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Abstract 

Background:  Steel is an important material in modern economies but responsible, nevertheless, for substantial 
environmental impacts throughout its supply chain. During the last couple of decades, this industry has addressed its 
impacts more incisively with the support of modelling and assessment tools.

Methodology:  This article used the European steel industry as a case study to explore the potential benefits of 
integrating life cycle analysis (LCA) into system dynamics (SD) under the scopes of circular economy and industrial 
ecology. The goal was to explore if this integration could not only reproduce results generated separately by LCA and 
SD, but also to provide additional support for decision- and policy-making on the biophysical aspects of long-term 
materials sourcing. Unlike previous studies focused on methodological exchanges between the two, the entire LCA 
methodology was brought into the SD modelling environment, following ILCD and ISO guidelines and standards.

Results:  The results indicated that integrating LCA into SD is feasible and capable of contributing to both in different 
levels, supporting discussions on raw material scarcity and self-sufficiency, and resource ownership retention.

Conclusion:  Given continued effort is put into supporting the use of environmental impact indicators, this approach 
has potential to interest policy-makers and industrial decision-makers alike.
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Background
Steel is the most commonly used alloy of iron and has 
historically been one of the most essential materi-
als worldwide. It is present in most aspects of everyday 
life, from infrastructure to transport, from canned food 
to electronics (WS 2012a, b, 2017b, c; Beddows 2014). 
Steel’s cycle through environment and society originates 
in the ores mined from mountains and underground 
reserves and most commonly meets its end inside long 
service life structures or as recyclable scrap (Warrian 
2012; Vaclav 2016).

The Second World War was a turning point for steel-
making due to the substantial changes it caused to the 
geopolitical environment. By the end of the conflict, the 
European demand for steel decreased significantly, all the 

while Chinese and Indian steelmakers became competi-
tive. As decision-making became more complex, Euro-
pean steelmakers once focused only on scale and costs 
to supply the war effort then faced new challenges: over-
capacity, the alloy specialization requirements of the 
private sector, and the growing attention given by soci-
ety and governments to environmental impacts (Vaclav 
2016; WS 2017b; Nuss and Blengini 2018).

Adequately supporting and informing decision-makers 
rose even further in the list of priorities as the roles and 
importance of technology critical elements (TCEs) and 
critical raw material (CRMs) present in steel became 
more evident. Thus, this industrial sector was among the 
first to the benefit from the efforts of managerial scien-
tists, engineers and academics as the development of new 
concepts, tools and methods gained traction, notably 
after the 1960s (van Berkel et  al. 1997; Baas and Boons 
2004).

From that period onward, European steelmakers have 
increased their strategic outreach towards environmental 
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goals, improving their supply chain management to 
encompass both end-of-life and circularity solutions 
(D’Costa 1999; Material Economics 2018). Today, steel in 
Europe is recycled at a 70% rate and most of its byprod-
ucts can be reused in other industries (Yellishetty et  al. 
2012; WS 2017a).

In comparison to the 1980s, the average manufacture 
now uses 50% less energy, helping vehicles become more 
fuel efficient with stronger and lighter steel alloys. Steel 
today can even be environmentally competitive enough 
to front plastics and aluminum products (Warrian 2012; 
WS 2013; Vaclav 2016; Material Economics 2018).

Renowned worldwide after the success of the Kalund-
borg Industrial Park, Industrial Ecology (IE)—one of the 
drivers of the aforementioned environmental progess—
studies, organizes and models industrial activities and 
their interactions with the environment by approaching 
them organically. It seeks to accrue benefits from transi-
tioning linear- or open-loop operations—in which out-
puts end up in sinks—toward closed-loop operations—in 
which outputs can become inputs (Erkman 1997; Ehren-
feld 1997, 2004; Nielsen 2007; Taddeo 2016; Prosman 
et al. 2017).

To do so, IE encompasses approaches to multiple 
aspects of industrial operations, namely (a) material and 
energy flows—known as industrial metabolism, (b) tech-
nological change, (c) eco-design, (d) life-cycle planning, 
(e) dematerialization, (f ) decarbonization, (g) corporate 
responsibility and stewardship, and (h) industrial parks—
also known as industrial symbiosis (Chevalier 1995; 
Cohen-Rosenthal 2004; Gibbs and Deutz 2007; Despeisse 
et al. 2012; Leigh and Xiaohong 2015).

Circular economy (CE) complements IE by approach-
ing materials from two perspectives: biological nutri-
ents—which should eventually reintegrate the biosphere 
without causing any harm, and technical nutrients—
which circulate in the economy (Pearce and Turner 1989; 
Seager and Theis 2002; Korhonen 2004; EMF 2012, 2013, 
2014b; Liao et al. 2012; Tukker 2015; Geissdoerfer et al. 
2017).

CE suggests that all economic activities should be per-
formed focusing on (a) the use of wastes as inputs, (b) the 
adoption of renewable and clean energy sources, (c) the 
accurate biophysical costs of their extraction, transfor-
mation, use and reinsertion into either economy or bio-
sphere, and (d) outputs designed from the beginning so 
as to facilitate collection, recycling, refurbishing, reuse, 
redistribution, maintenance and sharing throughout 
their lifespan (Park et al. 2010; EMF 2014a, 2015a, 2016, 
2017; Haas et al. 2015).

Due to the commoditization of its products and of its 
raw materials, the steel industry traditionally pays close 
attention to factors and productive variables that can 

affect price and competitiveness just as much as qual-
ity. With this in mind, for decades, this industry has 
been using putting in place environmentally–friendly 
practices such as recycling and by-product reuse even 
before Circular Economy and Industrial Ecology became 
widespread concepts or part of policy-driven efforts (EC 
2013b; WS 2016).

In Europe, most policies regarding environmental 
impacts came into force or were revised close to the turn 
of the century. Notably examples are the Environmental 
Assessment Directive 2011/92/EU (EP 2011), the Indus-
trial Emissions Directive 2010/78/EU (EP 2010), the Air 
Quality Directive 2008/50/EC (EP 2008a), the Water 
Framework Directive 2000/60/EC (EP 2000), the Packag-
ing Waste Directive 94/62/EC (EP 1994), the Waste and 
Hazardous Waste Framework Directive 2008/98/EC (EP 
2008b), and the Landfill Directive 99/31/EC (EU 1999).

Although these documents address how industries 
should manage, control and report their undesired or 
potentially hazardous outputs, minimal attention was 
given to input alternatives, resource efficiency or circu-
lar behaviors. Moreover, no particular or direct atten-
tion was given to the steel supply chain (EP 1999, 2000a, 
2008a, b, 2010, 2011), with the exception of the Extract-
ing and Mining Waste Directive 2006/21/EC (EP 2006).

In 2012 the European Union and its member states 
committed to the application of a Ciruclar Economy 
Package as new driver for its economic model, boosting 
a transition to resource-efficient practices that eventu-
ally lead to a regenerative progress toward nature (Zhijun 
and Nailing 2007; UNEP 2011; EC 2012; Su et  al. 2013; 
Kahle and Gurel-Atay 2014; EMF 2015b; Gregson et  al. 
2015). Soon after, the European Commission conceived 
an action plan focused on the European steel industry, 
which summarized the situation of the European steel 
industry as of 2012 and brought to light the difficulties 
faced by the sector in terms of prices, competitiveness, 
trading and energy (EC 2013b).

To deal with these obstacles while furthering environ-
mental progress on resource efficiency and climate, the 
action plan highlighted the need for developing second-
ary metals markets in order to boost the production of 
steel from scrap (EC 2013b; EUROFER 2015). From 
that point on, the European Commission and the Euro-
pean Council created multiple policy-supporting docu-
ments, the most noteworthy being the Best Available 
Techniques (BAT) for Iron and Steel Production (EC 
2013a). Along Directive 2006/21/EC and the BAT for 
the Ferrous Metals Processing Industry (EC 2001). These 
documents proposed operational techniques capable of 
directly addressing certain environmental impacts and, 
when possible and pertinent, suggested potential circular 
integrations.
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Still, the previously mentioned policies and most of 
their supporting documents either addressed steel indi-
rectly through other sectors or approached different 
stakeholders/process of the steel supply chain separately 
(EUROFER 2015). Even alongside the BAT documents, 
these policies have been deemed insufficient to address 
climate and resource efficiency issues. Therefore, in 
order to stop this counterintuitive obstruction of cir-
cularity, more attention should be given to end-of-life 
steel, energy sourcing and systemic/holistic approaches 
(EC 2013b, 2014; Diener and Tillman 2016; Dunant et al. 
2018; EUROFER 2015).

In an attempt to provide the European steel industry 
with additional support for decision- and policy-making, 
this article explored the potential benefits on integrat-
ing two methodologies used in the context of IE and CE: 
life cycle assessment (LCA) and system dynamics (SD) 
(Lewandowski 2016; Pomponi and Moncaster 2017; 
Winans et al. 2017).

Unlike previous studies, in which LCA and SD mod-
els ran in parallel and exchanged intermediary outputs 
or data exogenous to each other (Yao et  al. 2018; Stasi-
nopoulos et  al. 2011), the present article brought the 
entire LCA methodology, in its attributional form, into 
the SD modelling environment. By doing so, the authors 
expected to maximize the amount of endogenous dynam-
ics at play.

In the interest of identifying possible barriers or con-
straints to the integration, available literature was inves-
tigated and both LCA and the SD methodology were 
subjected to SWOT analyses—a strategic assessment 
technique used to identify the strengths, weaknesses, 
opportunities and threats faced by a given object of study 
(USDA 2008). Furthermore, it was deemed important to 
ensure that both LCA and SD would operate properly 
despite the integration, task achieved by comparing the 
results to those in existing literature generated by LCA 
and SD separately.

LCA and its uses in the European steel industry
As a tool, LCA is used for the accounting of series of 
static inventory inputs and outputs of the processes that 
exist in the life cycle of an object of study. These values 
are then scaled in accordance to a functional unit and 
characterized into sets of environmental impact indi-
cators. This allows for a clearer understanding of the 
environmental performance of a series of processes 
throughout an item’s life cycle and enables detailed analy-
ses and comparisons with similar goods (Palazzo and 
Geyer 2019; Tietenberg and Lewis 2004; ISO 2006; Ekvall 
et al. 2016; Koffler et al. 2014).

LCA has gained ground over the years due to its quan-
titative diagnostic applications, helping companies 

identify improvement opportunities in their supply 
chains (Hunt and Franklin 1996; Sonnemann et al. 2004). 
By individually analyzing the environmental impacts and 
environmental performance of each stage of a product’s 
life cycle, LCA enables product designers and decision-
makers to better visualize the ramifications of inserting a 
product into the market (Ferreira 2004). This then allows 
for the revision and correction of a product’s character-
istics or of a supply chain’s operation in order to reduce 
potential harm to the environment (Daddi et al. 2017).

The life cycle of steel, summarized in Fig. 1, begins with 
at least one of two main raw materials: iron ore or steel 
scrap. Iron ore is mined from Hematite (Fe2O3, ~ 70% 
Fe content), Magnetite (Fe3O4, ~ 72% Fe content), Limo-
nite (2Fe2O3 + 3H2O, ~ 59% Fe content), Goethite 
(Fe2O3 + H2O ~ 63% Fe content) or Siderite (FeCO3, ~ 48% 
Fe content) (Stubbles 2017; Jones 2017; Kozak and Dzier-
zawski 2017).

Steel scrap, on the other hand, often has over 95% Fe 
content and, once given the appropriate triage and treat-
ment, goes straight into steelmaking after its collection 
from manufacturing processes, recycling centers, junk-
yards or even landfills (Warrian 2012; WS 2012b; Bed-
dows 2014; Stahl 2017).

Steel can leave the manufacturing stage in many forms 
and with many different chemical and mechanical char-
acteristics, depending on the application to which it was 
designed (Beddows 2014; Stahl 2017). Once it goes into 
the use stage, it will be stored, reused and remanufac-
tured until losses in quality demand its recycling (WS 
2012b; Vaclav 2016). Throughout this entire sequence 
of stages, however, energy is consumed, byproducts are 
created and environmental impacts are generated, all of 
which can be accounted by LCA.

By following the guidelines of ISO 14040:2006 and 
using Simapro as a modelling platform to analyze data 
from Ecoinvent, Burchart-Korol (2013) developed the 
LCA of the Polish steel industry. In the study, the func-
tional unit was set to one tonne of cast steel produced 
within Polish cradle-to-gate boundaries, resulting in 
CO2eq emissions measurements according to IPCC 
and CED criteria, as well as in ReCiPe Midpoint indica-
tors for 17 different categories of environmental impacts 
per main productive process. Not only were the authors 
capable of identifying the human health and environ-
mental risks posed by the raw materials as well as the 
energy demand of each productive process, but also to 
suggest changes in energy sourcing that could allow for 
the Electric Arc Furnace (EAF) method to be less emis-
sion-intensive (Burchart-Korol 2013).

A similar study was performed in the Turkish steel 
industry, in which 14 IMPACT2002 + Midpoint indica-
tors were used instead of ReCiPe’s 17, focusing on five 
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different steel products: billet, slab, hot rolled wire rod, 
hot rolled coil (Olmez et  al. 2015). The main contribu-
tions of this study were (a) identifying hot rolled prod-
ucts as the most environmentally hazardous due to their 
intensive emission of inorganic particles—thus requiring 
efficient dust collection methods, and (b) highlighting the 
significant Global Warming Potential of this industry as a 
whole due to its high consumption of fossil fuels (Olmez 
et al. 2015).

Another similar example of LCA pertinent to the dis-
cussion at hand took place in Italy, additionally con-
sidering emissions from logistics while focusing on a 
functional unit of 1 million tons of steel slab (Renzulli 
et  al. 2016). Unlike previous studies, this one suggested 
the regional reuse of BOF and BF slag for agriculture or 
infrastructure purposes as a mean to help reduce the 
overall environmental impact of the production process, 
while also suggesting a partnership with nearby power 

plants in order to improve energy efficiency (Renzulli 
et al. 2016).

Based on literature and practice just as much as on 
the examples above, Table  1 summarizes the analy-
sis of strengths, weaknesses, opportunities and threats 
(SWOT) executed by the authors of this article.

It is from understanding and experiencing some of the 
limitations above as well as the limited availability of lit-
erature on LCA for European steel that the authors of 
this article considered also exploring how SD can support 
decision-making in the steel industry.

SD and its uses in the steel industry
While LCA is capable of giving scholars and decision-
makers a very insightful snapshot of a supply chain, SD 
can, in turn, transform that snapshot into a film. Deci-
sion-makers gain, thus, the means to analyze a supply 
chain as it progresses through the effects of multiple 

Fig. 1  Steel’s life cycle as per the circular economy framework (adapted from EMF 2017)
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feedbacks and loops of which visibility, relevance or scale 
could only become evident with the passage of time or 
with their simultaneous interactions (Forrester 1962; 
Booth and Meadows 1995).

SD is a methodology for studying complex nonlinear 
behavior within systems, often used for simulating new 
potential behaviors by adding, removing or changing var-
iables, triggers and delays (Sterman 2000; Ogata 2003). 
To do so, it deconstructs a system into smaller—often 
binary—interactions. It then analyzes their behavior not 
only independently but also as part of the whole, which 
then generate balancing or reinforcing loops that help 
determine the system’s overall behavior (Ruth and Han-
non 2012).

Instead of pushing data through series of stocks and 
flows—as LCA commonly does, SD lets the ensemble 
of interactions between each correlated pair of variables 
define the behavior of the system (Ogata 2003; Ruth and 
Hannon 2012). This approach allows for very small-scale 
problem-solving just as much as it allows for the analysis 
of large-scale interactions. SD often encompasses mar-
ket dynamics and relies on endogenous data to create 
projections and trends, more easily representing circular 
behaviors when compared to other methodologies (Ster-
man 2000; Ruth and Hannon 2012).

SD derived from the school of Systems Thinking of the 
1950s and 60s, which intended to support and improve 
productive decision-making (Forrester 1962; Booth and 
Meadows 1995). Its application begins on the definition 
of a clear question, then proceeds to conceptualize the 
system where the problem is located. During this step, 
its components, the causal relations and the feedbacks 

therein are mapped, generating a causal loop diagram 
(CLD) (Forrester 1969; Coyle 1997; Haraldson 2004; 
Morgan 2012; Capra and Luisi 2014).

Next, the CLD is converted into a Flow Chart (FC), a 
diagram which allows for data and variable inputs, task 
usually performed in a modelling software such as Stella 
or Vensim (Morgan 2012; Ruth and Hannon 2012). Hav-
ing built a model that represents the system at hand and 
having added pertinent data to it, results and analyses 
can be derived from the simulation of scenarios (Rand-
ers 1980; Karnopp and Rosenberg 1975; Sterman 2000; 
Ogata 2003). Regarding the steel industry, and especially 
in Europe, not many studies and publications have yet 
made use of SD. Below, the authors present examples of 
SD studies on steel performed by researchers in China, 
Iran, Sweden and the United Kingdom.

The first study consisted of a macro-level analysis of 
the sintering process, one of the raw material prepara-
tion steps commonly used in the iron making stage. Both 
CLDs and FCs were created, resulting in a SD model 
capable of replicating the known behavior of sintering 
operations in the Anshan Iron and Steel Corporation 
(AISC) (Liu et al. 2015). The model was then used to run 
a multi-variable simulation comparing the AISC’s opera-
tion to the Shouqin Corporation’s operation, pointing to 
the latter as capable of delivering sinter with better com-
pacted ness and higher iron content to the Chinese mar-
ket (Liu et al. 2015).

The next study focused on reducing the consumption 
of natural gas and oil in Iranian national steelmaking by 
simulating the energy requirements through 20 years of 
subsidies, exports and consumption (Ansari and Seifi 

Table 1  SWOT analysis of  life cycle assessment. [Sources: Hunt and Franklin (1996), Huijbregts (2002), Ferreira (2004), 
Sonnemann et al. (2004), ISO (2006), Finnveden et al. (2009), Curran (2012), Daddi et al. (2017)]

Strengths Weaknesses

Focus on environmentally friendly product design and its development
Strong diagnostic and planning approach
Clear depiction of stocks and flows of a product along a supply chain
Stakeholder involvement in the supply chain is made visible
Internationally accepted and indicator-friendly
Linear, bottom-up approach
Designed to objectively represent series of processes and to account for the 

flows therein

Complex inputs and outputs
Limited comparability due to high specificity
High time and effort requirements
Performs best when the object of study is a contained unit or a simple 

combination
Limited scenario analyses, often requiring One-Factor-at-a-time (OFAT) 

approach
Unless a time frame or time series is tested, long-term decision-making 

application can be limited
Disaggregation level can pollute the identification of key issues if not 

properly managed
Standard application does not consider market dynamics

Opportunities Threats

Allows for ISO certification
Can spearhead public image efforts regarding a company’s environmental 

concerns
Standardization allows for cross-cultural exchanges

Interpretation of results can be confusing, misleading or complex for gen-
eral management or communication purposes

Scarce expertise
Vulnerable to data availability
Data inputs regarding future trends or behaviors depend on exogenous 

sources
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2012). A macroeconomic SD model was created to test 
the aforementioned variables simultaneously and in face 
of price variations, resulting in up to 33% reductions in 
fossil fuel consumption depending on the mix of subsidy 
reforms, recycling stimuli and EAF deployment scenarios 
(Ansari and Seifi 2012).

Next, researchers studied how SD can support deci-
sion-makers in identifying the main obstacles for extend-
ing a product’s lifespan so as to comprise multiple life 
cycles (Asif et  al. 2015). Global and North American 
data on steel was used to build a simplified global SD 
model in which resource scarcity and steel consumption 
were defined as the main drivers (Asif et al. 2015). As a 
result, the researchers suggested that enterprises and 
nations should attempt to keep scarce or non-renewable 
resources within their supply chains for as long as possi-
ble during multiple life cycles in order to accrue the most 
economic and environmental advantage possible (Asif 
et al. 2015).

The last study brought to the reader’s attention was one 
of the earliest concerning the steel industry using SD as a 
methodology. In it, the researchers attempted to create a 
model capable of reproducing the effects of bottlenecks, 
breakdowns and other operational constraints in steel-
making supply chains which adopt Minimum Reason-
able Inventory (MRI) as a business strategy (Hafeez et al. 
1996). After simulating different operational scenarios, 
the main outcome of the study was a set of strategies to 
achieve MRI for each individual stock unit according to 
system-wide operational risks, instead of altogether uni-
formly, which would tend to require either operational 
risk insurances or higher levels of working capital bind-
ing (Hafeez et al. 1996).

As previously performed for LCA, Table  2 summa-
rizes the SWOT analysis of SD considering the examples 
above as well as other relevant literature.

After having finished SWOT analyses for both LCA 
and SD, the authors identified multiple points of diver-
gence but also of convergence. Most importantly, how-
ever, is that in situations where one flounders, the other 
often excels, thus pointing to the potential benefits of a 
combined approach.

Methodology
Bringing LCA and SD together is a relatively recent 
idea as of the development of this article, with earliest 
attempts dating back to 2011. In the scientific studies 
published so far, systems thinking was used to pursue the 
same results generated by either LCA (Onat et al. 2016; 
Halog and Manik 2011; Yao et  al. 2018; Stasinopoulos 
et  al. 2011) or Material Flow Analysis (MFA) (Sprecher 
et al. 2015).

In some of their attempts, previous academics ran both 
methodologies in parallel and used them as interchange-
able sources of endogenous data to each other (e.g. Yao 
et al. 2018; Stasinopoulos et al. 2011). In other attempts, 
series of results originated in MFA or LCA were then 
used in a SD model, simulating a circular environment 
for the retrieval of dynamic behaviors (e.g. Sprecher et al. 
2015; Onat et  al. 2016; Halog and Manik 2011). Plevin 
et al. (2014) and Palazzo and Geyer (2019) also tested dif-
ferent variations of LCA—attributional or consequential, 
respectively—in order to bring systemic attributes into 
their LCA results and discussions.

In all cases, authors were capable of broadening and 
deepening the understanding of the systems under study 
and their efforts brought significant advancements to 
the discussion of how approaching LCA and MFA with a 
SD mindset can be productive and insightful (Onat et al. 
2017; Palazzo and Geyer 2019).

Nevertheless, answering questions regard-
ing sustainability’s triple bottom line or regarding 

Table 2  SWOT analysis of system dynamics. [Sources: Forrester (1962), Booth and Meadows (1995), Coyle (1997), Hafeez 
et al. (1996), Ogata (2003), Haraldson (2004), Ansari and Seifi (2012), Capra and Luisi (2014), Asif et al. (2015), Liu et al. 
(2015), Kunc (2017)]

Strengths Weaknesses

Focus on circularity, causality and the effects of variables over time
Strong for strategic analyses and problem-solving
Flexible modelling environment facilitates the use subjective or abstract 

variables if necessary
Multiple independent objects of study can be subject of analysis simultane-

ously
Model structure is easy to adapt and change if necessary
Non-linear, top-down approach
Can be used for modelling market dynamics

Strategic analyses often do not suffice for effective decision-making
Visualization of stakeholder involvement is highly dependent on how the 

model is built
Levels of error and uncertainty are harder to determine
Aggregation can hide or ignore important variables if not done carefully
Model structure might not be objectively represent the actual series of 

processes and flows of the system under study
Limited support for using indicators

Opportunities Threats

Can be of great use for communication purposes
Can foster the development of multidisciplinary studies
Can generate endogenous trends and projections

Scarce expertise
Analyses can become over-simplistic
Vulnerable to data reliability
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different environmental nexi with larger scopes and 
boundaries still faced two main methodological dilem-
mas: data aggregation levels had to be altered—often 
upwards and towards simplification; and data output for-
mats had to be adapted—often seeking the lowest com-
mon complexity denominator.

Although none of these modifications were inherently 
negative, they interfered with each individual methodol-
ogy enough to justify this article’s different approach: one 
focused on maximizing endogenous feedback and mini-
mizing data aggregation issues or format adjustments. 
Having learned from the aforementioned experiments 
and from the authors’ previous experiences, this article 
tries something different: to bring the entire LCA meth-
odology into the SD modelling environment.

It is to say that, in addition to using SD to broaden and 
deepen the achievements of LCA, we have attempted to 
create a win–win environment in which LCA can pro-
vide its own contributions to SD as well. To delve into the 
details of this endeavor, this section is divided in three 
parts, namely (a) research design—in which the authors 
introduce question, case-study and the methodological 
steps; (b) model description—in which the model itself 
and its development are explained; and (c) parameteriz-
ing and operation—where details regarding data inputs, 
variable control and operational behaviors are presented.

Research design
Considering that neither SD nor LCA were originally 
devised to work with each other, as well as the lim-
ited number of available attempts of their integration 
until now, the primary concern was to properly envi-
sion where, when and how LCA and SD could supplant 
each other’s weaknesses while maintaining their own 
strengths. With that in mind, a methodological question 
took priority over the originally conceived one, resulting 
in the following:

1.	 Can the integration of LCA into SD reproduce the 
results or behaviors previously observed in studies 
that used LCA or SD separately?

2.	 What potential benefits derive from this integration 
toward decision-making on the biophysical aspects 
of long-term materials sourcing?

Keeping in mind the frameworks and concepts of both 
IE and CE, the main expected result of the study was 
achieving a favorable answer to the first question, which 
would hypothetically indicate that the integration was 
realized adequately and to the extent of not interfer-
ing with either SD’s or LCA’s correct implementation. 
The quantitative criteria for answering both questions, 
keeping in mind the case study at hand, focused on (a) 

emissions, (b) biophysical depletion of iron ore, (c) steel 
scrap generation and consumption, (d) liquid steel output 
from production, (e) iron circularity, and (f ) steel input 
into the economy, as derived from literature already pre-
sented thus far or to be introduced further in this section.

For qualitatively answering them, the SWOT analyses 
based the search for the following patterns: SD’s broader 
and more flexible modelling approach contributing to 
LCA’s (a) circularity, (b) long-term perspective, and (c) 
the macro analysis potential; while LCA’s objective and 
empirical representation of an operation improves SD’s 
(d) stakeholder involvement identification, (e) analy-
sis reliability, and (f ) applied/practical usefulness across 
managerial levels.

The case study used for testing this integration was the 
European steel industry, chosen by the authors due to (a) 
its current transition towards more environmentally-ori-
ented decision-making; (b) its importance for the Euro-
pean economy, security and sovereignty; (c) its global 
contextual concerns regarding the rise of international 
competitors, and; (d) to the policy limitations regard-
ing its environmental aspects. Therefore, as boundary, 
the study took into account the EU28 zone, represented 
by the supply chains of the steelmakers members of the 
WorldSteel Association that operate within it, which 
account for 84% of the entire European steel industry.

In order to adequately represent this industrial activ-
ity and give focus to the biophysical transformations that 
take place throughout the supply chain while keeping in 
mind European average steel production behavior, the 
study was conducted using the following methodologi-
cal steps: (1) business process mapping (BPM), carried 
out with the support of the BizAgi software and aimed 
at identifying all the core processes of steelmaking in 
Europe; (2) causal loop diagraming (CLD), made with 
the support of the OmniGraffle tool so as to represent 
the steelmaking supply chain in a systematic and holis-
tic manner; (3) flow charting (FC), within the SD mod-
elling environment of the Stella Architect software (ISEE 
Systems 2016); (4) data collection and scenario building; 
(5) model parameterizing and testing; and (6) simulation 
runs and analyses.

Iron was defined as the driving chemical element of 
steelmaking, while steel scrap and iron ore were defined 
as the key raw materials. Nevertheless, connections to all 
other chemical elements and raw materials involved in 
steelmaking were included, as summarized in Fig. 2.

Furthermore, two different levels of aggregation were 
adopted: cradle-to-gate processes were disaggregated 
down to chemical level, while gate-to-cradle processes 
were aggregated to product level. This choice was made 
in order to give decision-making granularity for the steel-
makers without over encumbering macro-level analyses 
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that could affect policy-making on end-of-life and circu-
larity services.

In order to obtain the desired alloys, the material needs 
of the furnaces were used to define the amounts of raw 
materials pulled from their respective sources. This pull-
ing behavior is present in the system until liquid steel 
becomes an intermediary output, point in which the 
system then pushes materials through the subsequent 
processes so as to reproduce the continuous casting 
operation. Additionally, attention was given to the feed-
backs that close the loop (e.g. recycling, repair, refurbish-
ment), so as to enable the system to operate under the 
definitions of CE and IE.

Model description
In total, twenty modules were created, one for each 
chemical element involved in the steel supply chain 
(e.g. iron, carbon, nickel, chromium, zinc, oxygen), all of 
which used a functional unit (FU) of 1 ton of steel and 
were built to be structurally identical. Specific flows and 
stocks were introduced whenever necessary so as to 
properly represent the typical behaviors of each chemical 
element throughout the supply chain.

Within each module, the production processes and the 
stocks of steelmaking were approached modularly and 
established as individual LCA-based units, capable of 
being displaced, rearranged or replicated with minimal 
interference in the overall structure of the model. This 
allowed for the user interface to be less polluted then tra-
ditional SD models and should enable this model to be 
easily adapted to the reality of different stakeholders in 
the future, as exemplified in Fig. 3.

The productive processes were grouped into macro-
processes based on their most common occurrence in 
the European steel industry, namely: (a) EAF and (b) 
BFBOF—each encompassing sintering, pelletizing, degas-
sing, alloying, desiliconization, desulfurization, homog-
enization or dephosphorization, whenever applicable; (c) 
casting—which encompassed all shape, heat and surface 
treatments; (d) metallurgy—which encompassed all form-
ing and metalworking processes; (e) economic sectors—
divided in construction, automotive, other transportation, 
tools and machinery, appliances and electronics, and 
heavy mechanical equipment, as per WorldSteel Asso-
ciation standards; (f ) recycling—which fed back into the 
stock of scrap used as input for “a” and “b”; (g) repair/
refurbishment—which fed back into each economic sec-
tor according to their share in its demand; and (h) losses 
and landfills—which configured a process-based sink.

It is important to note, however, that (1) due to the 
lack of available disaggregated data, emissions from 
mining, casting and metallurgy were attributed to the 
EAF and the BFBOF macro-processes accordingly and 

proportionally; (2) dust and particulate matter generation 
were incorporated into the mass of emissions; (3) no dis-
aggregated emission data was found for end-of-life and 
circularity solutions; (4) energy flows were considered 
only in the form of amount of fossil fuels consumed and 
not in the form of heat or electricity (directly by BFBOF 
and indirectly from generation for EAF); and (6) no pric-
ing, costing or speculative variables were included in this 
attempt—variables these which will be addressed in a 
subsequent publication.

Finally, a control panel was created in order to facili-
tate the visualization and management of data inputs and 
variable control, as well as for the easier identification of 
issues. It allowed for the (a) adjustment of variables that 
affect all 20 modules, (b) monitoring of stocks, flows and 
outputs of the supply chain, and (c) follow-up on opera-
tional losses. Moreover, different levels of granularity 
were made possible for analysis merely by switching on 
and off the tracking of individual chemical elements.

Parameterizing and operation
Table  3 summarizes the data inputs used in the study, 
all of which encompassed the interval between 2001 
and 2014, and were verified for cohesion, coherence and 
reliability based on the criteria of the ILCD Handbook 
(EC 2010) and of ISO14044:2006 (ISO 2006),1 as well as 
being compared to their equivalent data points in the 
WorldSteel Association’s Life Cycle Inventory Study for 
Steel Products (WS 2017c) and EUROSTAT Databases 
(EUROSTAT 2009, 2017, 2018a, b).

The model was then parameterized for annual calcu-
lations during a period of 200  years, assuming that the 
demand for steel focused on the 6 most produced types 
of steel (UNS S30400, UNS S31600, UNS S43000, UNS 
S17400, UNS S32205, UNS S40900). The yields of the 
EAF and the BFBOF production macro-processes were 
set according to their respective capacity and productiv-
ity, as well as to their share of participation in the EU28. 
The parameters can be seen in Table 4.

Keeping in mind that all of the steelmakers consid-
ered within the boundaries of the study either import 
iron ore or ship it from their international branches, 
inherent behaviors of the model structure included (a) 
the gradual transition from BFBOF production to EAF 
production as function of steel scrap availability; iron 
ore quality decrease and iron ore scarcity over time 
(Waugh 2016); (b) the gradual shift towards consum-
ing steel scrap instead of iron ore as a function of iron 
content and availability, still respecting alloying and 

1  The authors also considered adopting product environmental footprint 
(PEF) standards (JRC 2012), however, in its current state, it presented itself as 
a less consolidated and less disseminated methodology, with available applica-
tions focused mainly in the construction sector.
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operational requirements; and (c) steel scrap down 
cycling over time due to alloying quality loss during 
repeated service lives.

Finally, all circularity and end-of-life behaviors were 
set to respond in a business-as-usual pattern, with no 
direct or indirect stimulus of any kind, evolving only in 
proportion to the demands of the elements present in 
steel scrap.

Results and discussion
After running the model, the authors proceeded to 
verify if the integration could reproduce results of stud-
ies that used SD and LCA separately. In what regarded 
SD, the results were favorable and all features of SD 
remained functional.

As the biophysical depletion of recoverable high-
grade iron ore reserves takes place, as seen in Fig.  4, 
BFBOF production would be forced to migrate to infe-
rior grades of iron ores by 2051. Moreover, its avail-
ability would become critical circa 2054, i.e. 53  years 
after the initial data point of 2001. These results very 
much reproduced those of Sverdrup and Ragnarsdot-
tir (2014), in which such a condition would take place 
around the year 2050. Having analyzed and reproduced 
the means by which their results were achieved, the 
authors identified that the 4-years difference occurred 
due to two main factors: Sverdrup and Ragnarsdottir 
(2014) used (a) longer data series and (b) considered 
the aggregate demand for all steel types.

Fig. 3  Iron (Fe) module’s flow chart interface diagram
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When analyzed alongside Fig.  5, the decrease in iron 
ore consumption associated with its loss in iron content 
had a direct effect on the input of steel into the economy, 
despite a strong trend of increasing steel scrap generation 
until around 2060. This happened due to a delayed tran-
sition from BFBOF towards EAF, limiting the amount of 
steel delivered to the economy even with BFBOF even-
tually operating at maximum capacity during phase-out, 
corroborating the conclusions of Asif et al. (2015).

As high-grade iron ore becomes scarcer, higher priority 
should be given to retaining the resources and materials 

originated from it within a same supply chain, in order 
to accrue as much environmental and economic benefits 
from them as possible. The same logic applies to all of the 
TCEs and CRMs involved in the production of different 
steel alloys, notably nickel, niobium, titanium, vanadium 
and molybdenum. To do so in the EU28 while keeping 
in mind CE would require stakeholders within a supply 
chain to work on improving and integrating their opera-
tions, also an argument brought up by Asif et al. (2015) 
and Nuss and Blengini (2018).

Table 4  Summary of parameters used to test and run the model

a  As both delay and yield factor

Parameter Value Unit Sources

EAF tap-to-tap timea 0.8 Hours Shamsuddin (2016), WS (2012a, b, 2017b, c), EU (2011), Madias (2013), Cul-
len et al. (2012), Yellishetty et al. (2011a, b), EUROFER (2017a), Seethara-
man (2013)

EAF furnace capacity 100.000,00 kg

BFBOF cycle capacity 42.000,00 kg/batch

BFBOF productivitya 7 Batches/h

Share of EAF production in the EU28 39.70 % WS (2017b)

Share of BFBOF production in the EU28 60.30 %

Worldwide recoverable high-grade iron ore 82 billion Tons Sverdrup and Ragnarsdottir (2014), UNCTAD (2017)

Worldwide recoverable low-grade iron ore 92 billion Tons

Worldwide recoverable very-low-grade iron ore 166 billion Tons

Fig. 4  High-grade iron ore depletion
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Figure  5 also points to iron circularity being hardly 
affected, phenomenon replicated to other elements until 
biophysical exhaustion, and consequent of a balancing 
effect in which (a) even though more steel scrap is gener-
ated, more of it is consumed, and (b) no additional stimu-
lus is being given to increasing circularity other than by 
responding to the demand for scrap and the elements 
within it. If a transition from BFBOF to EAF production 
occurs as is, steel’s presence in the EU28 economy would 
be forced to go through a decline not only due to avail-
ability restrictions on other alloying elements, but due to 
iron itself—argument also previously brought forward by 
Ansari and Seifi (2012) and Sverdrup and Ragnarsdottir 
(2014).

Figure 6 reinforces this notion, in which by maintain-
ing the status quo, EAF will not be able to cover for the 
liquid steel output reduction of BFBOF steelmaking: 
even by using more scrap and less ore, the depletion of 
ore itself would slow down. One of the main drawbacks 
of such a situation is the undesired and indirect stimuli 
potentially given to the market for developing materials 
alternative to steel, which could add competition detri-
mental to steelmakers’ margins (Asif et al. 2015). There-
fore, if a faster transition towards EAF steelmaking is 
desired, policy-based initiatives towards the development 
and strengthening of a secondary raw materials market is 
necessary, as highlighted before not only by the European 
Commission (2013b), but also by EUROFER (2015).

Next, regarding LCA, the results were also favora-
ble, but one of its features could not be reproduced. As 
an example, obtaining the average CO2 eq emissions of 
837.41 kg/FU from EAF steelmaking and 2255.39 kg/FU 
from BFBOF steelmaking was possible as they derived 
directly from the model’s mass balances—results consist-
ent with those of Burchart-Korol (2013). Due to the need 
for modeling each individual characterization criteria 
for each potential indicator, however, it was not possible 
to determine the impacts of these emissions on specific 
environmental compartments—as per ReCiPe character-
ization criteria, for example.

The same occurred for slag generation: while the 
average results of 459.84  kg/FU from the BFBOF and 
121.17 kg/FU from the EAF aligned with those from Ren-
zulli et al. (2016), determining specific impact indicators 
was, notwithstanding, unachievable at this point. In the 
cases of both slag and emissions, nevertheless, the inte-
grated model allowed for easier analysis of individual 
chemical elements, as exemplified in Table 5.

The results and analyses derived from the integrated 
model answered favorably the first question, indicating 
that the integration did not interfere with the results of 
either LCA or SD. The use of indicators, however, one of 
LCA’s features—was rendered impractical. After iden-
tifying the flows within the system during the inventory 
phase of LCA, most LCA softwares provide a solid plat-
form for the characterization of each flow into an impact 

Fig. 5  Results for ore, scrap, steel input and circularity (tons)
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indicator category. SD, on the other hand, requires each 
indicator and its characterization factors to be modelled 
individually, offering no support for the allocation of the 
flows into impact categories, point in which more exten-
sive research and development would be necessary.

In order to answer the second question, the authors 
referred back to the criteria listed in “Research design” 
section. Criterion ‘a’ was perceived by the authors as con-
siderably improved, with the addition of a more detailed 
understanding of the dynamics of steel in the economy 
outside of the steelmakers’ gates.

Criterion ‘b’, on the other hand, saw SD give LCA a sub-
stantial boost in terms of how many years of steelmak-
ing operation could be simulated or projected using only 
endogenous data feedback. Whether calculating annually 
for a period of 200 years—as performed in this study—or 
even down to hourly calculations for a certain period of 
interest, SD’s delay and feedback mechanics allowed LCA 
to have a better grasp on how the gate-to-cradle dynam-
ics loop back into its mostly cradle-to-gate approach.

The contribution to the improvement of LCA’s macro 
analysis potential, as per criterion ‘c’, derived mostly from 
the possibility to track many different elements while 
concurrently simulating changes in more than one varia-
ble at a time throughout the entire supply chain, as exem-
plified in Fig. 7. Moreover, not only did stocks and flows 
help influence the system’s overall behavior, but so did 

Fig. 6  Steel output and the sources of iron (tons)

Table 5  Summary of  observed slag and  emission 
compositions

* Trace amounts, less than 0.1% altogether

Emissions Slag Comments

BFBOF EAF BFBOF EAF

CO 39.1% 62.7% – – From partial oxidation in the 
furnaces

CO2 20.8% 3.1% – – From the combustion of fossil 
fuels

N 3.4% 30.8% – – Mostly in the form of oxides 
(NOx)

H 32.6% 3.3% – – Either as CH4 or as H2

H2O 4.0% – – – Byproduct

Ca – – 28.5% 30.6% As part of CaO and CaS

O – – 36.3% 32.8% Present in all oxides

Si – – 11.4% 7.3% As part of SiO2

Mg – – 4.5% 3.8% As part of MgO

Al – – 3.9% 2.3% As part of Al2O3

Cr * * 11.8% 1.1% Free ion or as part of Cr2O3

Mn * * 1.5% 3.3% As part of MnO

Fe * * 0.4% 17.6% As part of FeO and Fe2O3

P – – 0.4% 0.8% As part of P2O5

S – – 1.0% 0.2% Free ion or as part of CaS

Zn * * 0.3% 0.2% Free ion or as part of ZnO

Ti – – * * Free ion or as part of TiO2
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both feedbacks and delays, features characteristic of SD 
that broadened LCA’s range of analysis.

With respect to criterion ‘d’, bringing LCA into SD did 
in fact allow for more precisely and objectively visualizing 
and accounting the stocks and flows of materials through 
and within the involved stakeholders, notably after steel 
leaves the industry and cycles through the economy and 
through end-of-life and circularity services.

The collection and input of case-specific data follow-
ing the LCA guidelines of ILCD and ISO improved the 
reliability and especially the granularity of the SD analy-
ses—as per criterion ‘e’—, which were better supported 
by objective and empirical results such as those exempli-
fied in Table 5.

For these reasons, the practical usefulness of the 
results across managerial levels-criterion ‘f ’—was also 
perceived as improved, which could allow for differ-
ent decision-makers to use the same model for vari-
ables that ranged from chemical composition all the 
way to ore scarcity and demand planning. In all cases, 
nevertheless, further improvements to its managerial 

applicability could be achieved by linking such a model 
to real-time operational data inputs.

The authors understand that verifying the feasibility 
and the potential benefits of integrating SD and LCA 
very much depends on how the integration itself is per-
formed and, considering the methodological steps and 
the modelling approach used in this study, the integra-
tion was deemed not only feasible, but also capable of 
better supporting stakeholders that would previously 
only consider SD or LCA, adding to their individual 
strengths.

With this in mind, it is important to note that LCA 
seemed to contribute more for the improvement of SD 
than the other way around. It is to say that, overall, the 
distinctive diagnostic and process efficiency features of 
LCA emerged much more tangibly as a result of the inte-
gration process than SD’s problem-solving orientation.

For professionals or academics used to LCA applica-
tions, the current obstacles for working with indicators 
might configure enough of a barrier to avoid either a tran-
sition or an integration into SD. Future improvements on 

Fig. 7  Presence of iron in the economy, per sector
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this integration could potentially solve such issues and 
favor its adoption. Nevertheless, the aforementioned 
strategic gains should suffice to attract attention to the 
discussion and to entice interested agents to further 
investigate gate-to-cradle dynamics and their feedbacks 
into production.

For SD scholars, however, the benefits of integrat-
ing LCA expertise into SD modelling were substantial. 
Enhancing the reliability, the granularity and the stake-
holder visibility in the results can compensate for many 
of the weaknesses identified in the SWOT analysis of 
standard SD applications, notably helping to mitigate 
the threat of over-simplistic analyses. SD practitioners 
and policy-makers could take advantage of this approach 
to better subside their analyses, adding to the levels of 
objectivity and representativeness of their studies, espe-
cially when process efficiency is a key decision factor.

Additionally, particularly from cradle-to-gate, the inte-
grated model was very reminiscent of what IE calls Indus-
trial Metabolism. Certain similarities to other IE tools 
such as Material Flow Analysis (MFA) and its dynamic 
form (dMFA) became evident as well, especially regard-
ing the visibility of flows and stocks. Also, due to the 
characteristics of the European steel industry, the model 
posed as another good example of how CE envisions 
end-of-life processes as suppliers to the earlier stages of 
the supply chain. Further studies would need to be done, 
however, in order to add more renewable energy sources 
into the operation, as well as to better manage how some 
chemical elements rejoin the biosphere.

Finally, the authors believe that if data in more disag-
gregated levels were available, even better results would 
have been achieved. This could lead to significantly bet-
ter analyses of individual processes such as sintering, pel-
letizing, mining, forming, metalworking and recycling, 
especially regarding emissions and the use of energy 
directly in the form of heat and electricity.

Conclusions and recommendations
This study based itself on SWOT analyses of relevant SD 
and LCA studies on steel as well as on business process 
mapping to subside the creation of a model that inte-
grated LCA into SD. The model was built in ISEE Stella 
Architect using the European steel industry as a case 
study while following ISO and ILCD standards. As the 
main result, the integration was deemed feasible and 
beneficial for both SD and LCA in different levels. Table 6 
summarizes the results for both the quantitative and 
qualitative criteria used in evaluating the performance of 
the integrated model.

By allowing the simulation of longer periods of time, 
the testing of multiple simultaneously changing vari-
ables, endogenous feedbacks, and a clear visualization 
of gate-to-cradle dynamics, SD added strategic value to 
LCA. This could potentially interest industrial decision-
makers who would like to broaden the understanding of 
their operations as their goods and products integrate the 
economy as well as when they leave it.

The benefits that LCA brought to SD were more sub-
stantial and revolved around increased granularity, reli-
ability, stakeholder involvement and applicability of the 

Table 6  Summary of quantitative and qualitative results

Quantitative Qualitative

Criterion Reproduced 
LCA?

Reproduced 
SD?

Criterion Integration evaluation

Emissions Yes – SD improves LCA’s circularity analyses Considerable/minor improvement: more detailed 
gate-to-cradle dynamics

Biophysical depletion of 
iron ore

– Yes SD improves LCA’s long-term perspec-
tive

Substantial/major improvement: allows for full 
timespan flexibility

Steel scrap generation 
and consumption

Yes Yes SD improves LCA’s macro analyses 
potential

Substantial/major improvement: allows for the 
tracking of multiple elements while multiple vari-
ables are interacting or changing simultaneously, 
not only OFAT

Liquid steel output Yes Yes LCA improves SD’s stakeholder 
involvement identification

Substantial/major improvement: more precise 
depiction of flows, stocks and roles as per LCA 
requirements

Iron circularity – Yes LCA improves SD’s analysis reliability Substantial/major improvement: increased reliability 
and granularity due to data disaggregation and 
objectivity

Steel input into economy Yes Yes LCA improves SD’s applicability across 
managerial levels

Considerable/minor improvement: analyses can 
range from operational to strategic levels, but 
depend on how the model is built
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results on different managerial levels, factors that could 
attract policy-makers in need of a deeper understanding 
of a specific supply chain.

No interferences to the application of SD were identi-
fied while reproducing the results of previous studies. 
The replicability of LCA results from previous studies 
suffered no interferences either, however, it could not 
benefit from the use of indicators derived from ReCiPe’s 
characterization criteria, for example. Further research 
on how to better integrate LCA indicators into a SD 
modeling environment is required in order to improve 
the integration. Moreover, even when integrated into SD, 
LCA still calls for complex or disaggregated data to be as 
effective as possible.

Henceforward, the authors recommend further investi-
gation into the integration of LCA and SD. However well 
aligned it already was to the concepts and frameworks of 
both IE and CE, more attention to environmental impact 
indicators, renewable energy sources and to the reintro-
duction of substances into the biosphere is desirable.

By giving the model pertinent market data, setting 
other TCEs or CRMs present in the supply chain as key 
drivers instead of iron, and by using an industrial case 
study, researchers should be able to make even more pro-
gress towards the implementation of a joint LCA + SD 
mindset across academia, management and government.

Finally, based on the potential brought forward by the 
results of this study, the authors will extend the explora-
tion of this methodological integration and its application 
to the European steel industry. Planned developments 
include: (a) testing the benefits that different supply chain 
integration strategies focused on closed loop operations 
could bring to biophysical circularity; (b) examining the 
potential effects of different end-of-life and secondary 
market development policies on supply- and demand-
side dynamics; as well as (c) verifying which biophysical 
dynamics have the most relevant interactions with steel 
trade and its futures market.

Highlights

•	 Compiles relevant SD and LCA studies on steel and 
presents SWOT analyses of both SD and LCA;

•	 Introduces a model integrating LCA into SD and 
studies its application in the European steel industry;

•	 Integration of SD and LCA is deemed feasible and 
beneficial for both methodologies in different levels;

•	 Corroborates discussions on raw material scarcity, 
transition towards EAF steelmaking and resource 
ownership retention.
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