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Background
The competing risks model involves multiple failure modes when only the smallest fail-
ure time and the associated failure mode are observed. This model is widely studied in 
the medical, actuarial, biostatistics and so on, under the assumption of independent 
competing risks. It is common that a failure is associated with one of the several compet-
ing failure modes. Previous studies have mostly considered the competing failure modes 
to be independent even when the interpretation of the failure modes implies depend-
ency. Such as, in the study of colon cancer, the failure causes were cancer recurrence or 
death, obviously, such failure causes were dependent [see Lin et  al. (1999)]. The com-
peting risks model assuming independence among competing failure modes has been 
widely studied [see, e.g., Crowder (2001)]. Kundu et al. (2004) analyzed the progressively 
censored competing risks data, Sarhan (2007) analyzed the competing risks models with 
generalized exponential distributions, Cramer and Schmiedt (2011) studied the progres-
sively censored competing risks data with Lomax distribution, other related works see, 
Bunea and Mazzuchi (2006); Balakrishnan and Han (2008); Pareek et al. (2009); Xu and 
Tang (2011), and so on.

The competing risks model under the assumption of dependent competing failure 
modes has been considered in the early work by Elandt-Johnson (1976). Afterwards, a 
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number of corresponding works have been devoted to the dependent competing risks 
model. Zheng and Klein (1995) considered the dependence structure between failure 
modes is represented by an assumed Archimedean copula. Other works see Escarela and 
Carriere (2003); Kaishev et al. (2007).

In this paper, we present a dependent competing risks model from Gompertz distribu-
tion under Type-I progressively hybrid censoring scheme (PHCS). The Gompertz dis-
tribution is one of classical mathematical models and was first introduced by Gompertz 
(1825), which is a commonly used growth model in actuarial and reliability and life test-
ing, and plays an important role in modeling human mortality and fitting actuarial tables 
and tumor growth. This distribution has been widely used, see, Ali (2010); Ghitany et al. 
(2014).

The Type-I PHCS was first proposed by Kundu and Joarder (2006) [see also Childs 
et  al. (2008)]. This censoring scheme has been widely used in reliability analy-
sis, see, Chien et  al. (2011); Cramer and Balakrishnan (2013). It can be defined as 
follows: suppose n identical units are put to life test with progressive censoring 
scheme (r1, r2, . . . , rm), 1 ≤ m ≤ n, the experiment is terminated at time τ, where 
τ ∈ (0,∞), ri(i = 1, · · · ,m) and m are fixed in advance. At the time of the first failure 
t1, r1 of the remaining units are randomly removed, at the time of the second failure 
t2, r2 of the remaining units are randomly removed and so on. If the mth failure time 
tm occurs before time τ, all the remaining units R∗

m = n−m− (r1 + · · · + rm−1) are 
removed and the terminal time of the experiment is tm. On the other hand, if the mth 
failure time tm does not occur before time τ and only J failures occur before time τ, where 
0 ≤ J ≤ m. Then all the remaining units R∗

J = n− J − (r1 + · · · + rJ ) are removed and 
the terminal time of the experiment is τ. We denote the two cases as

Case I t1 < t2 < · · · < tm, if tm < τ

Case II t1 < t2 < · · · < tJ < τ < tJ+1 < · · · < tm, if tm > τ

The rest of the paper is organized as follows. “Model description” section  provides 
the model description, “Maximum likelihood estimations (MLEs)” section presents the 
maximum likelihood estimations of the model parameters. The confidence intervals are 
provided in “Confidence intervals” section. “Simulation and data analysis” section pre-
sents the simulation and data analysis. Conclusion appears in “Conclusion” section.

Model description
It is assumed that the Gompertz distribution with shape parameter λ and scale parame-
ter θ has the following probability density function (PDF), cumulative distribution func-
tion (CDF) and survival function

respectively, where t > 0, � > 0, θ > 0. We denote the Gompertz distribution by 
GP(�, θ).

(1)f (t|�, θ) = θe�t exp{−(θ/�)(e�t − 1)},

(2)F(t|�, θ) = 1− exp{−(θ/�)(e�t − 1)},

(3)S(t|�, θ) = exp{−(θ/�)(e�t − 1)},
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Suppose variables Y0, Y1, Y2 are independent and Y0 follows (∼) GP(�, θ0), 
Y1 ∼ GP(�, θ1), Y2 ∼ GP(�, θ2). Define T1 = min(Y0,Y1), T2 = min(Y0,Y2), then the dis-
tributions of T1, T2 are GP(�, θ0 + θ1) and GP(�, θ0 + θ2), respectively.

Theorem 1  The joint survival function of (T1, T2) is

 Proof

Corollary 1  The joint PDF of (T1, T2) can be written as

Proof For the cases t1 > t2 and t1 < t2, f1(t1, t2), f2(t1, t2) can be easily obtained by 

−
∂2ST1, T2 (t1,t2)

∂t1∂t2
. For the case t1 = t2 = t, by the full probability formula, we have the fact 

that

where

ST1, T2(t1, t2) =







S(t1|�, θ0 + θ1)S(t2|�, θ2) t1> t2
S(t1|�, θ1)S(t2|�, θ0 + θ2) t1< t2
S(t|�, θ0 + θ1 + θ2) t1= t2= t

ST1, T2(t1, t2) = P(T1 > t1,T2 > t2)

= P(Y0 > max(t1, t2),Y1 > t1,Y2 > t2)

= S(max(t1, t2)|�, θ0)S(t1|�, θ1)S(t2|�, θ2)

=







S(t1|�, θ0 + θ1)S(t2|�, θ2) t1> t2
S(t1|�, θ1)S(t2|�, θ0 + θ2) t1< t2
S(t|�, θ0 + θ1 + θ2) t1= t2= t

fT1, T2(t1, t2) =







f1(t1, t2)
f2(t1, t2)
f0(t)

=







f (t1|�, θ0 + θ1)f (t2|�, θ2) t1 > t2
f (t1|�, θ1)f (t2|�, θ0 + θ2) t1 < t2
(θ0/(θ0 + θ1 + θ2))f (t|�, θ0 + θ1 + θ2) t1 = t2 = t

(4)

∫ ∞

0

∫ t1

0
f1(t1, t2)dt2dt1 +

∫ ∞

0

∫ t2

0
f2(t1, t2)dt1dt2 +

∫ ∞

0
f0(t)dt = 1,

∫ ∞

0

∫ t2

0

f2(t1, t2)dt1dt2 =

∫ ∞

0

∫ t1

0

(θ0 + θ1)θ2 exp

{

�t1 −
θ0 + θ1

�
(e�t1 − 1)

}

× exp

{

�t2 −
θ2

�
(e�t2 − 1)

}

dt2dt1

= (θ0 + θ1)

∫ ∞

0

[

exp

{

�t −
θ0 + θ1

�
(e�t − 1)

}

− exp

{

�t −
θ0 + θ1 + θ2

�
(e�t − 1)

}]

∫ ∞

0

∫ t2

0
f2(t1, t2)dt1dt2 =

∫ ∞

0

∫ t2

0
θ1(θ0 + θ2) exp

{

�t1 −
θ1

�
(e�t1 − 1)

}

× exp

{

�t2 −
θ0 + θ2

�
(e�t2 − 1)

}

dt1dt2

= (θ0 + θ2)

∫ ∞

0

[

exp

{

�t −
θ0 + θ2

�
(e�t − 1)

}

− exp

{

�t −
θ0 + θ1 + θ2

�
(e�t − 1)

}]

dt,
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So from (4), we have

So we have f0(t) = θ0
θ0+θ1+θ2

f (t|�, θ0 + θ1 + θ2). � □

Figure 1 presents the surface plot of fT1, T2(t1, t2) for different values of �, θ0, θ1, θ2 , 
from Fig. 1, we can see that the fT1, T2(t1, t2) is unimodal. Define X = min(T1,T2), and 
the distribution of X is GP(�, θ0 + θ1 + θ2). θ0 = 0 indicates that T1, T2 are independent. 
Therefore, θ0 can be regarded as the dependence structure between T1, T2.

Competing risks model

Consider two competing failure modes with latent lifetimes T1,T2 in the experiment 
under Type-I PHCS, the failure of an individual is caused by any single one of the two 
failure modes, obviously, the actual lifetime span is X = min(T1,T2). Let r denotes the 
number of failures that occur before time τ, τ* denotes the terminal time. Then, at time 
all the remaining R∗

r = n− r −
∑r

l=1 rl units are removed and the experiment is termi-
nated, where r = m, τ ∗ = tr, rm = 0 in Case I and r = J, τ ∗ = τ in Case II.

∫ ∞

0

f0(t)dt = 1−

∫ ∞

0

∫ t1

0

f1(t1, t2)dt2dt1 −

∫ ∞

0

∫ t2

0

f2(t1, t2)dt1dt2

= 1+ (2θ0 + θ1 + θ2)

∫ ∞

0

exp

{

�t −
θ0 + θ1 + θ2

�
(e�t − 1)

}

dt

− (θ0 + θ1)

∫ ∞

0

exp

{

�t −
θ0 + θ1

�
(e�t − 1)

}

dt

− (θ0 + θ2)

∫ ∞

0

exp

{

�t −
θ0 + θ2

�
(e�t − 1)

}

dt

=
θ0

θ0 + θ1 + θ2
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Fig. 1  The surface plot of the joint PDF of T1, T2 with different values of θ0, θ1, θ2 when � = 2. a 
θ0 = θ1 = θ2 = 1, b θ0 = 0.5, θ1 = θ2 = 0.8, c θ0 = 0, θ1 = θ2 = 0.4, d θ0 = θ1 = θ2 = 0.2
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For the competing risks model under Type-I PHCS, (x1,α1), (x2,α2), . . . , (xr ,αr) are 
the observed failure data, where x1, x2, . . . , xr are order statistics, αl takes any integer 

in the set {0, 1, 2}. For j = 0, 1, 2, δj(αl) =
{

1, if αl = j

0, if αl �= j
. n0 =

∑r
l=1 δ0(αl) denotes the 

number of failures caused by the two competing failure modes, nj =
∑r

l=1 δj(αl), j = 1, 2 
denotes the number of failures caused by competing failure mode j (j = 1, 2), where 
r =

∑2
j=0 nj.

Maximum likelihood estimations (MLEs)
The likelihood function for the two competing risks model under Type-I PHCS can be 
written as

where

So the likelihood function can be written as

(5)

L(�, θ0, θ1, θ2) ∝

r
�

l=1







�

fT1, T2
(xl , xl)

�δ0(αl )
2
�

j=1

�

−
∂ST1, T2

(t1, t2)

∂tj
|(xl ,xl )

�δj(αl )
�

ST1, T2
(xl , xl)

�rl







×
�

ST1, T2
(τ ∗, τ ∗)

�n−r−
�r

l=1 rl ,

fT1, T2(xl , xl) = (θ0/(θ0 + θ1 + θ2))f (t|�, θ0 + θ1 + θ2)

= θ0 exp
{

�xl − ((θ0 + θ1 + θ2)/�)(e
�xl − 1)

}

,

−
∂ST1, T2(t1, t2)

∂t1
|(xl ,xl) = f (xl |�, θ1)S(xl |�, θ0 + θ2)

= θ1 exp
{

�xl − ((θ0 + θ1 + θ2)/�)(e
�xl − 1)

}

,

−
∂ST1, T2(t1, t2)

∂t2
|(xl ,xl) = f (xl |�, θ2)S(xl |�, θ0 + θ1)

= θ2 exp
{

�xl − ((θ0 + θ1 + θ2)/�)(e
�xl − 1)

}

,

ST1, T2(xl , xl) = S(xl |�, θ0 + θ1 + θ2)

= exp{−((θ0 + θ1 + θ2)/�)(e
�xl − 1)}

ST1, T2(τ
∗, τ ∗) = S(τ ∗|�, θ0 + θ1 + θ2)

= exp
{

−((θ0 + θ1 + θ2)/�)(e
�τ∗ − 1)

}

.

(6)

L(�, θ0, θ1, θ2) ∝





2
�

j=0

θ
nj
j



 exp

�

�

r
�

l=1

xl − ((θ0 + θ1 + θ2)/�)

×

�

r
�

l=1

(rl + 1)(e�xl − 1)+ (n− r −

r
�

l=1

rl)(e
�τ∗ − 1)

��

.
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By setting the first partial derivative of log L about θ0, θ1, θ2, � to zero, we get 

From (7), (8) and (9), the estimates of θj , j = 0, 1, 2 are given by

Substituting θ̂j(�) into log L and ignoring the constant, we obtain the profile log-likeli-
hood function of λ as

Lemma 1  The profile log-likelihood function g(�) is concave.

Proof Denote q(�) =
∑r

l=1 (rl + 1)e�xl + c1e
�τ∗, where c1 = n− r −

∑r
l=1 rl . Therefore,  

we get q′(�) =
∑r

l=1 (rl + 1)xle
�xl + c1τ

∗e�τ
∗
, q

′′
(�) =

∑r
l=1 (rl + 1)x2l e

�xl e�xl+

c1τ
∗2e�τ

∗

where al = (rl + 1)1/2xle
�xl/2, bl = (rl + 1)1/2e�xl/2.

q′′(�)q(�)−
(

q′(�)
)2

≥ 0 by the Cauchy–Schwarz inequality, therefore q′′(�)q(�) ≥
(

q′(�)
)2, which implies that the second derivative of g(�) is negative, so g(�) is concave. � □

From Lemma 1, we know that g(�) is unimodal and it has a unique maximum. Since 
g(�) is unimodal, most of the standard iterative procedure can be used to find the MLE. 

(7)
∂ log L

∂θ0
= n0/θ0 − (1/�)

[

r
∑

l=1

(rl + 1)(e�xl − 1)+ (n− r −

r
∑

l=1

rl)(e
�τ∗ − 1)

]

= 0,

(8)
∂ log L

∂θ1
= n1/θ1 − (1/�)

[

r
∑

l=1

(rl + 1)(e�xl − 1)+ (n− r −

r
∑

l=1

rl)(e
�τ∗ − 1)

]

= 0,

(9)
∂ log L

∂θ2
= n2/θ2 − (1/�)

[

r
∑

l=1

(rl + 1)(e�xl − 1)+ (n− r −

r
∑

l=1

rl)(e
�τ∗ − 1)

]

= 0.

(10)

∂ log L

∂�
=

r
∑

l=1

xl + ((θ0 + θ1 + θ2)/�
2)

[

r
∑

l=1

(rl + 1)(e�xl − 1)+ (n− r −

r
∑

l=1

rl)(e
�τ∗ − 1)

]

− ((θ0 + θ1 + θ2)/�)

[

r
∑

l=1

(rl + 1)xle
�xl + (n− r −

r
∑

l=1

rl)τ
∗e�τ

∗

]

= 0.

(11)θ̂j(�) = nj�/

[

r
∑

l=1

(rl + 1)(e�xl − 1)+ (n− r −

r
∑

l=1

rl)(e
�τ∗ − 1)

]

.

(12)g(�) ∝

2
∑

j=0

nj

[

ln �− ln

(

r
∑

l=1

(rl + 1)e�xl +

(

n− r −

r
∑

l=1

rl

)

e�τ
∗

)]

+ �

r
∑

l=1

xl .

q′′(�)q(�)−
(

q′(�)
)2

=

r
∑

l=1

a2l

r
∑

l=1

b2l −

(

r
∑

l=1

albl

)2

+ c1e
�τ∗

r
∑

l=1

(al − blτ
∗)2,
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So we propose to use the following simple algorithm. Substituting θ̂j(�) into (10), the 
MLE �̂ of � satisfies the following equation,

where h(�) = 1/

[

∑r
l=1 (rl+1)xle

�xl + c1τ
∗e�τ

∗

∑r
l=1 (rl+1)(e�xl−1)+ c1(e�τ

∗
−1)

−
∑r

l=1 xl
∑2

j=0 nj

]

.

Using the method of a simple iterative scheme proposed in the literature by Kundu 
(2007), we can solve the shape parameter � from (13). Start with an initial guess of � , 
say �(0), then obtain �(1) = h(�(0)) and proceed in this way to obtain �(n+1) = h(�(n)). 
Stop the iterative procedure when 

∣

∣�
(n+1) − �

(n)
∣

∣ < ε, some pre-assigned tolerance limit. 
Once we obtain �̂, the MLEs of θj , j = 0, 1, 2 can be obtained from (11) as θ̂j , j = 0, 1, 2.

Confidence intervals
Observed fisher information

In this section, we will construct the asymptotic confidence intervals (ACIs) for the 
parameters θ0, θ1, θ2, � using the asymptotic likelihood theory. The observed Fisher 
information matrix is denoted by

I(θ0, θ1, θ2, �) =







I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44






,

where the elements of which are negative second partial derivatives of log L.

(13)� = h(�),

I(j+1)(j+1) = −
∂2 log L

∂θ2j
= nj/θ

2
j , j = 0, 1, 2,

I44 = −
∂2 log L

∂�2
=



2





2
�

j=0

θj



/�3





�

r
�

l=1

(rl + 1)(e�xl − 1)+ c1(e
�τ∗ − 1)

�

−



2





2
�

j=0

θj



/�2





�

r
�

l=1

(rl + 1)xle
�xl + c1τ

∗e�τ
∗

�

+









2
�

j=0

θj



/�



[(rl + 1)x2l (rl + 1)x2l e
�xl + c1τ

∗e�τ
∗

I(j+1)4 = I4(j+1) = −
∂2 log L

∂θj∂�

= −(1/�2)

[

r
∑

l=1

(rl + 1)(e�xl − 1)+ c1(e
�τ∗ − 1)

]

+ (1/�)

[

r
∑

l=1

(rl + 1)xle
�xl + c1τ

∗e�τ
∗

]

, j = 0, 1, 2,

Iij = Iji = 0, i = 1, 2, 3; j = i + 1, . . . , 3.
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 Denote V  as the approximate asymptotic variance–covariance matrix of the MLEs of 
θ0, θ1, θ2, � and V̂  as the estimation of V , we get

By the asymptotic distribution of MLEs, (θ̂ − θ)/

√

V̂ (θ̂ ) follows as approximately 
standard normal distribution. Therefore, the two-sided 100(1− α)% ACIs for θ0, θ1, θ2, � 
are given by

where zα/2 is the α/2 quantile of a standard normal distribution.

Bootstrap sample

Step1. Given n, m, τ and progressive censoring scheme (r1, . . . , rm), compute the 
MLEs θ̂0, θ̂1, θ̂2, �̂ based on the original Type-I progressively hybrid censored sample 
(x1, . . . , xm).

Step2. Based on n, m, τ , (r1, . . . , rm), θ̂0, θ̂1, θ̂2, �̂, generate a Type-I progressively 
hybrid censored sample (x∗1, . . . , x

∗
m).

a1. Generate a random sample w1, . . . ,wm from Uniform distribution U(0, 1) , where  
w1, . . . ,wm are order statistics. Let vl = w

1/(l+rm+rm−1+···+rm−l+1)

l , Ul = 1− vmvm−1 · · ·

vm−l+1, l = 1, 2, . . . ,m are order statistics followed Uniform distribution U(0, 1).
a2. We obtain the failures r before time τ and the terminal time τ ∗.
If Um ≤ 1− exp{−((θ̂0 + θ̂j)/�̂)(e

�̂τ − 1)}, r = m, τ ∗ = (1/�̂) ln[1− (�̂/(θ̂0 + θ̂j)) ln

(1−Um)];
If Um > 1− exp{−((θ̂0 + θ̂j)/�̂)(e

�̂τ − 1)}, r = J , τ ∗ = τ, where J is obtained from the 
inequality
UJ < 1− exp{−((θ̂0 + θ̂j)/�̂)(e

�̂τ − 1)} ≤ UJ+1, for 1 ≤ l ≤ r, we set x∗l = (1/�̂) ln

[1− (�̂/(θ̂0 + θ̂j)) ln(1− Ul)].
Step3. Based on n, m, r, τ ∗, (r1, . . . , rr) and (x∗1, . . . , x

∗
r ), we obtain the MLEs 

θ̂∗0 , θ̂
∗
1 , θ̂

∗
2 , �̂

∗.
Step4. Repeat steps 2–3  N times, we obtain N estimates 

{

θ̂
∗(i)
j , �̂∗(i)

}

(i = 1, 2, . . . ,N ; j = 0, 1, 2). Arrange them in ascending order to obtain the 
bootstrap sample 

{

θ̂
∗(1)
j , θ̂

∗(2)
j , . . . , θ̂

∗(N )
j ; �̂

∗(1), �̂∗(2), . . . , �̂∗(N )
}

, j = 0, 1, 2.
The two-sided 100(1− α)% percentile bootstrap confidence intervals (Boot-P CIs) for 

parameters θ0, θ1, θ2, �
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.

[
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√

V̂(j+1)(j+1), θ̂j + zα/2

√

V̂(j+1)(j+1)

]

, j = 0, 1, 2,

[

�̂− zα/2

√

V̂44, �̂+ zα/2

√

V̂44

]

,
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Simulation and data analysis
Simulation

In this section, we presented some simulation results to evaluate the performance of 
all the methods proposed in the previous sections for different sample size n, different 
effective sample size m and different dependence structure θ0.

Consider two competing failure modes, the initial values for parameters (θ1, θ2, �) 
are (1.2, 1, 0.6). Take the dependence structure θ0 = 0, 0.3, 0.8, 1.2, 1.6, where θ0 = 0 
indicates that the two competing failure modes are independent Generate the Type-I 
PHC samples from the Gompertz distribution GP(�, θ0 + θj) for competing failure mode 
j(j = 1, 2) according to the algorithm proposed by Balakrishnan and Sandhu (1995). 
Take the terminal time τ = 1, and n = 20, 30, 50, m = 4, 6, 8, 10, 15, the pre-fixed scheme 
(r1, r2, . . . , rm) are

 To compute the MLEs of �, we have used the iterative procedure described in “Maxi-
mum likelihood estimations (MLEs)” section and stopped the iterative procedure when 
the difference between two consecutive iterates is less than 10−4. Before going to com-
pute the MLEs, we plot the profile log-likelihood function of λ in Fig. 2. Figure 2 shows 

(

θ̂∗0L, θ̂
∗
0U

)

=
(

θ̂
∗(Nα/2)
0 , θ̂

∗(N (1−α/2))
0

)

,
(

θ̂∗1L, θ̂
∗
1U

)

=
(

θ̂
∗(Nα/2)
1 , θ̂

∗(N (1−α/2))
1

)

(

θ̂∗2L, θ̂
∗
2U

)

=
(

θ̂
∗(Nα/2)
2 , θ̂

∗(N (1−α/2))
2

)

,
(

�̂
∗
L, �̂

∗
U

)

=
(

�̂
∗(Nα/2), �̂∗(N (1−α/2))

)

.

n = 20, m = 4, r1 = r2 = · · · = rm = 4,

n = 20, m = 8, r1 = r2 = 3, r3 = r4 = · · · = rm = 1,

n = 30, m = 6, r1 = r2 = · · · = rm = 4,

n = 30, m = 10, r1 = r2 = · · · = rm = 2,

n = 50, m = 10, r1 = r2 = · · · = rm = 4,

n = 50, m = 15, r1 = 5, r2 = 4, r3 = r4 = · · · = rm = 2.
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Fig. 2  Profile log-likelihood function of λ
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that the profile log-likelihood function of λ is unimodal, the MLE of λ is close to 0.6, so 
we start the iteration with the initial guess that �(0) = 0.6.

Repeat 10,000 times for each given n, m, θ0 and censoring scheme, the average mean 
squared errors (MSEs) and the average absolute relative bias (RABias) and the coverage 
percentage of the ACIs and Boot-P CIs are shown in Tables 1, 2 and 3.

From Tables  1, 2 and 3, the observations can be made. For fixed sampling scheme, 
sample size n and dependence structure θ0, the MSEs and RABias decrease as the effec-
tive sample size m increase.

For fixed sampling scheme, sample size n and effective sample size m, as the depend-
ence structure of competing failure modes become stronger, the MSEs and RABias get 
smaller, while the MSEs and RABias with θ0 = 0 are bigger, which shows that the per-
formance of the MLEs depends on the strength of dependence. This also shows that the 
dependence structure is very important in the competing risks model.

Table 1  n = 20, 1− α = 0.95

m θ0 θ0 θ1 θ2 λ

MSEs ACI MSEs ACI MSEs ACI MSEs ACI

RABias Boot-P RABias Boot-P RABias Boot-P RABias Boot-P

4 0 0.221 0.963 0.8171 0.900 0.7271 0.912 0.2516 0.904

0.908 0.7144 0.869 0.837 0.836 0.7974 0.902

0.3 0.1299 0.958 0.7194 0.914 0.6848 0.857 0.2402 0.980

0.7855 0.934 0.6744 0.877 0.7961 0.852 0.7832 0.934

0.8 0.4077 0.969 0.626 0.929 0.6395 0.940 0.2315 0.965

0.7278 0.886 0.6189 0.907 0.7621 0.917 0.7672 0.978

1.2 0.9094 0.974 0.6771 0.927 0.629 0.931 0.2245 0.963

0.7431 0.896 0.5798 0.912 0.7307 0.923 0.7516 0.986

1.6 1.7076 0.961 0.7727 0.918 0.639 0.915 0.2184 0.947

0.7724 0.866 0.5649 0.905 0.7023 0.891 0.7409 0.991

8 0 0.1081 0.925 0.4369 0.899 0.5514 0.903 0.217 0.941

0.898 0.5018 0.879 0.704 0.853 0.7241 0.897

0.3 0.1057 0.957 0.3504 0.915 0.4752 0.947 0.215 0.949

0.7145 0.925 0.4321 0.891 0.6533 0.869 0.7125 0.924

0.8 0.2489 0.952 0.3168 0.957 0.4051 0.974 0.2038 0.987

0.5349 0.967 0.3832 0.934 0.5686 0.967 0.6984 0.954

1.2 0.5723 0.917 0.3634 0.905 0.365 0.943 0.1952 0.942

0.563 0.968 0.3784 0.951 0.5278 0.977 0.6822 0.952

1.6 1.1113 0.906 0.5161 0.899 0.3765 0.902 0.1962 0.937

0.6053 0.879 0.4238 0.893 0.5122 0.904 0.6882 0.936
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For fixed sampling scheme, n, m and dependence structure θ0, the ACIs are stable than 
the Boot-P CIs, they can maintain their coverage percentages at the pre-fixed normal 
level.

Data analysis

Using the procedures above, we generate the Type-I PHC samples when 
(n,m, τ ) = (30, 10, 1) with initial value for parameters (θ1, θ2, �) as (1.2, 1, 0.6), and the 
dependence structure θ0 = 0.8, the censoring scheme as r1 = r2 = · · · = rm = 2. The 
simulated data is listed in Table 4. The MLEs and 95 % ACIs and Boot-P CIs are shown 
in Table 5. The trace plot of the MLE for parameter � using the iterative procedure is 
shown in Fig. 3, which shows that the estimate of � converges to a value after about 1000 
iterations.

Conclusion
This paper proposed the dependent competing risks model from Gompertz distribution 
under Type-I PHCS. We obtained the MLEs and ACIs and Boot-P CIs for the param-
eters. Simulations showed that the ACIs are more stable than the Boot-P CIs and that 

Table 2  n = 30, 1− α = 0.95

m θ0 θ0 θ1 θ2 λ

MSEs ACI MSEs ACI MSEs ACI MSEs ACI

RABias Boot-P RABias Boot-P RABias Boot-P RABias Boot-P

6 0 0.1572 0.907 0.6745 0.907 0.6719 0.898 0.2554 0.933

0.903 0.6554 0.911 0.7931 0.895 0.7989 0.892

0.3 0.0848 0.958 0.5776 0.898 0.6121 0.914 0.2484 0.929

0.6838 0.921 0.5969 0.899 0.753 0.875 0.7953 0.928

0.8 0.3152 0.971 0.4578 0.957 0.5416 0.971 0.239 0.968

0.6385 0.868 0.517 0.897 0.6897 0.901 0.7812 0.943

1.2 0.7678 0.980 0.4317 0.968 0.5079 0.934 0.234 0.988

0.6835 0.937 0.4716 0.913 0.6526 0.915 0.7744 0.983

1.6 1.5004 0.929 0.4752 0.918 0.4819 0.927 0.2291 0.951

0.728 0.898 0.4655 0.826 0.6298 0.877 0.7648 0.889

10 0 0.1101 0.917 0.4546 0.913 0.5544 0.899 0.2253 0.914

0.914 0.5234 0.895 0.7262 0.879 0.7441 0.927

0.3 0.0733 0.929 0.3553 0.924 0.485 0.908 0.2227 0.931

0.6668 0.920 0.4471 0.894 0.6565 0.897 0.7432 0.930

0.8 0.2195 0.972 0.2674 0.961 0.3879 0.962 0.2173 0.947

0.5113 0.939 0.3632 0.869 0.5776 0.929 0.7338 0.946

1.2 0.5649 0.968 0.2733 0.977 0.3314 0.984 0.2108 0.967

0.5739 0.965 0.3404 0.915 0.513 0.978 0.7224 0.938

1.6 1.135 0.943 0.3163 0.929 0.3108 0.953 0.2088 0.905

0.6222 0.865 0.3525 0.886 0.4856 0.912 0.72 0.894
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the dependence structure is important in the competing risks model. For a given sample 
size, the performance of the MLEs declined with increasing dependence, which suggests 
that greater dependence will require a larger sample size to achieve a particular level of 
precision in estimation.

Table 3  n = 50, 1− α = 0.95

m θ0 θ0 θ1 θ2 λ

MSEs ACI MSEs ACI MSEs ACI MSEs ACI

RABias Boot-P RABias Boot-P RABias Boot-P RABias Boot-P

10 0 0.1443 0.916 0.5431 0.931 0.6052 0.909 0.25 0.933

0.897 0.588 0.865 0.7577 0.842 0.794 0.934

0.3 0.0577 0.914 0.4382 0.948 0.535 0.914 0.2467 0.941

0.5855 0.897 0.5133 0.878 0.7088 0.845 0.7933 0.928

0.8 0.2409 0.929 0.311 0.961 0.4439 0.968 0.2375 0.948

0.5498 0.935 0.4103 0.920 0.627 0.896 0.7867 0.956

1.2 0.6486 0.968 0.2746 0.967 0.3905 0.955 0.2349 0.967

0.6286 0.963 0.3673 0.936 0.5754 0.911 0.7782 0.967

1.6 1.2801 0.941 0.2878 0.949 0.3568 0.947 0.2311 0.958

0.672 0.855 0.3549 0.864 0.5369 0.866 0.7719 0.936

15 0 0.1052 0.928 0.396 0.937 0.5194 0.934 0.2193 0.928

0.892 0.4954 0.899 0.6969 0.802 0.7281 0.927

0.3 0.051 0.933 0.2819 0.946 0.4332 0.929 0.2161 0.941

0.5615 0.921 0.4028 0.878 0.6385 0.863 0.7245 0.936

0.8 0.1705 0.967 0.1874 0.968 0.3368 0.964 0.2095 0.973

0.4524 0.959 0.298 0.936 0.5408 0.938 0.722 0.957

1.2 0.4865 0.972 0.1725 0.971 0.282 0.978 0.2068 0.968

0.5337 0.951 0.2746 0.941 0.4781 0.942 0.7157 0.949

1.6 1.0174 0.928 0.2367 0.944 0.2386 0.929 0.2048 0.927

0.5948 0.836 0.302 0.855 0.424 0.914 0.7125 0.934

Table 4  The simulated data

i 1 2 3 4 5 6 7 8 9 10

ti 0.0035 0.0181 0.0435 0.0813 0.0860 0.1286 0.1483 0.1484 0.1929 0.4449

αi 2 2 0 0 2 1 0 1 1 2

Table 5  MLEs and 95 % CIs of the parameters

Para. True value MLE ACI Boot-P CI

θ0 0.8 0.8934 (0.3777, 2.1645) (0.2811, 0.9764)

θ1 1.2 0.6627 (0.1987, 1.5241) (0.1728, 1.3569)

θ2 1 0.8136 (0.1167, 1.7438) (0.2718, 1.1114)

λ 0.6 0.6935 (0.1911, 2.9921) (0.4962, 0.7265)
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