
2000. Besides, there is also a need to integrate bioclimatic 
variables of WorldClim with remotely sensed bioclimatic 
variables to obtain a better spatial and temporal resolu-
tion. Moreover, evaluating the integration of remotely 
sensed environmental variables with bioclimatic varia-
bles in the prediction of invasive species is also necessary. 
Several studies (Truong et al. 2017; Cord et al. 2014a, b; 
Engler et al. 2013; Buermann et al. 2008) tried to evaluate 
the efficiency of bioclimatic and remote sensing variables 
separately and in combination. However, similar studies 
should be motivated for different species and geographic 
areas.

Conclusion
The integration of remote sensing and bioclimatic varia-
bles with SDM has the potential to play a key role in map-
ping and prediction of invasive species especially in arid 
and semi-arid areas where accessibility of environmental 
data is a challenge. Both datasets have their own advan-
tages and hence it can be expected that the integration of 
both datasets provides richer and more predictive infor-
mation. In data-poor regions where survey data is sparse, 
remote sensing can provide useful information due to its 
multi-temporal, spatial, and spectral resolution, and the 
resulting possibility to identify invasive species and to 
map certain environmental variables. On the other side, 
bioclimatic variables can solve some of the limitations 
of remotely sensed variables in relation to climate data. 
Hence, persistent information can possibly be obtained 
through the integration of both data sets. The integra-
tion of both datasets should in our opinion—and sup-
ported by the research community—be considered as a 
viable tool to increase the efficiency of SDM even though 
more research is required. It is also necessary to give due 
attention to presenting the guiding principle that helps to 
select variables and models for better accuracy of SDM. 
Furthermore, it is also necessary to validate remotely 
sensed (bio) climatic datasets and their integration with 
(spatially interpolated climate) data.
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