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Background
Tea produced from fresh leaves of the tea plant Camellia sinensis (L.) O. Kuntze, is used 
worldwide. Its attractive aroma, flavor, and medicinal benefits are derived from com-
pounds such as polyphenols, caffeine, and amino acids (Mejia et al. 2009; Sharangi 2009). 
Tea plant is a woody evergreen plant of the genus Camellia belonging to the family 
Theaceae, which has been cultivated in more than fifty countries including Asia, Africa, 
South America, Europe, Oceania, and contributed to massive economic development in 
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Microsatellites, or simple sequence repeats (SSRs), especially those with long-core 
motifs (tri-, tetra-, penta-, and hexa-nucleotide) represent an excellent tool for DNA 
fingerprinting. SSRs with long-core motifs are preferred since neighbor alleles are 
more easily separated and identified from each other, which render the interpretation 
of electropherograms and the true alleles more reliable. In the present work, with the 
purpose of characterizing a set of core SSR markers with long-core motifs for well fin-
gerprinting clonal cultivars of tea (Camellia sinensis), we analyzed 66 elite clonal tea cul-
tivars in China with 33 initially-chosen long-core motif SSR markers covering all the 15 
linkage groups of tea plant genome. A set of 6 SSR markers were conclusively selected 
as core SSR markers after further selection. The polymorphic information content (PIC) 
of the core SSR markers was >0.5, with ≤5 alleles in each marker containing 10 or fewer 
genotypes. Phylogenetic analysis revealed that the core SSR markers were not strongly 
correlated with the trait ‘cultivar processing-property’. The combined probability of 
identity (PID) between two random cultivars for the whole set of 6 SSR markers was 
estimated to be 2.22 × 10−5, which was quite low, confirmed the usefulness of the 
proposed SSR markers for fingerprinting analyses in Camellia sinensis. Moreover, for the 
sake of quickly discriminating the clonal tea cultivars, a cultivar identification diagram 
(CID) was subsequently established using these core markers, which fully reflected 
the identification process and provided the immediate information about which SSR 
markers were needed to identify a cultivar chosen among the tested ones. The results 
suggested that long-core motif SSR markers used in the investigation contributed to 
the accurate and efficient identification of the clonal tea cultivars and enabled the 
protection of intellectual property.
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these areas (Anesini et al. 2008; Alkan et al. 2009; Basu Majumder et al. 2010; Sae-Lee 
et al. 2012). In 2013, 3.52 million hectares of tea plants were harvested, producing 5.34 
million tons of tea (FAO, http://faostat.fao.org/). The clonal tea cultivars are character-
ized by a regular and uniform development of shoots and leaves period, leading to a sta-
ble tea quality, and improved tea yield (Wachira et al. 1995; Fang et al. 2012; Yao et al. 
2011). In recent years, tea acreage and production have increased continuously, partially 
as a result of the release and extension of clonal tea cultivars (Bandyopadhyay 2011).

Tea plant is a woody perennial characterized by a large diploid genome (~4  Gb, 
2n = 30, very few are triploid), which has not been sequenced so far. It is self-incompat-
ible and highly heterozygous. It has a long juvenile phase (more than 20 years), there-
fore tea cultivar breeding is a very long and expensive process (Chen et  al. 2007; Tan 
et al. 2013). Tea tree is capable of multiplying by vegetative propagation of its shoots, 
as a result, the phenomenon of infringement of clonal tea cultivar breeders’ rights is 
extremely common. Therefore, to safeguard the protection of intellectual property, it is 
crucial to establish a fast, scientific, and practical method to identify them.

The traditional method of morphological identification failed to effectively identify 
several clonal tea cultivars, due to the effect of environmental factors on phenotypic 
traits. By contrast, DNA molecular markers have proved to be a powerful tool for fin-
gerprinting of crop cultivars (Patzak et al. 2007; Jian et al. 2010; Divashuk et al. 2011). 
SSR markers are characterized by codominance, polymorphism, and high stability, and 
therefore, represent a superior choice among all the molecular markers developed for 
crop cultivar identification (Hasnaoui et al. 2012; Karaagac et al. 2014).

Recent advances in SSR for tea came from the deep sequencing of the tea plant 
transcriptome (Wu et  al. 2012; Tan et  al. 2013; Wang et  al. 2013), which provided an 
increased number of SSR markers for tea cultivar identification. Several studies have 
investigated tea cultivars with SSR markers (Kaundun and Matsumoto 2004; Ujihara 
et al. 2009; Bhardwaj et al. 2013), nevertheless, these studies would be not so straight-
forward but they would be done using a little more time to analyze the fingerprinting 
data in discriminating tea cultivars. With taking advantage of the suggested necessary 
SSR markers, a pratical strategy for efficient identification of plants rely on a new way 
of recording DNA fingerprints of genotyped plants called cultivar identification dia-
gram (CID), which can be used for a quick identification of specific plant cultivars (Huo 
et al. 2013). In view of this, the CID method can be used as a practical way in identifying 
clonal tea cultivars.

The fingerprinting data should be supposed to repeatedly, so the accuracy of which 
were of great importance. SSR with long-core motifs (tri-, tetra-, penta-, and hexa-
nucleotide) are preferred since neighbor alleles are more easily separated and identified 
from each other. Short-core motifs (di-nucleotide) are not desirable mainly because of 
the lower separation of neighbor alleles and the high degree of stuttering, which ren-
der the interpretation of electropherograms and the true alleles less reliable (Cipri-
ani et  al. 2008). SSR with long-core motifs were adopted in human genetics (Ruitberg 
et al. 2001; Butler et al. 2004; Butler 2006; Hellmann et al. 2006), but were exclusively 
used for genetic analyses only in few crops (Dettori et al. 2015). In tea plant, there have 
been reported that eight core SSRs with the larger repeat motifs (3–6  bp) selected to 
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fingerprint 128 Chinese clonal tea cultivars (Tan et  al. 2015), nevertheless, it would 
require a little more time to analyze the fingerprinting data using these SSR markers in 
discriminating tea cultivars, furthermore, these markers would be not enough to exclu-
sively identify tea cultivars, especially when more new cultivars would be released in 
future.

Therefore, for the sake of providing a practical method of identification of the clonal 
tea cultivars, thus ensuring the protection of intellectual property, we aimed to obtain 
a new set of long-core motif SSR markers, and to establish a cultivar identification dia-
gram (CID) based on the suggested necessary SSR markers and the genotyping data 
revealed, fully reflecting the identification process and providing the immediate infor-
mation about which SSR markers are needed to identify a cultivars chosen among the 
tested ones.

Methods
Plant material

A total of 66 elite clonal tea cultivars were tested in this study. They were collected dur-
ing the tea germplasm collection at the Institute of Tea, Fujian Academy of Agricultural 
Sciences, Fuan, Fujian, China. Young leaves of the 66 clonal tea cultivars were collected 
twice independently and frozen in liquid nitrogen, and stored at −80 °C. The names of 
these clonal tea cultivars are listed in Table 1. 

DNA extraction

Total genomic DNA of each cultivar was extracted twice from young leaves using the 
CTAB method (Reitz et al. 1972). The genomic DNA was diluted to a final concentration 
of 30 ng/μL using TE buffer and stored at −20 °C until use, and 0.8 % agarose gels were 
used to check the quality of the DNA.

PCR and SSR fragment detection

The 33 SSR markers with long-core motifs (tri-, tetra-, penta-, hexa-nucleotides) from a 
tea plant genetic map (Ma et al. 2014), were initially selected and labeled at the 5′ end of 
each forward primer pair with fluorescent dyes. To the best of our knowledge, this set of 
markers has not been used in identifying tea cultivars so far. The selection criteria were 
follows: (1) two or more alleles detected in a preliminary screening with eight cultivars 
(data not shown); (2) alleles distinct on 10 % silver-stained polyacrylamide gels with no 
random bands; and (3) markers with an even coverage of 15 linkage groups of tea plant 
genome. The details about the markers used in this study were showed in Table 2. 

PCR amplification was carried out in a volume of 30 μL, containing 2 μL of (30 ng/μL) 
genomic DNA, 1.5 μL (10 μM) of each primer, 1.0 μL of Taq DNA polymerase (0.5 U/
μL), 2 μL (25 mM) of MgCl2, 3 μL dNTP (10 mM), 3 μL 10 × Buffer, and 16 μL of double-
distilled water. Amplification reactions were performed using Huayue Biometra Thermal 
Cycler under the following conditions: initial denaturation for 5 min at 94 °C, 35 cycles 
at 94 °C for 30 s, Ta °C for 30 s, and at 72 °C for 1 min, and a final extension step at 72 °C 
for 20  min plus a hold at 4  °C. The Tm (°C) of each primer was reported in Table  2. 
After mixing 1µL of each PCR product with 9 µL of the standard molecular weight 
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mixture ROX500 in a 96-well-plate, it was gently vortexed, and centrifuged at 3000 rpm 
for 2 min. The mixture was denatured at 95 °C for 3 min and left in ice for 5 min, and 
loaded into the Applied Biosystems (ABI) 3730 sequencer for fragment analysis. Both 
PCR amplification and SSR fragment detection were performed twice independently.

Data analysis

The data obtained were analyzed using Genemapper software version 4.0. PowerMarker 
(Liu and Muse 2005) was used to calculate the key genetic statistics of the markers, 
including major allele frequency (MAF), number of alleles (NA), number of genotype 
(NG), observed heterozygosity (Ho), polymorphism information content (PIC), and 
Nei’s genetic distances (Nei et al. 1983).

Table 1 Information of the tested clonal tea cultivars

a CPP cultivar processing-property, indicated one cultivar is suitable for processing one type/different types of tea.  
O Oolong tea, G green tea, B black tea

Code Cultivar name Area of origin CPPa Code Area of origin Area of origin CPPa

1 Tie Guan Yin Fu Jian O 34 Yue Min Xiang Fu Jian O/G/B

2 Huang Dan Fu Jian O 35 Huang Qi Fu Jian O/G/B

3 Ben Shan Fu Jian O 36 Jin Mu Dan Fu Jian O/G/B

4 Mao Xie Fu Jian O 37 Huang Mei Gui Fu Jian O/G/B

5 Mei Zhan Fu Jian O 38 Zi Mu Dan Fu Jian O/G/B

6 Feng Yuan Chun Fu Jian O 39 Zi Mei Gui Fu Jian O/G/B

7 Xing Ren Cha Fu Jian O 40 Zao Chun Hao Fu Jian G/B

8 Hong Ya Fo Shou Fu Jian O 41 Chao Yang Fu Jian O/G/B

9 Lv Ya Fo Shou Fu Jian O 42 Dan Gui Fu Jian O/G/B

10 Da Ye Wu Long Fu Jian O 43 Chuan Lan Fu Jian O/G/B

11 Bai Ya Qi Lan Fu Jian O 44 Rui Xiang Fu Jian O/G/B

12 Ba Xian Cha Fu Jian O 45 Jiu Long Pao Fu Jian O/G/B

13 Da Hong Pao Fu Jian O 46 Chun Gui Fu Jian O/G/B

14 Rou Gui Fu Jian O 47 Zao Mei Gui Fu Jian G/B

15 Bai Ji Guan Fu Jian O 48 Ming Ke 3 Fu Jian G/B

16 Ai Jiao Wu Long Fu Jian O 49 Ming Ke 4 Fu Jian G/B

17 Fu Jian Shui Xian Fu Jian O 50 Chun Tao Xiang Fu Jian O/G/B

18 Zheng He Da Bai Cha Fu Jian G/B 51 Jin Mei Gui Fu Jian O/G/B

19 Jiu Long Da Bai Cha Fu Jian G/B 52 Zi Guan Yin Fu Jian O/G/B

20 Fu Ding Da Bai Cha Fu Jian G/B 53 Jin Gui Guan Yin Fu Jian O/G/B

21 Fu Ding Da Hao Cha Fu Jian G/B 54 Zhong Cha 108 Zhe Jiang G/B

22 Ge Le Cha Fu Jian G/B 55 Wu Niu Zao Zhe Jiang G/B

23 Fu An Da Bai Cha Fu Jian G/B 56 Yin Shuang Zhe Jiang G/B

24 Xia Pu Chun Bo Lv Fu Jian G/B 57 An Ji Bai Cha Zhe Jiang G/B

25 Xia Pu Yuan Xiao Cha Fu Jian G/B 58 Long Jin 43 Zhe Jiang G/B

26 Rong Chun Zao Fu Jian G/B 59 Qian Nian Xue Zhe Jiang G/B

27 Fu Yun 6 Fu Jian G/B 60 Ping Yang Te Zao Zhe Jiang G/B

28 Fu Yun 7 Fu Jian G/B 61 Li Zao Xiang Zhe Jiang G/B

29 Fu Yun 10 Fu Jian G/B 62 Si Ji Chun Tai Wan O

30 Fu Yun 20 Fu Jian G/B 63 Jin Xuan Tai Wan O

31 Fu Yun 595 Fu Jian G/B 64 Bai Mao 2 Guang Dong O/G/B

32 Jin Guan Yin Fu Jian O/G/B 65 Feng Huang Dan Cong Guang Dong O

33 Huang Guan Yin Fu Jian O/G/B 66 Xiang Fei Cui Hu Nan G/B
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Power of fingerprinting

To assess the fingerprinting potential of the SSR markers, probability of identity (PID) 
for each marker was calculated. PID represents the average probability of two random 
individuals in a population sharing the same genotype, and is calculated as follows:

where pi is the frequency of the ith allele at a locus (Taberlet and Luikart 1999).

PID = 2(ΣP2i )
2
−Σp4i ,

Table 2 33 SSR markers selected from 15 linkage groups of tea plant

a Selected as core SSR markers to fingerprint 66 clonal tea cultivars

Linkage Primer Motif Forward (5′ → 3′) Reverse (5′ → 3′) Tm (°C) Dye

LG01 TM447 (AAAAG)5 TGTTGTTAACGGTGTTCGGA GCATTTGTTTTCTCTCTCTG 
CC

52 TAMRA

LG02 TM514 (TCA)5 ATGTCTGGCCGTGGATTAAG ATGGCAGGCTGTTCTGATTT 52 FAM

LG02 TM480 (GTA)5 CGAAGAGTCGTTTCGAGGAG CATCCCTTGTCTTCTCCCCT 52 FAM

LG03 TM337 (CCAATT)6 GTGCGGCAAAGCTGTCTT ACCTCCATCTCCAAACCC 60 FAM

LG03 TM453 (TTC)6 AAGTCACAACACCACCACCA GAGGCAGCGATAGTACCAGG 52 TAMRA

LG04 TM343 (TGTTGA)3 ATCTTGGTAAGCTGCTCT ATCATTGCTTTTGTTCTG 56 FAM

LG04 TM445 (GTA)5 CCCAAATCCCAAGCTGTAGA ACGATCGAGCCTGCAATACT 52 TAMRA

LG04 TM502 (AGAT)4 TGTCTTTTGTGGTTTCGTGC GGGAGACGATGGATCAGAAA 50 FAM

LG04 TM422 (TTC)7 GGACTTCGTTGCTTCCTTTG CCATTCTCGACGAATCCAGT 52 TAMRA

LG04 TM369 (GAA)8 CGGAGCTGGAATCTGAAGAG GGAAGGGTTGCAAATTCTGA 52 FAM

LG04 TM523 (AAAAGA)3 TTTGCATTTTTGCCAAGTGA CTTGCGTGACAATGCTCATAA 52 FAM

LG05 TM589 (CTCCT)3 CACCACTGCCCAACAAACT GAGGATGATGATTCGGGAGA 52 TAMRA

LG05 TM428 (CAC)7 TCTCCTCCTCGATCCTCAGA CCCTCTTCTTCGGATCCTTC 52 FAM

LG06 TM341 (TCGAA)5 CGTACTTCAACGCT 
ATAGCTCTCT

CTTCGGCATGGCTTCTAAAC 52 FAM

LG07 TM415 (CCTTC)3 TCCACCCAAAACC 
TACTCTCTC

TATTTCGGAAACGAGCCATC 52 TAMRA

LG07 TM426 (AGA)11 TGAGAGTGCTTGTCTGGGTG CAACTACCCCTTTTCCCCAT 52 FAM

LG07a TM324 (TTTTTG)5 CATCGTTTCATTGCTTATT ATTTTCGGCATTGTCTT 54 FAM

LG08 TM352 (GAGGTG)4 CTTCTTCCTGTCGGGTTGAG GTCAACGGCCTATAACGGAA 52 TAMRA

LG08 TM395 (TCTTTT)4 GATTGTAGGACAGCCGTGGT AAGTTGGGGCTTGTTAAA-
GGA

52 FAM

LG08 TM493 (AGG)6 GATAGGGACAGAGATCGGCA TTTCCAACCTTGCTCAAACC 52 FAM

LG09a TM442 (ATACAC)3 CAAGCCAAACCTTGCTGAAT CTGTCCTGTGTCTGGTGGTG 52 FAM

LG09 TM440 (TTTGC)3 TTGACCCGAATAAAATGGGA CCTCAAAACATGCTTTTCTT 
AATC

52 FAM

LG10 TM407 (CAAGAT)3 AACAACAGCAGCGAAGATGA CCACCACTGATGACCCTTTT 52 TAMRA

LG10a TM569 (GTGA)5 GCAAATTCGTAAGGCGAGAG CTGACGTTTACCCTCGTTCC 52 FAM

LG11a TM461 (ATTTTT)6 GGCTAGGGTTTCTCCCACTT GAAGGTCGAAGCGATGTTGT 52 TAMRA

LG11a TM581 (AAAAAC)3 AAGGATCACTGGTAAAAAGCCA CTTCTGAGCCGTTCTTGAGC 52 FAM

LG12 TM241 (GAGAA)3 ATCGGCGACGGTGGAAGT GCCAGCGGAGAGGAGAAG 58 FAM

LG12 TM499 (AGA)5 AACTGTGACACCGATTGCAG AAGTTTCACTTGCCAGCACC 54 FAM

LG13 TM425 (TTATT)3 CACGTTCGCATATTTTGGTG TTGCTGACGACAACATTTT 
ATT

52 FAM

LG13 TM576 (TTTTC)3 CGCTCTTCCTTGTTTTCTGG CACAAGCCATTGTAGAGAG 
AGAAA

52 FAM

LG14 TM348 (TATC)7 GAGATGGCTTGCTCAAGGTC CCCCAACCAAATCAAATCAC 52 FAM

LG14a TM351 (GGAGAA)3 GGGTGAGAGTAAAGGGGGAG AAACACAAAATCAAATTTG 
TCAGAA

52 FAM

LG15 TM601 (GGA)5 TTGCACTGGAGTGCGATAAG CATCGCCACCAAACTCTTCT 52 FAM
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Core SSR marker selection

Additional criteria used for selection of core SSR markers include: (1) PID < 0.198 (aver-
age of the 33 markers), such that a combination of a few markers provided enough dis-
criminant power; (2) high degree of polymorphism, with a PIC > 0.5 (Hoda et al. 2010; 
Pan et al. 2010); and (3) finally, the number of alleles ≤5, and the number of genotypes 
≤10. Primers providing higher numbers of alleles and of genotypes were not chosen 
because they were not deemed to be easily manageable.

Phylogenetic analysis

For represented all the variability in the tested tea cultivars, using the set of core SSR 
markers selected, a phylogeny tree of the tested clonal tea cultivars was constructed 
based on Nei’s genetic distances and the UPGMA method and viewed with MEGA 4.0 
(Tamura et al. 2007).

Construction of CID

The CID was established as reported previously (Liu et al. 2014) with a few modifica-
tions. The method was based on classification of cultivars into different groups accord-
ing to the genotypes amplified by each core SSR marker selected: (1) a cultivar with a 
unique genotype generated from a single primer pair, was already identified and occu-
pied a group by itself; (2) cultivars sharing the same genotype were placed in the same 
group; (3) additional core SSR marker primer pairs were used to identify the cultivars 
sharing the same group; and (4) the order of core markers selected to construct the CID 
was chosen at descending PID values.

Results
Stability of detection and data analysis

The allele size was the same in the two independent scoring, which inicated the high 
quality and stability of the DNA fragments amplification and detection. All the 33 SSR 
loci were polymorphic among the tested cultivars. The NA ranged from 2 to 16 (average 
6), and the NG ranged from 2 to 33 (average 11.2). The Ho ranged from 0.136 to 0.864 
(average 0.583), and the PIC ranged from 0.119 to 0.864 (average 0.553). Details are dis-
played in Table 3. The average values of NA, Ho and PIC were all lower than those of Tan 
reported (Tan et al. 2015), where NA, Ho and PIC was 10.4, 0.701, 0.704, respectively, 
which mainly owing to the 33 SSR markers used herein were all long-core motif ones.

Selection of core SSR markers

According to the above selection criterion, 6 SSR markers with long-core motifs were 
further selected from the 33 SSR markers, and used as a set of core primer pairs to iden-
tify the clonal tea cultivars tested (Tables 2, 3).

Power of fingerprinting

For each locus, the PID ranged from 8.58E-07 to 0.645, averaging 0.198 (Table  3). 
Assuming that all loci segregate independently, the probability of finding two random 
individuals with identical genotypes at all the 33 loci was an estimated 1.42 ×  10−32, 
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while the probability of the set comprising 6 core SSR markers was 2.22 × 10−5, which 
provided enough discriminant power to identify the tested clonal tea cultivars.

Genotypes of the tested cultivars

The genotypes of the 66 cultivars generated from the set of 6 core SSR markers are 
shown in Table 4, by which we can establish the CID to rapidly distinguish the tested 
clonal tea cultivars.

Phylogenetic analysis

The genetic relationships among the tesrted 66 tea cultivars are presented in the phy-
logeny tree (Fig. 1). All of them were grouped according to their genetic backgrounds. 

Table 3 Key genetic statistics of the 33 SSR markers

a Selected as core SSR markers to fingerprint 66 clonal tea cultivars

Linkage group Primer MAF NG NA Ho PIC PID

LG01 TM447 0.470 8 4 0.470 0.510 0.226

LG02 TM514 0.796 5 4 0.273 0.286 0.415

LG02 TM480 0.660 8 6 0.515 0.481 0.222

LG03 TM337 0.409 20 9 0.758 0.722 0.075

LG03 TM453 0.553 15 8 0.561 0.562 0.157

LG04 TM343 0.697 11 9 0.561 0.475 0.115

LG04 TM445 0.432 7 4 0.515 0.554 0.203

LG04 TM502 0.508 13 6 0.727 0.655 0.095

LG04 TM422 0.220 33 16 0.864 0.864 0.023

LG04 TM369 0.424 18 10 0.773 0.706 8.58E-07

LG04 TM523 0.811 5 3 0.227 0.297 0.454

LG05 TM589 0.477 6 3 0.606 0.550 0.199

LG05 TM428 0.386 17 7 0.727 0.720 0.080

LG06 TM341 0.356 23 12 0.606 0.765 0.048

LG07 TM415 0.288 26 13 0.530 0.801 0.040

LG07 TM426 0.280 17 7 0.652 0.761 0.076

LG07a TM324 0.402 7 4 0.636 0.577 0.185

LG08 TM352 0.674 5 3 0.546 0.431 0.244

LG08 TM395 0.660 5 3 0.591 0.432 0.274

LG08 TM493 0.576 10 7 0.682 0.585 0.123

LG09a TM442 0.523 9 4 0.485 0.560 0.192

LG09 TM440 0.432 14 6 0.864 0.683 0.100

LG10 TM407 0.667 15 10 0.515 0.527 0.124

LG10a TM569 0.386 7 4 0.788 0.594 0.180

LG11a TM461 0.296 10 5 0.773 0.685 0.115

LG11a TM581 0.538 9 4 0.621 0.580 0.165

LG12 TM241 0.417 11 4 0.788 0.650 0.136

LG12 TM499 0.758 5 3 0.439 0.338 0.345

LG13 TM425 0.932 2 2 0.136 0.119 0.645

LG13 TM576 0.833 3 3 0.333 0.245 0.441

LG14 TM348 0.379 12 5 0.712 0.660 0.123

LG14a TM351 0.568 9 5 0.576 0.549 0.183

LG15 TM601 0.773 5 4 0.394 0.337 0.338

Mean 0.533 11.2 6.0 0.583 0.553 0.198
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Table 4 Core set of six primers with genotypes of 66 cultivars

Codea TM442 TM324 TM351 TM569 TM581 TM461

1 268/292 171/183 244/244 265/269 228/234 192/210

2 286/286 183/183 244/250 265/273 228/228 192/198

3 268/280 171/183 244/250 265/269 228/228 198/198

4 280/280 171/183 244/250 269/273 228/234 192/198/204

5 280/280 171/183 244/244 265/269 228/234 192/198

6 268/280 171/183 238/244 265/265 228/234 198/198

7 280/280 177/183 244/244 265/269 234/234 192/198

8 268/280 171/171 238/244 265/269 228/228 192/204

9 268/280 171/171 244/244 265/269 222/228 192/198

10 268/280 171/171 238/244 269/269 228/228 192/204

11 280/280 171/177 238/244 269/273 228/234 192/204

12 280/286 183/183 238/238 265/269 222/228 192/204

13 268/280 177/183 238/262 265/273 228/234 204/204

14 268/280 171/177 244/244 269/273 228/228 192/204

15 292/292 183/183 238/244 273/273 222/228 204/204

16 280/280 171/177 244/244 269/273 228/228 192/198

17 280/286 171/183 244/256 265/277 228/234 192/198

18 286/286 171/177/183 238/250 265/269/273 228/234 198/204/210

19 280/280 183/183 238/244 269/273 228/228 204/210

20 268/280 171/183 244/244 269/273 222/228 204/210

21 280/280 183/183 238/244 269/273 228/228 186/210

22 268/280 171/183 244/244 273/273 222/228 204/210

23 280/286 183/183 244/256 269/273 222/228 204/204

24 280/286 183/183 244/250 265/269 228/228 198/210

25 280/286 171/183 238/238 269/273 222/222 204/210

26 280/286 183/183 238/250 269/273 222/228 192/198

27 280/280 177/183 244/244 265/269 228/240 198/204

28 280/280 162/171 244/250 273/273 222/240 198/204

29 280/280 171/183 244/250 269/273 228/228 204/210

30 280/280 171/171 244/256 269/273 228/240 198/204

31 280/280 177/183 244/250 273/273 222/240 198/210

32 280/286 171/177 244/250 265/273 228/234 192/192

33 286/286 177/183 244/250 265/269 222/228 192/204

34 268/280 171/171 244/244 269/273 228/228 192/204

35 286/286 183/183 244/244 269/273 228/228 192/192

36 280/286 171/177 244/244 265/269 222/228 198/198

37 286/286 177/183 250/250 265/265 222/228 192/204

38 280/286 171/171 244/256 265/273 228/240 198/204

39 280/286 171/177 244/244 265/269 228/234 192/192

40 268/268 171/177 250/250 265/269 222/234 204/210

41 280/292 171/177 248/250 269/273 222/240 198/198

42 280/286 171/183 244/244 273/273 228/228 204/204

43 286/286 171/183 244/244 269/269 228/228 192/198

44 280/286 177/183 244/244 269/273 228/228 192/198

45 268/280 177/177 244/250 269/269 228/234 198/204

46 286/286 177/183 244/244 269/273 228/228 192/192

47 280/286 177/183 244/244 265/269 228/228 192/204

48 280/280 177/183 250/250 265/273 240/240 198/204

49 280/280 171/177 244/250 269/273 222/228 204/204
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To better understand their relationships, we divided the tested cultivars into five groups 
according to the genetic distance value at 0.25. The first cluster was comprised of two 
cultivars, including 13th (Da Hong Pao) and 15th (Bai Ji Guan). The second cluster 
included four cultivars, including 41st (Chao Yang), 28th (Fu Yun 7), 48th (Ming Ke 3), 
31st (Fu Yun 595). The fourth cluster also included 4 cultivars, including 40th (Zao Chun 
Hao), 66th (Xiang Fei Cui), 55th (Wu Niu Zao), 60th (Ping Yang Te Zao). The fifth clus-
ter included 10 cultivars, including 25th (Xia Pu Yuan Xiao Cha), 12th (Ba Xian Cha), 
26th (Rong Chuan Zao), 18th (Zheng He Da Bai Cha), 33th (Huang Guan Yin), 37th 
(Huang Mei Gui), 54th (Zhong Cha 108), 61st (Li Zao Xiang), 65th (Feng Huang Dan 
Cong), 59th (Qian Nian Xue). The third cluster was comprised of the maximum number 
of materials, including the rest 46 ones of the tested cultivars. From the phylogeny tree, 
we could find the clustering result based on the genetic background (Nei’s genetic dis-
tances) was not well corresponded with that based on the trait ‘cultivar processing-prop-
erty’. This phenomenon showed that the core SSR markers were not strongly correlated 
with the trait ‘cultivar processing-property’.

Creation of CID

Based on the descending order of PID values of the six core markers, the primer pair 
with the highest PID, TM442 (PID = 0.192), was used to identify the genotypes of all 
the tested cultivars. It allowed to classify the cultivars into nine groups corresponding 
to the nine genotypes. The first group contained only the 15th cultivar (Bai Ji Guan, 
genotype ‘+292’), and the second group contained only the first cultivar (Tie Guan Yin, 
genotype ‘+268,292’). The remaining 64 cultivars were distributed into seven groups, 
containing each more than two cultivars, requiring other markers for separation. The 
third group including two clonal tea cultivars, namely, the 56th (Yin Shuang) and the 
65th (Feng Huang Dan Cong), which were separated by the genotype generated by the 

Table 4 continued

Codea TM442 TM324 TM351 TM569 TM581 TM461

50 286/286 171/183 244/244 265/269 222/228 198/204

51 280/286 171/171 244/250 265/269 228/234 192/198

52 286/286 177/183 244/250 269/273 228/234 192/198

53 280/286 171/171 244/250 265/269 228/234 192/192

54 280/280 171/183 244/250 265/269 222/234 198/210

55 268/280 183/183 250/256 265/269 222/222 192/204

56 268/286 171/171 244/244 265/273 222/228 204/210

57 280/280 177/183 244/256 273/273 228/228 198/204

58 280/280 171/177 244/256 273/273 228/228 198/210

59 286/286 183/183 244/244 265/269 222/234 198/210

60 268/280 183/183 250/256 265/273 222/240 192/198

61 280/280 177/183 250/250 265/265 222/222 198/210

62 280/280 171/177 244/244 269/273 228/234 192/204

63 280/280 171/171 244/250 269/273 228/234 198/204

64 280/292 171/177 244/250 265/273 228/240 204/210

65 268/286 171/183 244/250 269/269 222/234 198/198

66 268/268 177/183 250/256 265/269 234/234 192/210
a The 66 codes are in accord with those in Table 1
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second primer pair TM324 (PID = 0.185), ‘+171’ and ‘+171, 183’, respectively. Similarly, 
the other groups of clonal tea cultivars were fully separated by other primer pairs, and 
the CID was established as shown in Figs. 2, 3 and 4.

Being the information about markers used contained in the CID, it can make the 
identification of the cultivars represented more straightforward. In the following exam-
ple two random cultivar, A and B, belonging to the CID, were screened by TM442, the 
first primer used in CID construction. The genotypes of the two cultivars were both 
‘+268, +286’, placing them on the third group of the CID. After that, TM324 showed 
that ‘A’ genotype was ‘+171’, and ‘B’ was ‘+171, +183’ thus identifying ‘A’ as the 56th(Yin 
Shuang), and ‘B’ as the 65thcultivar (Feng Huang Dan Cong). Details are shown in Figs. 5 
and 6. Using this procedure, the two cultivars were quickly and successfully identified 
with the suitable combination of two primers (TM442 and TM324).

Fig. 1 Phylogeny tree showing the clustering pattern of the 66 tested clonal tea cultivars. O-type cultivars: 
cultivars suitable for processing oolong tea; B/G-type cultivars: cultivars suitable for processing black tea/
green tea
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Fig. 2 Cultivar identification diagram (CID) of clonal tea cultivars (I). The codes are in accord with those in 
Table 1
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Fig. 3 Cultivar identification diagram (CID) of clonal tea cultivars (II). The codes are in accord with those in 
Table 1
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Upon release of new clonal tea cultivars, the set of six core SSR markers could still be 
used to amplify their genomes and locate them on the CID; furthermore, this could be 
achieved using less than the six primers currently included in the core set. For example, 
if a new cultivar displayed the TM442 ‘+268, 292’ genotype and TM324 was ‘+183’, the 
CID construction or the identification process could be finished using only two primer 
pairs. On the contrary, if the six primer pairs would fail to provide a full identification of 
the new cultivars, additional core SSR primer pairs could be added. With the identifica-
tion of new cultivars, a larger clonal tea cultivar CID would be developed.

TM324

49\16\11\58\62

+171
+177 TM351

+244
+256 58

+244
61\12 16\62

TM569
+269
+273 TM581 +228
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TM569 +269

+273

+265
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+234 4

+228
29

29\4

28

+162
+171

Fig. 4 Cultivar identification diagram (CID) of clonal tea cultivars (III). The codes are in accord with those in 
Table 1

Fig. 5 Fingerprinting mode of two clonal tea cultivars genotyped by TM442. The genotypes of the two 
cultivars were both ‘+268, +286’
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Discussion
Recently the single nucleotide polymorphism (SNP) has rapidly become a well-con-
sidered marker choice for genetic studies, due to their low cost, high genotyping effi-
ciency, genome-wide coverage and analytical simplicity. SNP markers have been used 
in tea plant for cultivar identification (Fang et al. 2014), genetic diversity analysis (Yang 
et al. 2016), genetic map construction (Ma et al. 2015), nevertheless, it does not mean 
we cannot use SSR markers anymore. SSRs are still served as excellent markers in tea 
plant genetic analyses. As useful genetic markers, SSRs have been provided with sev-
eral advantages for their co-dominant, hyper-variability, polymorphism, ease and reli-
ability of scoring. SSRs have been used extensively for analysis of genetic diversity, 
population genetics, linkage mapping and association analysis (Verma et al. 2012). Fur-
thermore, the high PIC value of SSRs (up to three fold higher than SNPs), coupled with 
high heterozygosity values makes them useful for assessment of genetic relatedness and 
map based cloning (Yang et al. 2011). We reported the combined PID value of only 6 
long-core motif SSRs herein was 2.22 × 10−5, while that of 60 polymorphic SNPs was 
about 1.0 × 10−5 (Fang et al. 2014). That was to say, the discriminating power of only 6 
long-core motif SSRs reached approximately half to that of 60 SNPs. In comparison, the 
advantage of SSRs over SNPs for individual fingerprinting is obvious.

The successes of DNA fingerprinting greatly rely on the markers’ quality and the 
accuracy of genotyping data, thus supposed to be perfectly repeatable in every lab. In 
the present work, a great deal of attention have been paid to the marker selection step. 
The 33 markers initially selected from a tea plant genetic map were all long-core motif 
ones, which render the interpretation of electropherograms and the true alleles more 
reliable. Furthermore, owing to additional criteria used for selection, the new set of 6 
core SSR markers were all provided with enough discriminant power, and were highly 

Fig. 6 Fingerprinting mode of two clonal tea cultivars genotyped by TM324. The genotype of ‘A’ cultivar was 
‘+171’, The genotype of ‘B’ cultivar was ‘+171, +183’
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polymorphic, easily manageable, which helped in improving the identification efficiency. 
The capillary electrophoresis conducted in ABI 3730 sequencer was capable of provid-
ing high detection sensitivity of amplified DNA fragments, which has been proved to 
be a powerful and efficient technique for automated and accurate estimation of allele 
sizes (Brunings et al. 2010; Li et al. 2014). There were no differences between the two 
independent replicates, which both detected by the capillary electrophoresis technol-
ogy, showed the detection results held stability and reproducibility. The set of 6 core SSR 
markers in this investigation were valuable resources, and were of great importance in 
tea cultivar fingerprinting.

The phylogeny tree was incapable of providing us which information could be used for 
the identification of the tested cultivars, although it represented all the variability in the 
tested cultivars. By using the genotypes of the tested cultivars (Table 4 showed), every-
one could decide which primers to use to identify two cultivars, nevertheless, it would 
be not so straightforward but it would be done using a little more time to analyze the 
fingerprinting data in discriminating the tested tea cultivars. The CID directly allowed 
separation of cultivar sample at each step, and the whole identification process was dis-
played, which differed from the phylogeny tree and was an extension of the fingerprint-
ing data. For these reasons, the CID method was a kind of useful complements to the 
phylogeny tree and fingerprinting data when used to quickly identify tea cultivars.

From the phylogeny tree, we can find that the core SSR markers are not strongly corre-
lated with the trait ‘cultivar processing-property’. In the near future, we will focus on the 
study of the linkage disequilibrium (LD)-based association analysis (Gupta et al. 2005) 
through SSR scanning of diverse tea cultivars (or germplasms), to detect SSR markers 
strongly correlated with target traits to help marker assistant selection in tea-breeding 
programs.

Conclusions
The 6 core SSR markers with long-core motif selected in the study on the bases of the 
degree of gene polymorphism and of genotype frequencies revealed, of easy and sta-
ble allele separation and scoring, enabled the full identification of 66 tested clonal tea 
cultivars.

The tea plant CID based on the suggested core SSR markers and genotyping data 
revealed, was a useful complement to the phylogeny tree and the fingerprinting data, 
provides help in quickly identifying the clonal tea cultivars and, consequently, in pro-
tecting the plant breeders’ rights.
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