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Background
In the last few decades, many anomalous diffusion phenomena have been found in the 
real world, which lead to the generation of the fractional diffusion equations (FDEs). 
The FDEs emerge from numerous research fields such as modeling chaotic dynamics of 
classical conservative systems (Zaslavsky et al. 1993), groundwater contaminant trans-
port (Benson et al. 2000a, b), turbulent flow (Carreras et al. 2001; Shlesinger et al. 1987), 
and applications in physics (Sokolov et al. 2002), finance (Raberto et al. 2002), biology 
(Magin 2006), hydrology (Baeumer et al. 2001) and image processing (Blackledge 2009; 
Bai and Feng 2007). Usually, it is unavailable to access the closed-form analytical solu-
tions of the FDEs (Alquran et al. 2015; Allan and Al-Khaled 2006; Sababheh et al. 2003). 
Therefore, many numerical approaches for the FDEs have been proposed and developed 
intensively in the last decade, for instance Zhang et al. (2010), Ervin et al. (2007), Lang-
lands and Henry (2005), Liu et al. (2004), Meerschaert and Tadjeran (2004, 2006), Tian 
et al. (2015), Gu et al. (2015). However, even if the discretized approach of the FDEs is 
implicit, it still can result in unconditionally unstable (Meerschaert and Tadjeran 2004, 
2006) because of the nonlocality of the fractional differential operators.

In order to overcome the difficulty of the stability, (Meerschaert and Tadjeran 2004, 
2006) put forward a shifted Grünwald discretization to approximate FDEs with a left-sided 
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fractional derivative and the FDEs with two-sided fractional derivatives, respectively, and their 
method has been proved to be unconditionally stable. However, it is worth noting that most 
of the numerical methods for FDEs tend to generate full coefficient matrices, which require 
computational cost of O(N 3) and storage of O(N 2), there is no doubt that it will certainly 
increase the computational work; see, e.g., Wang et al. (2010) for a discussion of these issues.

Recently, there is some progress on fast numerical solutions of FDEs. Wang et  al. 
(2010) discovered that the full coefficient matrix generated by Meerschaert and Tadjeran 
(2006) method has a good feature, i.e., it can be written as a sum of diagonal-multiply-
Toeplitz matrices. Thus the storage requirement is reduced from O(N 2) to O(N ). As we 
know, the Toeplitz matrix-vector product (MVP) can be computed in O(N logN ) opera-
tions by the fast Fourier transforms (FFTs) (Chan and Ng 1996). Fast methods Lei and 
Sun (2013), Popolizio (2015), Gu et al. (2015, 2015) have been developed to solve FDEs 
with the shifted Grünwald formula. Wang and Wang (2011) proposed a conjugate gradi-
ent normal residual (CGNR) to solve the discretized system by Meerschact and Tadjer-
an’s method with the computational cost of O(N logN ). The preconditioned CGNR with 
a circulant preconditioner is proposed by Lei and Sun (2013), to solve FDEs by Meer-
schact and Tadjeran’s method with constant diffusion coefficients.

In this paper, we employ the implicit finite difference method to discretize the FDEs and 
the problem is transformed to solve a linear nonsymmetric Toeplitz system in each time 
step. Since, the Bi-Conjugate Gradient (BiCG) (Saad 2003, pp. 234–236) and Bi-Conjugate 
Residual (BiCR) (Sogabe et al. 2009) can be regarded as two effective methods for solving 
the nonsymmetric system. There is no doubt that the two methods with Toeplitz fast MVP 
can be used to solve such discretized Toeplitz linear systems. However, from Sogabe et al. 
(2005), Pestana and Wathen (2015), if the two iterative methods are employed directly, then 
we indeed fail to make full use of Toeplitz structure of the discretized system, it also means 
that their computational cost fail to attain optimality. Hence, it is still worth finding more 
effective methods to reduce the computational complexity. Recently, in Sogabe et al. (2005), 
Pestana and Wathen (2015), a permutation matrix P was introduced to transform the non-
symmetric matrix into a symmetric one so as to improve the performance of iterative meth-
ods. In view of this point, we re-explain the ideas in Sogabe et al. (2005), Pestana and Wathen 
(2015) as a kind of preconditioning techniques for solving the discretized system of the FDEs 
by the method of Meerschaet and Tadjeran. More precisely, we do equivalent transforma-
tion for the original discretized system, left multiplying by a permutation matrix (Pestana 
and Wathen 2015) at the same time, then we obtain a new symmetric linear system with the 
coefficient matrix being a Hankle matrix, which has the same solution with the original dis-
cretized system. As we know, the symmetric linear systems are usually simpler to be solved 
than the nonsymmetric cases. Conjugate Gradient (CG) and Conjugate Residual (CR) are 
two effective methods for solving symmetric linear system. In this paper, we extend CG and 
CR to BiCGT and BiCRT, respectively, which are proposed to solve the equivalent equation. 
The numerical results show that both BiCGT and BiCRT are more competitive than CGNR.

The paper is organized as follows. in Sect. 2, we briefly introduce the discretization of 
FDEs by finite difference method. In Sect.  3, we construct the permutation precondi-
tioner and propose BiCGT and BiCRT to solve the equivalent system of linear equations. 
In Sect.  4, numerical results are reported to illustrate the efficiency of the proposed 
methods. Concluding remarks are given in Sect. 5.
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Discretization of FDEs by finite difference method
In this section, we are interested in solving an initial-boundary value problem of the fol-
lowing FDEs,

where α ∈ (1, 2) is the order of the space fractional derivative, f(x, t) is the source term, 
and the diffusion coefficients satisfying d1 ≥ 0, d2 ≥ 0, and d1 + d2 �= 0. In this paper, 
we use the Grünwald-Letnikov form Podlubny (1999) to define the left-sided and the 
right-sided fractional derivatives ∂

αu(x,t)
∂+xα

 and ∂
αu(x,t)
∂−xα

:

where ⌊·⌋ denotes the floor function, and the Grünwald coefficients g (α)k  are defined as 
follows

which can be evaluated by the recurrence relation

In order to derive the proposed scheme, let h = xR−xL
N+1  and ∆t = T/M be the sizes of 

spatial grid and time step, respectively (N, M are positive integers). Define xi = xL + ih 
(i = 0, 1, . . . ,N + 1) and the temporal partition tm = m∆t (m = 0, 1, . . . ,M). Let 
u
(m)
i = u(xi, tm), f

(m)
i = f (xi, tm). We employ the shifted Grünwald approximation 

(Meerschaert and Tadjeran 2004, 2006):

where g (α)k  is defined in Eq. (2). Then the corresponding finite difference scheme

is unconditionally stable, see Meerschaert and Tadjeran (2004, 2006) for details.
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Let u(m) = [u
(m)
1 ,u

(m)
2 , . . . ,u

(m)
N ]T ∈ R]N , f (m) = [f

(m)
1 , f

(m)
2 , . . . , f

(m)
N ]T ∈ R

N . Then we 
can rewrite (3) into the matrix form

with

where

We can note that Gα is a nonsymmetric Toeplitz matrix, thus it can be stored with N + 1 
entries (Wang et al. 2010). The Toeplitz matrix-vector product (MVP) can be computed 
in O(N logN ) complexities with the aid of FFTs (Pang and Sun 2012).

Define vN ,M = hα

∆t = (xR − xL)
αT−1 M

(N+1)α
, which is related to the number of time 

steps and grid points. The above linear system (4) can be rewritten in the following 
matrix form

where

and the right hand vector

In order to illustrate the convergence and stability of the implicit difference scheme (3), 
we note that g (α)k  satisfy the following proposition.

Proposition 1 (Meerschaert and Tadjeran 2004; 2006; Wang et al. 2010) Let 1 < α < 2 
and g (α)k  be defined in (2). Then we have

(4)
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(5)M(m)u(m) = b(m−1),

M(m) =
hα

∆t
= vN ,MI − A(m) = vN ,MI − (d1Gα + d2G

T
α ),

b(m−1) = vN ,M(u(m−1) +∆tf (m)).
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Since | g (α)1 |>
∑n

j=0,j �=1 g
(α)

k , M(m) = vN ,MI − A(m) is a strongly diagonally dominant 
and nonsingular Toeplitz matrix, and thus the scheme (3) is monotone; refer to Wang 
et al. (2010).

The BiCGT method and the BiCRT method
We will show how to construct the permutation preconditioners for accelerating the 
iterative solver and describe the derivation process of BiCGT and BiCRT. Furthermore, 
an analysis of computational cost for each iteration step is also proposed. In the linear 
system (5), M(m) is a nonsymmetric Toeplitz matrix. As previously mentioned, we can-
not exploit BiCG and BiCR for resulting linear systems (5) directly, otherwise it is not 
possible to take advantage of the Toeplitz structure of coefficient matrix. So we need to 
modify and improve the BiCG and BiCR methods particularly for solving (5). Recently, 
Sogabe et  al. (2005), proposed a preconditioner of permutation matrix for improving 
the performance of the Krylov subspace method, which is used to solve a nonsymmetric 
Toeplitz linear system. Later, Pestana and Wathen rigorously establish a circulant pre-
conditioned MINRES method (Paige and Saunders 1975) for nonsymmetric Toeplitz 
systems. Inspired by their pioneer work, we construct a preconditioner, which is a per-
mutation matrix P (Sogabe et al. 2005) with the form of

We would like to solve the Toeplitz system (5) by the CG-like method. This goal can be 
achieved with little additional computing cost, since we can get the equivalent system:

which can be regarded as a left preconditioning technique (Saad 2003) and also has the 
same solution with (5). Define M̃(m) = PM(m), b̃(m−1) = Pb(m−1), then (6) can be rewrit-
ten into

an equivalent statement is that M(m) is self-adjoint with respect to the bilinear form 
defined by P (Paige and Saunders 1975). P is symmetric positive definite, a nonsym-
metric Toeplitz matrix is exactly changed into a symmetric matrix M̃(m), so that (7) can 
be solved by the modified BiCG, where the additional operations for dual systems have 
been eliminated.

Firstly, we consider CG and BiCG (Saad 2003). Then we followed the philosophy 
behind the derivation of iterative method in Sogabe et al. (2005 Algorithm1), i.e., in the 
CG Algorithm, we replace A and b with Ã = PM and f̃ = Pf , respectively. Then we get 
the following new algorithm:

(6)(PM(m))u(m) = Pb(m−1),

(7)M̃(m)u(m) = b̃(m−1),



Page 6 of 12Wang et al. SpringerPlus  (2016) 5:1109 

In BiCGT, we only need one MVP, i.e. M(m)pn, and two inner products, three vec-
tor additions/subtractions per iteration. The rewritten algorithm is more effective than 
CGNR, because P multiply an arbitrary vector is to reorder the vector in its reversed 
order (Sogabe et  al. 2005). Therefore, it can greatly reduce the required number of 
MVPs.

In a similar way, we can get the algorithm of BiCRT for symmetric linear system (7), 
BiCRT reduces to CR if we get rid of the permutation preconditioner P, and the algo-
rithm of BiCRT is presented as blew. 

If we employ BiCG or BiCR directly, it is impossible to minimize the residual vector 
in some special conditions. However, BiCRT could realize this goal to some extent. The 
approximation un+1 is generated from un by moving from un in a certain direction pn to 
a minimum point of the residual function E(u) = �M̃(m)u− b̃(m−1)�2, u ∈ R

N. In other 
words, for un+1 = un + αnpn, αn is chosen to minimize E(u).

It is useful to consider the computational cost. We give a table to illustrate the com-
putational cost of BiCG, BiCR, BiCGT, BiCRT and CGNR. “AXPY” denotes addition of 
scaled vectors, and “1+ 1” denotes 1 product with the matrix and 1 with its transpose. 
From Table 1, it is remarkable that BiCG and BiCR, BiCGT and BiCRT require almost 
the same memory and computational cost in each iteration step. More precisely, BiCGT 
is the best method to solve the above system in terms of computational cost (i.e, AXPYs 
and MVPs). For BiCRT, the number of AXPYs is one more than BiCGT, and for CGNR, 
the number of MVPs is one more than BiCGT. As we know, the computational complex-
ity of one Toeplitz MVP is O(N logN ) by FFTs, but one AXPY can be computed in O(N ) 
complexity. So BiCRT is more efficient than CGNR from this perspective.
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Numerical results
We solve the FDEs (1) numerically by the implicit finite difference method given in 
Sect. 2. After the finite difference discretization and the equivalent transformation, the 
symmetric linear system (7) is solved by BiCGT (Algorithm  1), BiCRT (Algorithm  2), 
and CGNR (Wang and Wang 2011), respectively. All the MVPs M̃(m)u(m) are done by 
FFTs in O(N logN ) operations (Lei and Sun 2013) and the initial guess is chosen to be 
zero vector at each time step. The stopping criterion of BiCGT, BiCRT and CGNR is set 
to be

where r(k) is the residual vector of the linear system after k iterations and r(0) is the initial 
residual vector.

In the following tables, “N” denotes the number of spatial grid points, “M” denotes 
the number of time steps, CPU(s) denotes the total CPU time (in seconds) for solv-
ing the whole discretized system. “Error” denotes the infinity norm of the difference 
between the true solution and the approximation at the last time step. “Iter” denotes 
the average number of iterations over all time discretized level for solving the FDEs, 
i.e., Iter = 1

M

∑M
m=1Iter (m), where Iter(m) is the number of iterations required for solv-

ing the linear system (7) in the mth time discretized level. All experiments are run in 
MATLAB R2010a on a PC with the following configuration: Windows 7 (32 bit), Iter(R) 
Core(TM) i3-2130 CPU 3.40 GHz and 4 GB RAM.

Example 1 We consider FDEs (1) on space interval [xL, xR] = [0, 1] and time inter-
val [0,T ] = [0, 1] with diffusion coefficients d1 = 0.8, d2 = 0.2, initial condition 
u0(x) = sin(1)x3(1− x)3, and source term

�r(k)�2

�r(0)�2
< 10−7,

f (x, t) = cos(t + 1)x3(1− x)3 − sin(t + 1)

{

Γ (4)

Γ (4 − α)
[d1x

3−α + d2(1− x)3−α]

− 3
Γ (5)

Γ (5− α)
[d1x

4−α + d2(1− x)4−α] + 3
Γ (6)

Γ (6− α)
[d1x

5−α + d2(1− x)5−α]

−
Γ (7)

Γ (7− α)
[d1x

6−α + d2(1− x)6−α]

}

.

Table 1 Summary of algorithmic cost per iteration step

Method Dot product AXPY MVP

BiCG 2 5 1+1

BiCR 2 6 1+1

BiCGT 2 3 1

BiCRT 2 4 1

CGNR 2 3 2
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The exact solution is u(x, t) = sin(t + 1)x3(1− x)3. For the finite difference discre-
tization, the space step and time step are taken to be h = 1/(N + 1), ∆t = 2h, i.e., 
N + 1 = 2M.

The numerical results are listed in Table  2, as for comparisons, we also carry out 
CGNR without preconditioner. From Table 2, it is remarkable that the error is improved 
for CGNR, BiCGT and BiCRT as the increasing of α. However, BiCGT and BiCRT are 
more effective than CGNR in terms of CPU time. More precisely, the performance 
of BiCGT is the best in terms of the CPU time except the cases of α = 1.4,N = 255, 
α = 1.4,N = 511, α = 1.4,N = 1023, and α = 1.8,N = 1023. In addition, the aver-
age number of iterations of BiCGT is less than that by CGNR and BiCRT some-
times. For instance, look at these cases in the numerical results at discretized size 
N = 127,M = 64 , N = 255,M = 128, and N = 511,M = 256 for α = 1.8. BiCGT and 
BiCRT have faster convergence speed, less computational time expenditure than CGNR. 
Meanwhile, we can see that the CPU time increases as the order α of the time deriva-
tive increases. To explain this phenomenon, we list the spectra of the original matrix 
M(m) with different α in Fig.  1. As we can see from the figure, most of eigenvalues is 
close to zero with the increasing of the valve of α, it means that the coefficient matrix 
become increasingly ill-conditioned, it also implies that the linear systems will be dif-
ficult to solve.

Example 2 Consider FDEs (1) on space interval [xL, xR] = [0, 1] and time inter-
val [0,T ] = [0, 1] with diffusion coefficients d1 = 0.8, d2 = 0.2, initial condition 
u0(x) = x2(1− x)2, source term

Table 2 Comparisons for solving Example 1 by different methods with α = 1.4, 1.5 and 1.8 
at t = 1

α N + 1 CGNR BiCGT BiCRT

CPU(s) Error Iter CPU(s) Error Iter CPU(s) Error Iter

1.4 64 0.129 3.7873e−4 69.6 0.101 3.7873e–4 63.6 0.103 3.7873e–4 63.7

128 1.038 1.9163e–4 163.1 0.632 1.9163e−4 144.0 0.646 1.9163e−4 143.7

256 4.828 9.6389e−5 272.0 3.963 9.6389e−5 354.0 3.898 9.6390e−5 338.7

512 28.391 4.8338e−5 375.8 25.382 4.8338e−5 590.5 23.993 4.8342e−5 546.4

1024 136.318 2.4205e−5 476.0 129.990 2.4206e−5 838.5 114.42 2.4212e−5 726.3

1.5 64 0.140 2.7756e−4 75.7 0.107 2.7756e−4 65.4 0.150 2.7756e−4 65.4

128 1.206 1.4046e−4 188.2 0.760 1.4046e−4 162.6 0.844 1.4046e−4 162.2

256 7.339 7.0658e−5 410.5 4.888 7.0654e−5 421.0 5.662 7.0654e−5 418.9

512 51.154 3.5436e−5 681.4 42.872 3.5435e−5 955.4 45.933 3.5439e−5 904.0

1024 289.79 1.7747e−5 1015.0 267.921 1.7744e−5 1657.2 277.638 1.7751e−5 1464.7

1.8 64 0.186 8.0708e−5 103.8 0.131 8.0708e−5 85.2 0.140 8.0708e−5 85.0

128 1.852 4.0979e−5 292.8 1.042 4.0979e−5 234.3 1.100 4.0978e−5 234.0

256 14.583 2.0659e−5 841.5 8.570 2.0659e−5 746.9 8.629 2.0659e−5 729.4

512 182.390 1.0375e−5 2472.5 96.153 1.0374e−5 2205.7 96.526 1.0374e−5 2164.3

1024 1708.245 5.2057e−6 6053.9 1075.756 5.1984e−6 6778.4 1058.220 5.1985e−6 6604.0
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The exact solution of this example is u(x, t) = e−tx2(1− x)2. For the finite difference dis-
cretization, the space step and time step are taken to be h = 1/(N + 1), ∆t = 2h and 
N + 1 = 2M, respectively.

Table 3 shows the numerical results for solving Example 2 by different methods. The 
error is decreased for those methods as the increasing of α, and the accuracy is almost 
the same as Example 1. Similar to Example 1, BiCGT and BiCRT are more effective than 
CGNR in terms of CPU time elapsed. Besides, the CPU time increases as the order α 
of the time derivative increases is similar to Example 1, and the reason is the same as 
Example 1. We also list the spectra of the matrix M(m) with different α in Fig. 2.

Concluding remarks
Two new iterative methods, named BiCGT and BiCRT, are presented to solve the result-
ing linear system of the FDEs (1), which are discretized by the implicit finite difference 
method. Namely, with the help of the permutation matrix P, we transform the difficult 
nonsymmetric linear systems into the symmetric cases, which are often simpler to be 

f (x, t) = −e−t
{

x2(1− x)2 +
Γ (3)

Γ (3− α)
[d1x

2−α + d2(1− x)2−α]

− 2
Γ (4)

Γ (4 − α)
[d1x

3−α + d2(1− x)3−α] +
Γ (5)

Γ (5− α)
[d1x

4−α + d2(1− x)4−α]
}

.
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Fig. 1 The spectra of the matrix M(m) with α = 1.2, 1.4, 1.6, 1.8 for Example 1
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Fig. 2 The spectra of the matrix M(m) with α = 1.2, .4, 1.6, 1.8 for Example 2

Table 3 Comparisons for solving Example 2 by different methods with α = 1.4, 1.5 and 1.8 
at t = 1

α N + 1 CGNR BiCGT BiCRT

CPU(s) Error Iter CPU(s) Error Iter CPU(s) Error Iter

1.4 64 0.131 4.0801e−4 70 0.101 4.0801e−4 64.1 0.103 4.0801e−4 64.2

128 1.007 2.0542e−4 157.3 0.671 2.0542e−4 151.9 0.682 2.0542e−4 151.7

256 4.764 1.0283e−4 274.0 3.985 1.0283e−4 353.7 3.977 1.0283e−4 349.0

512 30.947 5.1397e−5 408 27.848 5.1395e−5 643.2 26.268 5.1398e−5 601.4

1024 148.506 2.5696e−5 519 147.36 2.5677e−5 948.6 130.875 2.5682e−5 837.8

1.5 64 0.147 2.7980e−4 76.3 0.100 2.7980e−4 66.9 0.111 2.7980e−4 66.6

128 1.286 1.4222e−4 190.0 0.745 1.4222e−4 171.5 0.791 1.4222e−4 171.0

256 7.410 7.1577e−5 397.5 4.806 7.1582e−5 427.2 4.962 7.1582e−5 426.0

512 56.933 3.5883e−5 713.8 43.722 3.5877e−5 1012.6 42.825 3.5883e−5 972.4

1024 331.186 1.7968e−5 1106 286.337 1.7953e−5 1841.4 261.763 1.7948e−5 1659.9

1.8 64 0.182 9.8722e−5 105.5 0.144 9.8722e−5 91.3 0.237 9.8722e−5 90.2

128 1.890 4.6159e−5 298.2 1.088 4.6159e−5 241.3 1.592 4.6159e−5 240.1

256 15.027 2.2331e−5 858.4 8.798 2.2331e−5 758.0 10.687 2.2331e−5 746.2

512 189.009 1.0989e−5 2503.8 105.062 1.0989e−5 2332.5 133.211 2.2331e−5 2283.1

1024 1733.04 5.4529e−6 6104.3 1158.655 5.4529e−6 7074.2 1007.543 5.4529e−6 6900.6
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solved. The computational complexity can be reduced from O(N 3) to O(N logN ) by uti-
lizing FFTs. Numerical experiments illustrate the effectiveness of the proposed methods. 
In our future work, we will apply BiCGT and BiCRT to solve other (two dimensional) 
fractional differential equations (Wang and Basu 2012), such as fractional advection-dif-
fusion equations; and we will investigate and develop some suitable preconditioning, see 
e.g. Lei and Sun (2013), Gu et al. (2015) to further accelerate our proposed methods.
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