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Background
Portugal is a fire-prone country with one of the highest fire incidences in southern 
Europe (Ayanz et al. 2013). Landscape-level flammability was aggravated in the last four 
decades by the socio-economic and demographic trends that led to rural abandonment 
and consequent biomass accumulation (Costa et al. 2010; Marques et al. 2011; Fernandes 
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et al. 2014). A growing number of studies using regional climate modelling have iden-
tified an increasing fire risk for the entire Iberia (Bedia et al. 2013; Sousa et al. 2015), 
particularly in Portugal (Carvalho et al. 2007; Pereira et al. 2013). According to future 
climatic scenarios, Portugal is expected to experience increasing temperatures in spring 
and summer and more frequent heat waves, likely leading to longer and more severe fire 
seasons (Ramos et al. 2011).

Catastrophic wildfires occurring under extreme weather conditions have already chal-
lenged the Portuguese fire suppression capabilities. During the 2003 fire season, extreme 
weather conditions were recorded with a devastating sequence of large wildfires result-
ing in around 450,000 ha of total burned area, approximately twice the previous highest 
record (220,000 ha in 1998) (Trigo et al. 2006). In 2005, as a consequence of one of the 
longest and most severe droughts of the last century, a total of 340,000 ha burned, mak-
ing it the second worst fire year on record.

Spatially explicit fire spread models are an effective tool to study interactions between 
the main drivers of wildfire spread and behaviour—meteorological conditions, topog-
raphy and vegetation (Keane et  al. 2004), and have been widely used to simulate fire 
growth on the landscape (e.g. Keane et al. 2001; Stratton 2004; Loureiro et al. 2006; Arca 
et  al. 2007; Cochrane et  al. 2012). Although commonly used to study past fire events 
(hind-cast mode) they can also be used to predict fire spread during large wildfire events 
(forecast mode) in an operational setting. The predictions may assist in a better resource 
allocation, construction of fire control lines, and improved effectiveness of the initial 
attack (Calkin et al. 2011).

The operational use of fire spread models has largely followed a deterministic approach 
(Cruz and Alexander 2013), which does not account for predictions uncertainty. How-
ever, fire spread models are subject to assumptions and limitations that inherently pro-
duce compounding errors during simulations (Alexander and Cruz 2013; Cencerrado 
et al. 2014; Hilton et al. 2015). Furthermore, given our limited control over the quality 
of the model input data (Alexander and Cruz 2013; Bachmann and Allgöwer 2002), par-
ticularly in an operational setting, exact predictions of fire spread are difficult to achieve.

The uncertainty associated with model input variables and parameters needs to be 
acknowledged and tied to wildfire planning and decision-making (Thompson and Calkin 
2011; Pacheco et al. 2015). Several works have integrated the uncertainty in fire growth 
modelling, using probabilistic approaches (Anderson et  al. 2005, 2007; Carmel et  al. 
2009; Bar Massada et al. 2009; Cruz 2010; Calkin et al. 2011; Finney et al. 2011a, b; Hil-
ton et al. 2015).

In alternative to fire spread modelling, some authors have also explored the poten-
tial of satellite active fire data to monitor large wildfire events (Englefield et  al. 2004; 
Smith and Wooster 2005; Loboda and Csiszar 2007; Parks 2014; Veraverbeke et al. 2014). 
For example, data from the MODerate Resolution Imaging Spectroradiometer sensor 
(MODIS, Giglio et  al. 2003) have been integrated in operational systems to assist fire 
managers (Frost and Annegarn 2007; Schroeder et al. 2008; Davies et al. 2009; Ressl et al. 
2009).

Coen and Schroeder (2013) used satellite thermal data to initialize and evaluate cou-
pled weather-wildfire growth model simulations, and obtained improved simulation 
results by using updated weather and fire location data. Anderson et  al. (2007, 2009) 
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also used active fires detected by MODIS and NOAA/AVHRR (National Oceanic and 
Atmospheric Administration Advanced Very High Resolution Radiometer) to build daily 
ignition grids.

Satellite active fire data and fire spread models provide different types of information 
regarding the spatial and temporal distribution of large wildfires. Our main goals are (1) 
to evaluate the potential of a probabilistic approach to integrate the uncertainty associ-
ated with some model inputs in fire spread simulations, using a spatially-explicit land-
scape fire spread model and (2) explore the potential of combining fire spread modelling 
with satellite active fires from consecutive MODIS and VIIRS (Visible Infrared Imaging 
Radiometer Suite, Justice et al. 2013) overpasses. By combining both tools we expect to 
attenuate some of the simulations errors, since the location of the fire front is updated at 
each overpass.

The feasibility of the proposed approach to forecast fire spread is examined based on 
the analysis of a well-documented large wildfire that occurred in southern Portugal in 
2012 (Tavira wildfire, hereafter). We propose to (1) assess the probabilistic predictions of 
fire spread during the Tavira wildfire; (2) assess the combination of fire spread modelling 
and satellite active fire data; and (3) assess the decision-support potential of probabilistic 
fire spread to improve fire suppression in an operational setting, identifying if it could 
have been helpful to fire suppression and pre-suppression activities.

Methods
Case study: background and description

The Tavira wildfire occurred between the 18th and 21st of July 2012 (ANPC 2012), in the 
Tavira and São Brás de Alportel municipalities, located in Algarve, southern Portugal 
(Fig. 1). It burned approximately 24,800 ha, mainly through shrublands (approximately 
64 % of the landscape fire affected area; Additional file 1: Figure S1).    

The fire spread through heterogeneous terrain, with prevailing steep slopes (>20  %) 
and higher altitude in the north region of the Tavira municipality. Less steep terrain 
(0–20  %) and lower altitudes are found at the southeast area of Tavira and southwest 
area of the São Brás de Alportel municipalities, with plains at several locations (Viegas 
et al. 2012) (Additional file 1: Figure S2). The climate is Mediterranean, with the annual 
average temperature ranging from 10 to 25 °C, and average maximum temperature val-
ues ranging from 22 °C to more than 30 °C in August, with maximum absolute tempera-
tures around 39 °C. During summer, relative humidity registers mean values below 65 % 
(ANPC 2012).

It should be stressed that in 2012 climatic conditions observed in Iberia were signifi-
cantly different from the average, having experienced an extreme drought (Trigo et al. 
2013). In particular, precipitation in Tavira was 45 % below the normal record and the 
entire study area was under extreme drought condition, with a soil water content value 
below 10 % at the time of the fire (Viegas et al. 2012). In addition, the years of 2010 and 
2011 experienced above average precipitation, thus favouring vegetation growth and fuel 
build up. Fire danger as per the Canadian Fire Weather Index (FWI) System was rated 
Extreme with FWI = 56.7 during the most active fire spread period (Viegas et al. 2012).

The Tavira wildfire was first reported on July 18 (at ≈13 h UTC), contained on July 21 
(at ≈17 h UTC) and extinguished on July 27. Two important stages for the wildfire event 
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analysis were identified in the reports and will be briefly described (ANPC 2012, Viegas 
et al. 2012).

First stage: initial development, from 13 h July 18–17 h July 19 (approx. 28 h)

The fire burned approximately 5000  ha (about 20  % of total burned area) during this 
stage, under favourable conditions for fire spread. Fuel moisture was low, allowing for 
ember projection and ignition up to hundreds of meters, resulting in multiple spot fires. 
Wind direction was highly variable, causing frequent shifts in the direction of maximum 
spread (making the initial attack difficult), which was mainly to south/southeast until it 
reached the Leiteijo stream (Fig. 5b; section “Probabilistic fire spread simulations: frame-
work and assessment”), where it increased speed under the influence of topography. 

Fig. 1  Location of Portugal in Europe and location of the Tavira wildfire in Portugal
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Around 16:30UTC on July 19, the fire started spreading through steep slopes along the 
Odeleite Stream (Fig. 5b; section “Probabilistic fire spread simulations: framework and 
assessment”). Fire spread fast until 17 h July 19 with few opportunities for direct attack 
(operations were mainly focused on the protection of lives and properties) and fire sup-
pression was hampered by the unfavourable steep, rugged terrain. At this stage, the fire 
burned approximately 5000 ha in 28 h (≈180 ha/h).

Second stage: conflagration with very fast spread towards south, July 19 from 17 h to 24 h 

(approx. 7 h)

The fire reached the Odeleite Stream and turned into a major conflagration, making its 
suppression extremely difficult. Several factors led to this loss of control. Upon reaching 
the Odeleite Stream the fire increased in intensity when its spread became orographi-
cally channelled. Moreover, an increase in wind speed led to fast and intense fire growth 
towards south through areas with high fuel loading, and with a 10 km fire front split into 
two advanced sections heading west and east to the São Brás de Alportel (Fig. 5b, loca-
tion 12; section “Probabilistic fire spread simulations: framework and assessment”) and 
the Tavira (Fig. 5b, location 16; section “Probabilistic fire spread simulations: framework 
and assessment”) municipalities, respectively. Spotting occurred up to two kilometres 
ahead of the fire front. Fire spread between this stage and the southern limit of the fire 
perimeter (ICNF 2012) in approximately 7 h (Fig. 5b; section “Probabilistic fire spread 
simulations: framework and assessment”). At this stage the fire burned approximately 
20,000 ha in 7 h (≈2860 ha/h), 15 times faster than the previous period.

Fire spread model and input data

FARSITE (Fire Area Simulator, Finney 2004) is a two-dimensional deterministic fire 
growth and behaviour model, developed by the USDA Forest Service, which integrates a 
surface fire spread model (Rothermel 1972) with models for crown fire transition (Wag-
ner 1977) and crown fire spread (Rothermel 1991). The spatial growth of fire perimeters 
is based on Huygens’ Principle of wave propagation (Finney 2004).

Spatial inputs required for modelling an individual fire are topography, fuel models, 
canopy cover, stand height, canopy base height and canopy bulk density, wind speed 
and direction (hourly sampling), and ignition location. Additionally, FARSITE requires 
data streams of daily weather observations of minimum and maximum temperature, 
minimum and maximum relative humidity, precipitation and cloud cover at a specified 
elevation, and initial live and dead fuel moisture contents (Fig. 2, section “Uncertainty 
assessment and propagation”).

Elevation was obtained from the Digital Elevation Model provided by the Shuttle 
Radar Topography Mission, at 90 m spatial resolution (Farr et al. 2007). The dataset was 
also used to derive the slope and aspect variables. Fuel maps were sourced from the Por-
tuguese municipalities affected by the wildfire, adopting the Northern Forest Fire Labo-
ratory (NFFL) 13 standard fire behaviour fuel models (Anderson 1982). Canopy cover 
(%) was derived from the MODIS Vegetation Continuous Fields Yearly L3 Global 250 m 
(MOD44B) tree cover dataset (DiMiceli et al. 2011). Stand height, canopy base height 
and canopy bulk density data were acquired from the Portuguese National Forest Inven-
tory (2005–2006) (DGRF 2006) (Additional file 1: Table S1).
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Wind and the other meteorological variables were derived from a high, vertical 
and horizontal, resolution regional climate simulation, performed with the Weather 
Research and Forecast model, version 3.1.1 (WRF3.1.1, Skamarock et al. 2008). In this 
simulation the ERA-Interim reanalysis (Dee et  al. 2011) is dynamically downscaled 
for the Iberian Peninsula, at 9 km resolution, over the period 1989–2013 (Soares et al. 
2012). The output sampling is hourly for all variables, and the simulation quality was 
already extensively evaluated for temperature (Soares et al. 2012), precipitation (Soares 
et al. 2012; Cardoso et al. 2013), wind (Soares et al. 2014) and solar radiation (Magar-
reiro et  al. 2015). The weather data used in this study has the same resolution as the 
weather forecasts produced by IPMA (Portuguese Sea and Atmosphere Institute) using 
the Aladin model (9 km horizontal resolution with a 72 h forecast range, Yessad 2011), 
and provided to the National Authority for Civil Protection (ANPC) during fire opera-
tional settings.

WindNinja (version 2.1.3, Forthofer 2007) was used to spatially model the prevail-
ing hourly wind inputs, given the interaction with topography (gridded input). Tem-
perature, relative humidity and precipitation were summarized on a daily basis (data 
stream input), given the time of maximum and minimum temperature. Cloud cover was 
assumed to be zero for the entire simulation period (see Table 1 for a summary of the 
datasets used to derive the model input data).

Fig. 2  Diagram relating modelling stages, input variables, model settings and simulation results
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A standard fuel moisture scenario (Scott and Burgan 2005) was used as reference for 
live and dead fuel moisture content values. Dead 1-, 10- and 100-h fuel moisture con-
tent values were set to 6, 7 and 8 %, respectively. Live herbaceous and woody fuel mois-
ture content values were set to 60 and 90 %, respectively (scenario D2L2—low moisture 
content).

Since a large number of simulations were performed, FARSITE 4 command line ver-
sion was used. Landscape spatial resolution, perimeter and distance resolution, and 

Table 1  Tavira wildfire development and behaviour description based on reported infor-
mation

Ignition point(s) and time-steps used in the simulations framework and assessment. For symbols see Fig. 5

Ignition point(s) Time steps Wildfire development Additional remarks

18 13 h (t0)
٭
19 03 h (t1)
+
19 14 h (t2)
▲

18 23 h
×

Stage 1 (≈28 h): wind directions highly variable, 
causing the fire to constantly shift its head-fire 
section, growing mainly to south/south-east 
until it reached Leiteijo stream, increasing its 
speed. Day 18 at ≈15 h the fire reached loca-
tion 1. Day 18 at ≈23 h the fire had 4 active 
fronts, two fronts standing out—one heading 
east towards location 2, and the other heading 
south towards locations 3 and 4

Two fire occurrences in a 
contiguous municipal-
ity, day 19 ≈13 h and 
14 h were reported. All 
areal resources that were 
slowing fire progression 
towards south were 
displaced to contain 
these fires

19 17 h
╍

Stage 2 (≈7 h): fire reached Odeleite Stream and 
turned into a major conflagration. Wind speed 
increased and led to a fast and intense growth 
towards south with a 10 km fire front and two 
advanced sections, one heading west towards 
locations 5 and 6 and the other heading east to 
location 7. Around 18h30 m the fire was close 
to location 7. In approximately 3-5 h the fire 
burned an area greater than the previously con-
sumed in 28 h, traveling a distance of ≈6 km in 
the west part and 7.5 km in the southeast part. 
The fire reached its extremities in approximately 
7 h

Fire reaches Odeleite 
Stream

19 20 h
━

Fire reaches the area 
burned in 2009

19 22 h
△
19 24 h
┅

Fire reaches its south limit

20 02 h (t3)
●

20 11 h
+
20 13 h
○
20 22 h
□

Day 20 at ≈2 h the fire was reported at location 
8, 15 km distance from the beginning of stage 
2 (2 km/h). At ≈2 h 30, the fire front from the 
west side was heading in direction of location 
9. This fire front was being contained with bull-
dozers, areal and terrestrial resources. Fire was 
globally controlled in the other fronts. More 
resources became available from the other fire 
occurrence. By the end of the day, the highest 
fire activity was observed at locations 10 and 
11, with the remaining sectors consolidated 
or with favourable evolution. Meteorological 
conditions became less severe during the night 
(higher relative humidity and lower tempera-
ture)

Day 20 at ≈6 h the fire in 
the contiguous munici-
pality was controlled

Day 21 at ≈6 h, bulldozers started working 
between locations 12 and 13, and locations 14 
and 13 (fire control line with 14 km length and 
20 m wide, in 48 h) preventing fire spreading 
to location 15, increasing its severity to great 
extent

Wind direction change fore-
cast to north-west, with 
possible spread towards 
location 15
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temporal resolution were set to 100 m cell-size and 1 h time step, respectively. Fire sup-
pression activities and spotting were not simulated. Crowning fires and no-wind no-
slope rate of spread for the spread rate of backing fires were enabled during simulations.

Satellite active fire data

Satellite data provides relevant information regarding the spatial and temporal fire 
spread dynamics of large wildfire events (Veraverbeke et al. 2014; Parks 2014). Active fire 
data from two satellite sensors were used to re-initialize fire spread simulations, using 
active fires as ignition points (Anderson et al. 2009) to update the fire location at each 
satellite overpass (Additional file 1: Table S1).

The MODIS active fire product (MCD14ML) detects fires in 1 km pixels that are burn-
ing at the time of overpass under relatively cloud-free conditions up to four times per day 
(Giglio et al. 2003). Day and night time overpasses from both satellites, Terra (≈10:30 h 
and ≈22:30 h UTC) and Aqua (≈14 h and ≈2 h UTC) are included in the MODIS active 
fire product. Each overpass has a different viewing geometry and thus a different pixel 
size (Wolfe et al. 1998). The active fire pixel size was defined based on the viewing zenith 
angle and on the azimuth of each MODIS overpass (Ichoku and Kaufman 2005).

The VIIRS Active Fires product has similar overpass times as MODIS Aqua, crossing 
the equator two times a day at 1:30 pm (ascending node) and at 1:30 AM (descending 
node), with improved spatial resolution (750  m) (Justice et  al. 2013). The VIIRS sen-
sor operates with a specific pixel aggregation scheme, with the along-scan growth of 
pixel size significantly reduced. In addition, VIIRS is expected to detect more fires than 
MODIS, given its spatial resolution (Csiszar et al. 2014). Both active fires products were 
used: (1) to verify data consistency; (2) have more detailed information of the spatial–
temporal distribution of fire growth.

Uncertainty assessment and propagation

The reliability of FARSITE simulations partly depends on the accuracy of input data 
(Finney and Ryan 1995; Alexander and Cruz 2013; Cruz and Alexander 2013; Duff 
et al. 2013; Cencerrado et  al. 2014). Usually, the only readily available input data with 
acceptable accuracy are the topographic variables slope, aspect, and elevation. How-
ever, the required weather data and additional parameters, such as the rate of spread 
(ROS) adjustment factors, are often difficult to obtain, define or validate, especially in 
a moment of emergency (Cruz and Alexander 2013; Cencerrado et al. 2014). The use of 
fire spread models, particularly as a decision-support tool, should quantify the uncer-
tainty of model predictions (Mowrer 2000; Thompson and Calkin 2011). Mowrer (2000) 
and Bachmann and Allgöwer (2002) have propagated uncertainty in fire spread model-
ling through the contributions of the input variables and parameters’ uncertainties.

Several variables affect the variability of fire spread modelling outputs, such as wind 
speed (Anderson et al. 2005, 2007; Cruz 2010; Finney et al. 2011a; Hilton et al. 2015), 
wind direction (Anderson et  al. 2005; Finney et  al. 2011a; Hilton et  al. 2015), relative 
humidity (Anderson et al. 2005, 2007; Cruz 2010), ignition location (Bar Massada et al. 
2009) and ROS adjustment factor parameter. The uncertainty associated with these var-
iables results from their natural variability and the unfeasibility to accurately forecast 
them. Regarding satellite active fire data other factors may constrain the sensor detection 
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rate, for example the occurrence of persistent cloud clover and/or dense smoke plumes 
(Csiszar et al. 2006; Giglio et al. 2003; Hantson et al. 2013).

For relative humidity, uncertainty was quantified by comparing minimum and maxi-
mum daily relative humidity model estimates with measurements done in meteorologi-
cal stations over Portugal for the summer period (Benali et al. 2016). According to these 
authors, the resulting probability density functions (PDF) for both variables were simi-
lar, thus we decided to define a single uncertainty PDF. For wind speed and direction, 
uncertainty was quantified by the authors using a multi-model approach (Refsgaard et al. 
2007). Based on the previous work, we defined empirical uncertainty PDF for relative 
humidity and wind speed and direction, described by a normal distribution with x̄ = 0 % 
and σ =  8.5  %, x̄ =  0  km/h and σ =  5.5  km/h and x̄ =  0º and σ =  20º, respectively. 
Cruz (2010) also used Gaussian PDFs to describe the uncertainty associated with relative 
humidity, air temperature and wind-related variables.

The uncertainty associated with satellite active fire location was also defined empiri-
cally taking into account the pixel’s geometry (Wolfe et al. 1998; Justice et al. 2013; Cam-
pagnolo and Montano 2014). Regarding the active fire data we assumed the centroid 
coordinate and assigned the closest 100 m grid cell. To account for uncertainty in sub-
pixel fire front location and pixel footprint size variability, we randomly sampled points 
within 1500 and 500 m of centroid coordinates of MODIS and VIIRS active fires, respec-
tively. For reported ignition location(s) we assumed a 250 m radius, to account for loca-
tion uncertainty.

The ROS adjustment factor is a FARSITE parameter commonly used by fire managers 
to adjust the outputs based on expert knowledge of the expected fire behaviour for each 
fuel model (FM) class. Since no data is available regarding the distribution of the ROS 
adjustment factor, we used eight wildfires that occurred in Portugal between 2003 and 
2005 to estimate the uncertainty PDFs for the ROS adjustment factor parameter through 
an inverse modelling approach (Refsgaard et al. 2007). The impact of uncertainty of this 
parameter was assessed given the observed discrepancy between simulated fire spread 
and satellite thermal active fires, for eight wildfires (data not shown). Each adjustment 
factor was varied between 0.33 and 3 for each fuel model class independently, corre-
sponding to a threefold decrease or increase in fire spread rate, respectively. The uncer-
tainty PDF was assumed to be inverse to the simulated-satellite spatial discrepancy, i.e. 
for a given adjustment factor value, the lower the spatial discrepancy, the higher the 
probability of the adjustment factor being correct. The uncertainty adjustment factors 
PDF was derived for the most representative fuel models of the eight case studies. The 
estimated uncertainty PDFs for NFFL fuel models 1 (grass), 5 and 6 (shrub) and 9 (litter) 
are shown in Fig. 3.

For relative humidity and wind speed and direction, the values were sampled from the 
uncertainty PDFs. For the ROS adjustment factors, we sampled values from the uncer-
tainty PDFs estimated for FM classes 1, 6 and 9 (covering 13.0, 40.4 and 9.8  % of the 
study area, respectively). For the remaining classes (FM2—10.3 %, FM4—1.3 %, FM5—
19.2 %, FM7—4.7 % and FM8—1.4 %) for which uncertainty PDFs were not estimated 
previously, the adjustment factors were randomly sampled between 0.33 and 3. For 
active fires and ignition location, values were randomly sampled within the radii defined 
above.
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Figure  4a shows the combination of sampled uncertainty values for hourly wind direc-
tion and wind speed. For example, when uncertainty had a positive signal, the sampled 
value was added to the reference value, and vice versa, i.e. when a 10 km/h wind speed 
uncertainty value was sampled, this value was added to the input hourly wind streams. 
Since uncertainty for both variables was defined considering normal distributions cen-
tred on 0, the combination is a bell-shaped probability surface. Figure  4b shows an 
example of the combination between sampled ROS adjustment factor (for fuel model 
6) and sampled uncertainty of daily relative humidity. The surface is quite different from 
the one shown in Fig. 4a, since the adjustment factor PDF presents a bimodal configura-
tion with two distinct peaks centred in values close to 1 and between 2 and 3.

Fig. 3  Estimated probability of the adjustment factors for NFFL fuel models 1, 5, 6 and 9. The range repre-
sents the minimum and maximum estimated probability when considering all eight wildfires

Fig. 4  a Combined sampled point density of hourly wind direction and speed uncertainties; b combined 
sampled point density of daily relative humidity uncertainty and ROS adjustment factor for fuel model 6
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Finally, uncertainty was propagated through the FARSITE fire spread modelling sys-
tem by randomly defining 100 different combinations of the independent input varia-
bles, and running the correspondent fire spread simulations.

Probabilistic fire spread simulations: framework and assessment

Multiple fire spread simulations were performed accounting for the uncertainty in 
specific model inputs, as described in the previous section. To produce the fire spread 
probability maps, we run FARSITE 100 times for each set of simulations varying simul-
taneously: (1) relative humidity; (2) wind speed and direction; (3) the ignition location; 
and (4) the ROS adjustment factors. Multiple interactions between these variables pro-
duce several possible fire spread predictions, creating a probabilistic representation of 
fire growth. FARSITE outputs include fire perimeters and several fire behaviour param-
eters. The fire’s Time of Arrival (TOA, in hours) was used to create the burn probabil-
ity maps, using all TOA outputs from each set of simulations. The burn probability was 
calculated as the ratio between the number of times a given pixel burned and the total 
number of simulations, expressed in percentage.

The simulation framework was designed to emphasize the most active period of the 
Tavira wildfire: from ignition (day 18 at 13  h) until it reached its southern edges (day 
19 at 24 h) (UTC time). Simulations were initialized at the reported ignition location, 
day 18 at 13 (t0), and re-initialized with active fires from combined overpasses of both 
MODIS Aqua and VIIRS satellites, day 19 at 3 h (t1), day 19 at 14 h (t2) and day 20 at 2 h 
(t3) (Fig. 5a, Table 1). Different time steps were defined to establish the duration of each 
simulation and compare the probabilistic results with the spatial–temporal distribution 
of active fires and the reported fire front location information.

Based on the documented Tavira wildfire spread and behaviour, three key time steps 
(burning periods) were defined: day 19 at 17, 20 and 24 h (Fig. 5b, Table 1). Additional 
time steps were defined for further comparison, based on MODIS Terra, MODIS Aqua 
and VIIRS satellite overpasses, day 18 at 23 h (MODIS Terra), day 19 at 22 h (MODIS 
Terra), and day 20 at 11 h (MODIS Terra) and at 13 h (MODIS Aqua—VIIRS); the last 
time step, day 20 at 22 h (MODIS Terra) represents the time when the Tavira wildfire 
reached its eastern and western boundaries (Fig. 5b, Table 1).

A total of 31 simulations sets (100 runs each) with different durations were performed 
(Fig. 6): simulations 1 to 11—initialized at the reported ignition point (start: day 18 at 
13 h (t0); durations: 10, 14, 25, 28, 31, 33, 35, 37, 46, 48 and 57 h, respectively); simu-
lations 12 to 20 - initialized with satellite active fires ignition points from the MODIS 
Aqua - VIIRS overpasses (start: day 19 at 3 h (t1); durations: 11, 14, 17, 19, 21, 23, 32, 34 
and 43 h, respectively); simulations 21 to 28—initialized with satellite active fires ignition 
points from the MODIS Aqua—VIIRS overpasses (start: day 19 at 14 h (t2); durations: 3, 
6, 8, 10, 12, 21, 23 and 32 h, respectively) and simulations 29 to 31—initialized with satel-
lite active fires ignition points from the MODIS Aqua -VIIRS overpasses (start: day 20 at 
2 h (t3); durations: 9, 10 and 20 h, respectively). For comparison, deterministic simula-
tions were also performed, initialized with the same ignition points and with equal start 
and end dates.

To evaluate fire spread predictions, the burn probabilities were temporally and spa-
tially compared with two independent sources of information: the commissioned Tavira 
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wildfire reports (ANPC 2012; Viegas et al. 2012) and satellite active fires from MODIS 
and VIIRS sensors. Regarding the latter, for each satellite active fire, the maximum sim-
ulated fire spread probability within its footprint was recorded. The median simulated 
probability was calculated for all the active fires acquired at a given time step, to com-
pare the fire spread probability maps with satellite information.

Results and discussion
Probabilistic predictions of fire spread

Simulations were initialized at the reported ignition point, day 18 at 13  h (t0) and 
deterministic and probabilistic predictions of fire spread were produced for the Tavira 
wildfire (Fig. 7). The Tavira wildfire spread mainly towards the southeast, with overall 
wind direction from northwest (ANPC 2012; Viegas et  al. 2012), which is reproduced 
in the fire spread simulations. However, higher probabilities and deterministic simula-
tions show an under-prediction of fire spread when we compare each simulation with 
the location of the fire front at the different time steps (obtained from both satellite and 
reported information), in all sets of probabilistic predictions of fire growth representa-
tive of the most active period of the fire (until day 20 at 2 h, simulations 3–8). Cruz and 
Alexander (2013) examined a set of 49 fire spread model evaluation datasets and iden-
tified a significant underprediction regarding the fire’s surface rate of spread. Moreo-
ver, spotting contributed to fast fire growth during both phases (section “Case study: 
background and description”; ANPC 2012; Viegas et al. 2012), which was not simulated 

Fig. 5  Ignition points and time-steps used in the simulations’ framework, based on reported and satellite 
information. a Ignition point(s) used to initialize simulations (day and time); b spatial and temporal informa-
tion obtained from the Tavira wildfire reports and satellite active fires (day and time). See Table 1 for a more 
detailed description of the wildfire development and reference locations
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in this study in order to eliminate one possible confounding source of uncertainty, as 
spotting is stochastic in FARSITE. Spotting can advance fire many kilometres ahead of 
the main front and introduce substantial changes in fire spread pattern and behaviour 
(Finney 2004).

The advantage of probabilistic over deterministic simulations is clear when both are 
compared, since the former always overlap the fire front location at each time step, pro-
viding information regarding the probability of the fire to reach a certain location within 
a designated time. After the very fast spread towards south (until day 20 at 2 h), the fire 
spread towards the eastern and western boundaries of the fire perimeter (Fig. 5a, see the 
MODIS Aqua—VIIRS active fires day 20 at 2 h; and Fig. 5b, see the MODIS Terra and 
MODIS Aqua—VIIRS actives fires day 20 at 11, 13 and 22 h). The fire growth towards 
the west flank was underestimated by the deterministic simulations on day 20 at 2  h 
onward (Fig. 7, simulations 10 and 11) and did not reached this flank, while probabilistic 
predictions show probabilities equal or higher to 60  % of the fire reaching that flank, 
indicating a likely or probable occurrence (Cruz 2010).

Fig. 6  Simulations duration framework. Simulations ran sequentially from the ignition point(s) t0, t1, t2, t3 
(start date) and between the defined time steps (end date)
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Probabilistic predictions of fire spread re‑initialized with satellite active fire data

Simulations were re-initialized with active fires from combined overpasses of both 
MODIS Aqua and VIIRS satellites, day 19 at 3 h (t1), day 19 at 14 h (t2) and day 20 at 2 h 
(t3) (Fig. 5a, section “Probabilistic fire spread simulations: framework and assessment”) 
and new deterministic and probabilistic predictions of fire spread were produced for the 
Tavira wildfire (Figs. 7, 8, 9, respectively).

For the period spanning between day 19 at 14 h and day 20 at 2 h, which comprises the 
most active period of the fire, when we compare the simulations initialized at t0 with the 
simulations re-initialized at t1 and t2, for the same time step (e.g. comparing simulations 
S6, S15, and S23, day 19 at 22 h, Figs. 7, 8 and 9 respectively), we observe that re-ini-
tializing simulations with satellite active fires did not improve simulations as expected, 
since fire spread continued to be underestimated, despite the spatial and temporal 
update of the fire front. Again, fire spread towards the west flank was underestimated by 

Fig. 7  Probabilistic predictions (shaded colours) and deterministic simulations (blue line) of fire spread for the 
Tavira wildfire—t0. Simulations initialized at the reported ignition point (start: day 18 at 13 h; durations: 25 
(S3), 28 (S4), 31 (S5), 33 (S6), 35 (S7), 37 (S8), 48 (S10) and 57 (S11) hours, respectively) and fire front location at 
the specified hour (time step), obtained from both satellite and reported information
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the deterministic simulations, from day 20 at 2 h onward (Fig. 8, simulations 19 and 20; 
Fig. 9, simulations 27 and 28; and Fig. 10, simulation 29).

We explored the fuel type at the different ignition locations, at the start of the simula-
tions. Figure 11 shows the percentage of active fires over each fuel type, for simulations 
re-initialized at t1, t2 and t3. For simulations initialized at t0 (single point) the fire started 
spreading through grass (FM2), whereas the active fires from simulations re-initialized 
at t1, t2 and t3 began spreading mainly through shrub (FM6) and litter (FM9) in the case 
of t1 and t2.

Although for simulations re-initialized at t1 and t2 most of the ignition points were 
located over shrubland, a considerable percentage of active fires were located over for-
est understory litter. Both grass and shrub fuel models have moderate-to-high rates of 
spread, while litter has low-to-moderate spread rates, and the ignitions occurring over 

Fig. 8  Probabilistic predictions (shaded colours) and deterministic simulations (blue line) of fire spread for the 
Tavira wildfire—t1. Simulations re-initialized with satellite active fires ignition points from the MODIS Aqua—
VIIRS overpasses (start: day 19 at 3 h; durations: 11 (S12), 14 (S13), 17 (S14), 19 (S15), 21 (S16), 23 (S17), 34 (S19) 
and 43 (S20) hours, respectively) and fire front location at the specified hour (time step), obtained from both 
satellite and reported information
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this fuel type may have further delayed simulations (re-initialized at t1 e t2) comparing 
with simulations initialized at t0, which already had an active fire front when the fire 
reached this fuel type. Simulations at t1 and t2 were re-initialized as individual ignition 
sources rather than a fire line, and fire acceleration from a point source fire is slower 
than from a fire line (Finney 2004). In this regard, the use of active fires as points to re-
initialize simulations must be further investigated, and additional research is needed to 
improve the assimilation of satellite active fire data.

Figure 12 shows the median burn probability within the active fires footprints, for sim-
ulations initialized at t0, t1, t2 and t3. A more pronounced fire spread under-prediction in 
simulations can be observed through the burn probability decrease, day 19 between 14 
and 22 h. It is worthy to mention that during this period spotting occurred over 1500 m 
distances, causing new spot fires (spotting was not simulated). As previously stated, 

Fig. 9  Probabilistic predictions (shaded colours) and deterministic simulations (blue line) of fire spread for the 
Tavira wildfire—t2. Simulations re-initialized with satellite active fires ignition points from the MODIS Aqua—
VIIRS overpasses (start: day 19 at 14 h; durations: 3 (S21), 6 (S22), 8 (S23), 10 (S24), 12 (S25), 23 (S27) and 32 
(S28) hours, respectively) and fire front location at the specified hour (time step), obtained from both satellite 
and reported information
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from day 19 at 14 h until day 20 at 2 h, initializing simulations at t0 produces fire spread 
predictions with higher burn probabilities than re-initializing simulations with satellite 
active fires at t1 and t2 (e.g. for day 19 at 22 h—t0, t1, and t2 with medium probability val-
ues of 40, 25 and 35 %, respectively). Nonetheless, t2 presents higher burn probabilities 
than t1 for this period. Given that the active fires are similarly distributed by fuel type, 
this difference may be due to the higher number of active fires in t2 (t1 n = 12; t2 n = 25) 
with larger sampling of the landscape and greater probability of encountering fuels and 
wind conditions favourable to faster growth (Finney 2000).

Simulations re-initialized at t3 present the highest burn probabilities within the active 
fires footprint, possibly due to a combination of factors: 72 % of the ignitions occurred 
over shrub fuel type (Fig. 11), a larger number of ignition points (n = 133) and a shorter 
simulation duration, with lower error accumulation. Later in the simulation’s time span, 
re-initializing simulations with satellite data produced better results comparing with t0, 
e.g., day 20 at 22 h, simulations t0, t1, t2 and t3 present medium probability values of 74, 
86, 90 and 94 %, respectively. The underestimation of fire spread simulations initialized 

Fig. 10  Probabilistic predictions (shaded colours) and deterministic simulations (blue line) of fire spread for 
the Tavira wildfire—t3. Simulations initialized with satellite active fires ignition points from the MODIS Aqua—
VIIRS overpasses (start: day 20 at 2 h; durantion: 11 (S29) and 20 (S31) hours, respectively) and fire front loca-
tion at the specified hour (time step), obtained from both satellite and reported information

Fig. 11  Satellite active fires frequency distribution over the landscape main fuel types (at t1, t2 and t3)
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at t0 is now being counterbalanced by the re-initialization of simulations with satellite 
active fires. Nevertheless, likely or probable burn probabilities were still obtained for 
simulations initialized at t0 at this time.

Potential of probabilistic predictions of fire spread as a decision support tool

The Tavira wildfire was a large and rapidly spreading fire, given its complex initial devel-
opment and conflagration, which was beyond the existing fire suppression capabilities 
(section “Case study: background and description”). On the days of 20 and 21, less severe 
meteorological conditions coupled with better fire suppression conditions allowed for 
efficient fire containment.

One of the main problems encountered during the course of the fire-fighting opera-
tions was the poor information on the location and behaviour of the fire front during 
several phases of the fire, making it difficult to outline fire suppression strategies and 
leading to an insufficient assessment of fire potential (Viegas et al. 2012). Fire suppres-
sion decisions prioritize the protection of lives and assets, thus information regard-
ing the fire’s behaviour, development and location during wildfire events tends to be 
incomplete (Anderson et al. 2009). Using satellite active fire data, the spatial–temporal 
dynamics of fire events can be reconstructed and relevant parameters regarding fire sup-
pression, such as fire spread direction, rate of spread and fire intensity can be extracted 
(Parks 2014; Veraverbeke et al. 2014). This stresses the importance of using satellite data 
to monitor large wildfires and how combining different sources of information can pro-
vide a richer and more complete overview of their wildfire dynamics.

Although both MODIS and VIIRS satellites have a good visual agreement regard-
ing the spatial–temporal distribution of active fires, they show inconsistencies with the 
reported information during the Tavira wildfire. Both reports (ANPC 2012; Viegas et al. 
2012) state that the fire reached Odeleite Stream in day 19 at 17 h, 3 h later it reached the 

Fig. 12  Median burn probability at the fire front location at the specified hour (time step), for simulations 
initialized at t0 and re-initialized at t1, t2 and t3. The vertical lines represent the day-time of ignition
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burnt area from 2009 (day 19 at 20 h) and 7 h later the fire reached its south limit (day 
19 at 24 h) (Fig. 5b, section “Probabilistic fire spread simulations: framework and assess-
ment”). However, both MODIS and VIIRS satellites detected active fires with different 
spatial and temporal distributions, e.g., both MODIS Aqua—VIIRS overpasses detected 
active fires in the Odeleite Stream day 19 at 14 h, earlier than reported by Viegas et al. 
(2012). In addition, the MODIS Terra overpass from day 19 at 22 h detected active fires 
beyond the area burned in 2009, close to the southern edges of the fire scar perimeter.

Combining fire spread modelling with satellite active fires did not always improve fire 
spread predictions through updating the fire front position with the active fires, when 
compared to simulations initialized at the reported ignition point. Fire spread is still 
under-predicted for the most active period of the fire (until day 20 at 2  h). However, 
the fire spread probability maps have a great potential to be used as a decision-support 
tool, integrating the uncertainty associated with input data and model predictions and 
providing information regarding the likelihood of fire growth across the landscape. For 
example, simulations in Fig. 7 show a medium probability of the fire reaching the active 
fire front location (above 40  % burn probability in most cases), at the specified time 
steps. This information was not obtained with the deterministic simulations.

During the event, the decision to allocate resources south of Odeleite Stream (on the 
afternoon of day 19) was based on the assumption that the fire was essentially contained. 
The underestimation of true fire potential led to a delayed response and resource alloca-
tion could have been reinforced to assure fire suppression during day 19 (Viegas et al. 
2012). By anticipating the likelihood of fire spread further south of the Odeleite Stream 
and its major growth periods, the information given by the probabilistic predictions 
could have been useful in the operational setting regarding the decision-making process 
of fire suppression and pre-suppression activities at Odeleite Stream.

After day 20 at 2  h fire spread decreases, moving towards the eastern and western 
boundaries, as shown in Fig.  5 (Section “Probabilistic fire spread simulations: frame-
work and assessment”), comparing fire progression between day 20 at 2 h (MODIS Aqua 
active fires, Fig. 5a) and day 20 at 11, 13 and 22 h (MODIS/VIIRS active fires, Fig. 5b). 
This change in fire progression was probably due to the combined effect of less severe 
meteorological conditions, characterized by higher relative humidity values and lower 
temperature values (ANPC 2012; Viegas et al. 2012) that led to more effective fire sup-
pression. The deterministic simulations underestimated fire growth towards the west 
flank (Fig. 7, simulations 10 and 11; Fig. 8, simulations 19 and 20; Fig. 9, simulations 27 
and 28; and Fig.  10, simulation 29). This section of the fire perimeter was intervened 
with bulldozers at the time of the event (Table  1), since the contiguous municipality 
presented great potential for fire spread (Viegas et  al. 2012). The probabilistic simula-
tions show medium to likely probability of the fire spreading beyond the flank, while the 
deterministic simulations did not reached this flank.

Limitations and future work

The use of satellite active fire data to re-initialize simulations presents some issues, 
namely concerning pixel size variability and the uncertainty of sub-pixel fire front 
location (Anderson et  al. 2009). The availability of new satellite active fire data prod-
ucts such as the new VIIRS 375  m (Schroeder et  al. 2014) and Sentinel 3 will also 
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contribute to provide additional information on active fires, with higher detection capa-
bilities (Wooster et al. 2012). The sub-pixel location uncertainty assessment can also be 
improved, e.g., by using the sensor Point Spread Function (Campagnolo and Montano 
2014). Multi-sensor approaches also allow for best temporal and spatial resolutions 
(Freeborn et al. 2009).

Fuel model uncertainty was not addressed in this work. A close look at the fuel model 
map produced by the municipalities (Fig.  1, section “Case study: background and 
description”) denotes a degree of subjectivity associated with fuel model classification 
by experts, which is clearly observed at the boundaries of both municipalities (between 
FM6 and FM7). Often, vegetation type maps such as the Corine Land Cover are used as 
base maps to assign fuel models, without a proper local model calibration and misin-
terpretation of fuel types can lead to erroneous estimates of spread rates and other fire 
behaviour properties (e.g. Arca et al. 2007; Anderson et al. 2009; Salis et al. 2013). Addi-
tionally, future work must include the fuel models most representative of shrubland and 
forest types for mainland Portugal (Fernandes et al. 2009).

We acknowledge that there are limitations with the spatial resolution of the meteoro-
logical data, however, the weather forecasts made available by IPMA and provided to 
ANPC during fire operational settings have the same resolution as the data used in this 
study, with a 72 h forecast range. Ultimately, this is the first readily available data to use 
in forecast mode, approximately 4 h after each model (ALADIN) run.

Future work will benefit from a more comprehensive understanding of uncertainty 
arising in fire spread modelling (Thompson and Calkin 2011), particularly from input 
data (e.g. Mowrer 2000; Anderson et  al. 2007; Hilton et  al. 2015). Uncertainty assess-
ment is being further investigated by Benali et al. (2016). Relevant fire descriptors such 
as fire spread direction, rate of spread and fire intensity can also be extracted from satel-
lite data and compared to fire behaviour output parameters from FARSITE, for further 
assessment and identification of opportunity windows for more efficient fire suppression 
operations.

Conclusions
The use of fire spread models as a decision-support tool for fire management must quan-
tify and integrate the uncertainty associated with input data uncertainty and thus proba-
bilistic approaches should be favoured over deterministic ones.

The fire spread probability maps produced, provide valuable and additional informa-
tion regarding the spatial and temporal distribution of burn probabilities, such as where, 
when and with what probability the fire might be in the next few hours. This informa-
tion allows anticipating fire spread through the landscape with an associated probabil-
ity of occurrence, which combined with expert knowledge and judgment, presents great 
potential to be used as a decision-support tool for fire suppression and pre-suppression 
management, in operational settings. The proposed approach can be useful to forecast 
the growth of future wildfires, in particular large and infrequent wildfires.

Additional file

Additional file 1: Figure S1. Fuel models (Northern Forest Fire Laboratory, NFFL) of the study area. Figure S2. 
Topographic features of the study area. Table S1. Summary of the datasets used to derive the model input data.
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