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Background
We consider the system of nonlinear equations

where F : Rn → R
m is a continuously differentiable function. All practical algorithms 

for solving (1) are iterative. Newton’s method is the most widely used method in applica-
tions (see Traub 1964; Ortega and Rheinboldt 1970; Dennis and Schnabel 1993; Kelley 
2003; Petković et al. 2013a).

The linearization of Eq. (1) at an iteration point xk is

where s = x − xk and J (xk) is the Jacobian matrix of F(x) at xk. For notation purposes, let 
Fk = F(xk) and Jk = J (xk). If m = n and J (xk) is nonsingular, then the linear approxima-
tion (2) gives the Newton–Raphson iteration

In 1669, Newton first used the Newton iteration (2) to solve a cubic equation. In 1690 
Raphson first employed the formula (3) to solve a general cubic equations. Then Fourier 
(1890), Cauchy (1829), and Fine (1916) established the convergence theorem of Newton’s 
method for different cases. In 1948, Kantorovich (1948) established the convergence 

(1)F(x) = 0,

(2)F(xk)+ J (xk)s = 0,

(3)xk+1 = xk − J−1
k Fk .
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theorem referred to the Newton–Kantorovich theorem. This theorem is the main tool 
for proving the convergence of various Newton-type methods.

There are various Newton-Type methods for solving nonlinear equations. Dembo 
et al. (1982) proposed an inexact Newton method. This method approximately solves the 
linear equation (2). Another most efficient approach is approximating the Jacobian or 
inverse of the Jacobian in some way. In this way, the approximation of the Jacobian satis-
fies the secant equation

where Bk is an approximation for the Jacobian and sk−1 = xk − xk−1. For this kind of 
method, the secant equation (4) plays a vital role; therefore a wide variety of methods 
that satisfy the secant equation have been designed (Dennis and Schnabel 1993; Kelley 
2003). Qi and Sun (1993) extended Newton’s method for solving a nonlinear equation 
of several variables to a nonsmooth case by using the generalized Jacobian instead of 
the derivative. This extension includes the B-derivative version of Newton’s method as a 
special case. In order to improve the convergence order of Newton-type methods, many 
higher order approaches have been proposed in past years. In particular, there is much 
literature focused on the nonlinear scalar function. Petković et al. (2013b) provide a sur-
vey, many of which are presented in the book (Petković et al. 2013a). For the nonlinear 
vector function F(x) in (1), there are still a lot of higher order methods. For instance, 
Grau-Sánchez et al. (2011), Noor and Waseem (2009), Homeier (2004), and Frontini and 
Sormani (2004) have proposed a third order method using one function value, two Jaco-
bian matrices and two matrix inversions per iteration. In Darvishi and Barati (2007a), a 
third order method has been proposed with two function values, one Jacobian and one 
matrix inversion per iteration. Darvishi and Barati (2007b), and Sharma et  al. (2013) 
developed a fourth order method. In pursuit of a higher order algorithm, researchers 
have also proposed fifth and sixth order methods in Grau-Sánchez et al. (2011). In sum-
mary, these higher order methods need more function values, Jacobians or matrix inver-
sions per iteration.

In this paper, we are interested in a Newton-type method with high computational effi-
ciency for solving the system of nonlinear equations (1). Motivated by the approach in 
Sui et al. (2014), we provide a new rational model R : Rn → R

m. Although our approxi-
mation function is similar to the real valued function RALND studied in Sui et al. (2014), 
the proposed function is different from the RALND function. Based on this model, we 
linearize the nonlinear function F(x) and obtain a linear equation that is different from 
the first order Taylor polynomial. We then propose an improved Newton’s algorithm to 
solve nonlinear equations (1). In the new algorithm, in order to reflect more curvature 
information of nonlinear functions, the Jacobian matrix is updated by rank one matrix in 
each iteration. This method possesses high computational efficiency , and therefore does 
not increase calculation of function value, Jacobian or inverse Jacobian. Applying New-
ton’s method’s validation criteria, we prove that the algorithm is well-defined and the 
convergence rate is quadratic under some suitable conditions. The preliminary numeri-
cal experiment results and comparison are reported, showing the effectiveness of the 
algorithm.

(4)Bksk−1 = F(xk)− F(xk−1),
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This paper is organized as follows. We give a new rational approximation and 
improved Newton’s method in the next section. In section “Convergence analysis”, con-
verge analysis is discussed and some numerical experiment results are reported in sec-
tion “Numerical experiments”. The last section is a brief conclusion.

Rational approximation and improved Newton’s method
Based on the information of the last two points, Sui proposed a RALND function (Sui 
et al. 2014) r : Rn → R with linear numerator and denominator that is defined by

where ak , bk ∈ R
n are the undetermined coefficient vectors and xk ∈ R

n is the current 
point. Let

Under the following interpolation conditions

we obtain the RALND function

where xk ∈ R
n, xk−1 ∈ R

n are the current point and the preceding point. The RALND 
function has many good properties (Sui et al. 2014). For example, it is monotone with 
any direction and has more curvature information of the nonlinear function F(x) than 
the linear approximation model. These properties may be able to reduce the number of 
iterations when using an iteration method that was constructed by RALND to solve (1). 
Although the RALND function possesses some nice properties, the function r : Rn → R 
defined by (6) is a real valued function with each function having a different vector bk. 
This make it more complex for nonlinear equations.

Next, we employ the RALND function with the same horizon vector bk for all nonlin-
ear functions Fi(x), i = 1, . . . , n at xk, and approximate the nonlinear equations (1) by

When bk = 0, the rational function (7) reduces to the linear expansion (2). There is a 
well-known analogy between the rational function (7) and RALND (6), but the function 
(7) is different from (6). For the RALND function (6), each function Fi(x), i = 1, . . . ,m 
has a different vector b(k)i , i = 1, . . . ,m at current iteration point xk, but the new approx-
imation function (7) has the same vector bk for all functions Fi(x), i = 1, . . . ,m at the 
same iteration point xk. This is the main difference between the two functions (7) and 
(6). Because of this difference, the function (7) is more suitable for nonlinear equations.

Similar to the linearization approach in (2), from approximate equations (7) we can 
obtain a new iterative formula

(5)r(x) = a0 +
aTk (x − xk)

1+ bTk (x − xk)
,

c0 = ∇Tf (xk−1)(xk−1 − xk), c1 = ∇Tf (xk)(xk−1 − xk).

r(xk) = f (xk),∇r(xk) = ∇f (xk), ∇r(xk−1) = ∇f (xk−1),

(6)r(x) = f (xk)+
∇Tf (xk)(x − xk)

1+ 1
c0

(
√

c0
c1
∇Tf (xk)− ∇Tf (xk−1)

)

(x − xk)
,

(7)F(xk + s) ≈ R(xk + s) = Fk +
Jk s

1+ bTk s
= 0.
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If the matrix Jk + Fkb
T
k  is invertible, it follows that

when bk = 0, the iterative scheme (8) and (9) reduce to the linear equations (2) and 
Newton–Raphson iteration (3), respectively.

Moreover, Davidon proposed the conic model (Davidon 1980; Sorensen 1980) and 
many researchers have studied the conic model and collinear scaling algorithms (Ari-
yawansa 1990; Ariyawansa and Lau 1992; Deng and Li 1995; Gourgeon and Nocedal 
1985). Near the current iteration point xk, the conic function c(x) is defined by

In the conic model (10), the horizon vector bk is a parameter. This parameter gives 
the conic model more freedom. Many researchers have given more attention to bk. As 
a result, some methods of choosing the horizon vector have been developed (Davidon 
1980; Deng and Li 1995; Sheng 1995). Interestingly, the function (7) is the first two terms 
of conic model (10). In what follows we use these methods to determine the vector bk in 
(7).

After a step from xk−1 to xk, we update bk−1 to bk by requiring the following extra 
interpolation condition

This causes the search direction in (9) to depend on the Jacobian of the current point 
and the function values of the preceding point as well as the current point. In Newton’s 
method the search direction is determined by the Jacobian and function value of the 
current point. Compared with Newton’s method, more flexibility and more accurate 
approximation of the nonlinear function may be expected for the rational model (7).

From (11) we have

where sk−1 = xk − xk−1. Let

Considering (12), we get

thus

(8)(Jk + Fkb
T
k )sk = −Fk .

(9)xk+1 = xk − (Jk + Fkb
T
k )

−1Fk .

(10)f (x) ≈ ck(x) = f (xk)+
∇f (xk)

Ts

1+ bTk s
+

sTBks

2
(

1+ bTk s
)2

.

(11)R(xk−1) = F(xk−1).

(12)Fk−1 = Fk −
Jk sk−1

1− bTk sk−1

,

(13)βk = 1− bTk sk−1,

(14)yk−1 = Fk − Fk−1.

βkyk−1 = Jk sk−1,

(15)
βk =

yTk−1Jk sk−1

yTk−1yk−1

.
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Note that

for any ak ∈ R
n with aTk sk−1 �= 0, will satisfy (13). Considering the special choice 

ak = sk−1, we have

Analogously, we can consider another method (Sheng 1995) for constructing horizon 
vectors. Using (17) and (15), we see that

(16)bk =
(1− βk)ak

aTk sk−1

(17)bk =
(1− βk)sk−1

sTk−1sk−1

=
yTk−1(yk−1 − Jk sk−1)s

T
k−1

(

yTk−1yk−1

)(

sTk−1sk−1

) .

(18)Fkb
T
k =

yTk−1(yk−1 − Jk sk−1)

yTk−1yk−1

Fks
T
k−1

sTk−1sk−1

.

Next, we give the improved Newton’s method for system of nonlinear equations. 

There are two differences between Algorithm 1 and Newton’s method. First, INM uses 
the rank one technique to revise the Jacobian in every iteration. Second, INM utilises the 
function values of the previous iteration point.

For the one dimensional nonlinear equation f (x) = 0, where f : R → R is continu-
ously differentiable on D ⊂ R, the nonlinear function of f (x) is approximated by

Then, we have

We also use the interpolation method to determined the parameter bk by

f (x) ≈ f (xk)+
f ′(xk)(x − xk)

1+ bk(x − xk)
.

(19)xk+1 = xk −
f (xk)

f ′(xk)+ f (xk)bk
.

(20)bk =
f (xk)− f (xk−1)− f ′(xk)(xk − xk−1)

(f (xk)− f (xk−1))(xk − xk−1)
.
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Then (20) together with (19) gives the following iteration scheme

This is a new modified Newton formula.

Convergence analysis
In this section, we prove the local quadratic convergence of Algorithm 1 for system of 
nonlinear equations. The techniques of the proof are similar to Newton’s method for 
nonlinear equations. In the rest of this paper, we make the following assumptions:

Assumption 1  (i)	 J (x∗) is nonsingular and there exist a constant µ > 0, such that 
�J (x∗)� ≤ µ.

(ii) 	 The function F is continuously differentiable in the open convex set D ⊂ R
n, and 

there exists a constant γ > 0, such that for all x, y ∈ D

For proving the convergence theorem we need the following Lemmas.

Lemma 1  Let F : Rn → R
m satisfy the (ii) of Assumption 1. Then for any x + s ∈ D,

Proof  Please refer to Lemma 4.1.12 in Dennis and Schnabel (1993).� �

Lemma 2  Let F, J satisfy the conditions of Lemma 1, and assume that J (x∗) exists. Then 
there exist ε > 0 and 0 < m < M, such that

for all v,u ∈ D for which max{�v − x∗�, �u− x∗�} ≤ ε.

Proof  Please refer to Lemma 4.1.16 in Dennis and Schnabel (1993).� �

With the help of the preceding two lemmas we can prove the following Theorem of 
convergence. We denote the epsilon neighborhood of x∗ by N (x∗, ε), i.e.,

Theorem 1  Let F : Rn → R
n satisfy Assumption 1 and suppose that there exist x∗ ∈ R

n , 
m > 0 and r > 0, such that N (x∗, r) ⊂ D, F(x∗) = 0. Then there exist ε > 0 such that for 
all x0 ∈ N (x∗, ε) the sequence {x2, x3, · · · } generated by Algorithm 1 is well defined, con-
verges to x∗, and obeys

(21)xk+1 = xk −
f (xk)

f ′(xk )f (xk−1)

f (xk−1)−f (xk )
+

f (xk )
xk−xk−1

.

�J (x)− J (y)� ≤ γ �x − y�.

(22)�F(x + s)− F(x)− J (x)s� ≤
γ

2
�s�2.

(23)m�v − u� ≤ �F(v)− F(u)� ≤ M�v − u�,

N (x∗, ε) = {x, �x − x∗� ≤ ε, ∀x ∈ R}.

(24)�xk+1 − x∗� ≤
µγ (m+ γ )

m
�xk − x∗�

2, k = 1, 2, . . .
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Proof  Since b0 = 0, we obtain the following inequality from the proof of Newton’s 
method (Dennis and Schnabel 1993),

Let

By a routine computation,

Considering the second term of the above expression, it follows from (22) and (23) that

Then,

Therefore, by the perturbation theorem, J1 + F1b
T
1  is nonsingular and

Thus x2 is well defined. From our method, we get

(25)�x1 − x∗� ≤
1

2
�x0 − x∗�.

ε = min

{

r,
2m

µγ (2m+ γ )

}

.

∥

∥

∥
J (x∗)

−1
[(

J1 + F1b
T
1

)

− J (x∗)
]∥

∥

∥
≤ �J (x∗)

−1�

(

�J1 − J (x∗)� +
∥

∥

∥
F1b

T
1

∥

∥

∥

)

≤ µ

(

�J1 − J (x∗)� +
∥

∥

∥
F1b

T
1

∥

∥

∥

)

≤ µ

(

γ �x1 − x∗� +
∥

∥

∥
F1b

T
1

∥

∥

∥

)

.

∥

∥

∥
F1b

T
1

∥

∥

∥
= �F1��b1� ≤ �F1�

∥

∥

∥

∥

∥

yT0 (F1 − F0 − J1s0)

yT0 y0

∥

∥

∥

∥

∥

1

�s0�

≤ �F1�
�(F1 − F0 − J1s0)�

�y0��s0�
≤ �F1�

γ �s0�

2�y0�

≤ �F1�
γ

2m
=

γ

2m
�F1 − F∗�

≤
γ 2

2m
�x1 − x∗�.

(26)

∥

∥

∥
J (x∗)

−1
[(

J1 + F1b
T
1

)

− J (x∗)
]∥

∥

∥
≤ µγ

(

1+
γ

2m

)

�x1 − x∗�

≤
µγ

2

(

1+
γ

2m

)

�x0 − x∗�

≤
µγ

2

(

1+
γ

2m

)

ε ≤
1

2
.

(27)

∥

∥

∥

∥

(

J1 + F1b
T
1

)−1
∥

∥

∥

∥

=

∥

∥J (x∗)
−1

∥

∥

1−
∥

∥J (x∗)−1
[(

J1 + F1b
T
1

)

− J∗)
]
∥

∥

≤ 2�J (x∗)
−1�

≤ 2µ.

x2 − x∗ = x1 − x∗ −
(

J1 + F1b
T
1

)−1
F1

= x1 − x∗ −
(

J1 + F1b
T
1

)−1
(F1 − F∗)

=

(

J1 + F1b
T
1

)−1[

F∗ − F1 −
(

J1 + F1b
T
1

)

(x∗ − x1)
]

.
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Furthermore,

This proves (24). Taking (25) into consideration leads to

Then x2 ∈ N (x∗, r) and completes the case k = 1. The proof of the induction step pro-
ceeds identically.� �

Numerical experiments
This section is devoted to the numerical results. First, we show the numerical compari-
son between Algorithm  1, Newton’s method and a third order Newton’s method for 
finding a root of real function. This provides the numerical evidence that Algorithm 1 
is better then Newton’s method. Secondly, we demonstrate the performance of Algo-
rithm 1 for solving system of nonlinear equations. Algorithm 1 has been applied to some 
popular test problems and compared with Newton’s method and a third order method. 
All codes were written in Mathematica10.0 and run on a PC with an Intel i7 3.6GHz 
CPU processor, 4GB memory and 64-bit Windows 7 operating system.

Finding roots of real function

In this subsection we demonstrate the performance of our improved Newton’s method 
for finding the root of real functions f : R → R. In other words, we show the efficiency 
of the new iteration formula (21) in solving a root of the nonlinear equation. Specifically, 
we chose ten particular nonlinear equations from the literature (Thukral 2016) which are 
listed in Table 1.

In our tests, the stopping criteria used are �F(xk)� < 10−6 or the number of itera-
tions exceeds 100. We compute these 10 problems by using the iteration formula (21), 
Newton’s Method and a third order Newton’s Method introduced in Darvishi and Barati 
(2007a). In our experiments, the initial point for each problem is randomly generated 
ten times in the range of the initial point, and the average numerical results are listed in 
Table 2, where 

INM	� denotes the iteration formula (21),

�x2 − x∗� ≤

∥

∥

∥

∥

(

J1 + F1b
T
1

)−1
∥

∥

∥

∥

∥

∥

∥
F∗ − F1 −

(

J1 + F1b
T
1

)

(x∗ − x1)
∥

∥

∥

≤ 2µ
∥

∥

∥
F∗ − F1 −

(

J1 + F1b
T
1

)

(x∗ − x1)
∥

∥

∥

≤ 2µ
(γ

2
�(x∗ − x1)�

2 +

∥

∥

∥
F1b

T
1 (x∗ − x1)

∥

∥

∥

)

≤ 2µ

(

γ

2
�(x∗ − x1)�

2 +
γ 2

2m
�x∗ − x1�

2

)

=
µγ (m+ γ )

m
�x∗ − x1�

2.

�x2 − x∗� ≤
µγ (m+ γ )

4m
�x0 − x∗�

2

≤
µγ (m+ γ )

4m
ε�x0 − x∗�

<
1

2
�x0 − x∗�.
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NM	� denotes Newton’s method,
3NM	� denotes the third order Newton’s method (Darvishi and Barati 2007a),
It	� denotes the average number of iterations,
Re	� denotes the average value of |f (xk)| when the iteration stop,
Fa	� denotes the number of failures in solving equations.

From Table  2, in terms of the number of iterations, the efficiency of the improved 
Newton formula (21) is better than Newton’s method, but not as good as the third order 
method.

To compare the performance of the iteration formula (21), Newton’s method and the 
third order method (Darvishi and Barati 2007a), we consider the performance profile 
introduced in Dolan and More (2002) as a means. We assume that there are ns solvers 
and np test problems from the test set P which is chosen from Table 1. The initial point 
is selected randomly from the range of the initial point. We are interested in using the 
iteration number as a measure of performance for the iteration formula (21), NM and 
3NM. For each problem p and solver s, let

fp,s = iteration number required to solve problem p by solver s.

Table 1  Test equations and range of initial point

Equation Range of initial

f1(x) = exp(x) sin(x)+ ln(1+ x
2) = 0 x0 ∈ [−0.1, 1]

f2(x) = exp(x) sin(x)+ cos(x) ln(1+ x) = 0 x0 ∈ [−1, 1]

f3(x) = exp(sin(x))− x/5− 1 = 0 x0 ∈ [−0.5, 1]

f4(x) = (x + 1) exp(sin(x))− x
2 exp(cos(x)) = 0 x0 ∈ [−1.5, 1]

f5(x) = sin(x)+ cos(x)+ tan(x)− 1 = 0 x0 ∈ [−1, 1]

f6(x) = exp(−x)− cos(x) = 0 x0 ∈ [−1, 0.5]

f7(x) = ln(1+ x
2)+ exp(x2 − 3x) sin(x) = 0 x0 ∈ [−0.2, 1]

f8(x) = x
3 + ln(1+ x) = 0 x0 ∈ [−0.5, 1]

f9(x) = sin(x)− x/3 = 0 x0 ∈ [−0.5, 1]

f5(x) = (x − 10)6 − 106 = 0 x0 ∈ [−1, 1]

Table 2  Numerical experiment results of INM, NM and 3NM

Equation INM NM 3NM

It Re Fa It Re Fa It Re Fa

f1 3.3 9.1830E−8 0 4.5 7.6091E−8 0 3.2 1.1458E−7 0

f2 3.0 2.5350E−9 0 4.0 9.4571E−10 0 3.0 1.3982E−13 0

f3 2.8 1.5251E−8 0 3.1 1.7424E−7 0 2.3 1.9551E−7 0

f4 3.1 4.0420E−8 0 3.5 2.1129E−9 0 2.7 4.9111E−8 0

f5 3.0 1.1038E−8 0 3.6 5.9695E−9 0 2.6 4.9111E−8 0

f6 3.7 2.4752E−8 0 4.3 1.1354E−7 0 2.9 9.2102E−8 0

f7 3.3 1.400E−8 0 3.9 1.2565E−7 0 2.6 4.6376E−8 0

f8 3.2 1.3959E−7 0 3.7 1.2625E−9 0 2.6 2.2066E−9 0

f9 3.7 2.7669E−9 0 5.8 5.1190E−8 0 2.6 4.3207E−8 0

f10 3.2 5.4249E−9 0 4.3 1.2257E−7 0 2.9 1.3057E−7 0
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We employ the performance ratio

where S is the three solvers set. We assume that a parameter rM ≥ rp,s is chosen for all 
p, s, and rp,s = rM if and only if solver s does not solve problem p. In order to obtain an 
overall assessment for each solver, we define

which is called the performance profile of the number of iterations for solver s. Then, 
ρs(τ ) is the probability for solver s ∈ S that a performance ratio fp,s is within a factor 
τ ∈ R of the best possible ratio.

Figure 1 shows the performance profile of iteration numbers in the range of τ ∈ [1, 2] 
for three solvers on 200 test problem which were selected from Table  1 with random 
initial points. From this figure, we see that the numerical performance of solver INM is 
between 3NM and NM. In summary, from the viewpoint of iteration numbers, we con-
clude that

where “>” means “better performance”.

Solving system of nonlinear equations

In this subsection we show the numerical efficiency of Algorithm 1 for solving system of 
nonlinear equations. Listed in Table 3 are the 12 multivariable test problems that were 
chosen from the test problems set (Dennis and Schnabel 1993; Moré et al. 1981; Andrei 
2008). The starting points for each problem are the standard starting points. Illustrative 
examples further demonstrate the superiority of our proposed algorithm. The numerical 
results are listed in Table 4, where 

INM	� denotes Algorithm 1,
NM	� denotes Newton’s method,
3NM	� denotes the third order Newton method (Darvishi and Barati 2007a),
Dim	� denotes the size of problem,

rp,s :=
fp,s

min{fp,s : s ∈ S}
,

ρs(τ ) :=
1

np
size{p ∈ P : rp,s ≤ τ },

3NM > INM > NM,

Fig. 1  Performance profile of iteration numbers of INM, NM and 3NM
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It	� denotes the number of iterations,
Ti	� denotes the value of the CPU time in seconds,
–	� denotes that the number of iterations exceeded 100.

It is observed from Table 4 that in terms of the number of iterations and computation 
time, the efficiency of Algorithm 1 is better than Newton’s method for most of the test-
ing problems, and the efficiency of Algorithm 1 is close to the third order convergence 
method 3NM (Darvishi and Barati 2007a).

The above experiments were conducted on the standard initial point. We then also 
need to test the three methods for test problems (Table 3) at random starting points. In 
particular, starting points for each problem are randomly chosen 10 times from a box 
surrounding the standard starting points. In order to obtain an overall assessment for 
the three methods, we are also interested in using the number of iterations as a perfor-
mance measure for Algorithm 1, Newton’s method and the third order method (Darvi-
shi and Barati 2007a). The performance plot based on iteration number is presented 

Table 3  Test problems

Function Name Function Name

F0 Rosenbrock F1 Powell badly scaled

F2 Freudenstein and Roth F3 Powell singular

F4 Trigonometric F5 Trigonometric exponential

F6 Trigexp F7 Broyden tridiagonal

F8 Extend Power singular F9 Discrete boundary

F10 Discrete integral equation F11 Broyden banded

Table 4  Numerical experiment results of INM, NM and 3NM

Pr Dim INM NM 3NM Pr Dim INM NM 3NM

It Ti It Ti It Ti It Ti It Ti It Ti

F0 2 2 0.1E−8 2 0.1E−8 1 0.1E−8 F1 2 7 0.001 11 0.001 8 0.1E−8

F2 2 27 0.005 42 0.005 – – F3 2 9 0.001 11 0.001 8 0.001

F4 10 6 0.008 7 0.007 – – F5 10 8 0.007 10 0.007 19 0.021

F4 50 5 0.349 9 0.641 – – F5 50 8 0.121 10 0.187 19 2.589

F4 100 5 2.193 9 3.811 – – F5 100 8 0.858 10 0.998 19 3.661

F4 500 6 0.008 7 0.007 – – F5 500 8 61.71 10 75.82 19 141.9

F6 10 5 0.015 5 0.001 4 0.015 F7 10 6 0.1E−8 7 0.1E−8 – –

F6 50 5 0.140 5 0.125 4 0.125 F7 50 8 0.078 10 0.094 – –

F6 100 5 0.702 5 0.764 4 0.733 F7 100 9 0.533 11 0.633 – –

F6 500 5 37.39 5 35.820 4 32.00 F7 500 11 59.18 14 75.53 – –

F8 8 11 0.003 13 0.003 9 0.004 F9 10 2 0.002 2 0.002 2 0.002

F8 60 11 0.212 13 0.239 10 0.209 F9 50 2 0.020 2 0.020 1 0.015

F8 100 11 0.854 13 0.953 10 0.837 F9 100 2 0.140 2 0.136 1 0.082

F8 500 12 71.61 14 83.23 10 62.05 F9 500 1 6.515 1 6.038 1 5.966

F10 10 2 0.004 2 0.004 2 0.005 F11 10 5 0.005 5 0.004 4 0.005

F10 50 2 0.291 2 0.278 2 0.005 F11 50 5 0.114 5 0.123 4 0.143

F10 100 2 2.183 3 3.216 2 3.087 F11 100 5 0.567 5 0.623 4 0.630

F10 500 2 284.2 2 355.3 2 352.8 F11 500 5 33.84 5 32.76 4 29.70
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in Fig.  2. From this figure, we can see that Algorithm  1 has the best performance for 
τ > 1.3. Again, from the viewpoint of large test problems with a perturbed initial point, 
we conclude that Algorithm 1 is better than Newton’s method or the third order method 
(Darvishi and Barati 2007a).

Conclusion
In this paper, we present an improved Newton’s method for system of nonlinear equa-
tions by re-use of the previous iteration information. In the novel method, the function 
value of the previous iteration point was utilized for correcting the Newton direction. 
The proposed new method also has the quadratic convergence property. From the 
numerical results obtained for a set of standard test problems, it appears that the rank 
one revised implementation scheme described, where the Jacobian matrix is updated 
by a rank one matrix, may allow considerable computational savings for iteration num-
ber and computing time. Moreover, two kinds of numerical comparisons are presented 
in this paper. The first one is the numerical comparison between the new Newton for-
mula, Newton’s method and a third order Newton method for finding roots of scalar 
functions. From this comparison we see that the proposed algorithm is efficient for one 
dimensional real function. The second comparison is for multivariate vector equations. 
From this comparison we see that the numerical performance of the proposed algorithm 
in the case of multidimensional is better than the one-dimensional case. This is a very 
interesting discovery which may be helpful in other contexts.
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