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Background
The back analysis method is an important method in underground engineering. Since 
it was proposed in the 1970s, numerous studies have been performed (Gao and Liu 
2009; Wang and Li 1993; Sakurai and Takeuchi 1983). Currently, back analysis can be 
divided into two types of analyses: parameter identification and model identification 
(Gao and Liu 2009). In parameter identification, the constitutive model of surround-
ing rock is assumed to be a simple model, such as the elastic model, the elastic–plastic 
model and the rheological model. Using these simple models, the mechanical param-
eters of surrounding rock can be inversed based on the measurement information, such 
as displacement. For simplicity, parameter identification based on measured displace-
ments has been the most common back analysis method for underground engineer-
ing (Feng et al. 2000; Maier and Gioda 1982; Rechea et al. 2008; Sharifzadeh et al. 2013; 
Yazdani et al. 2012). However, due to its complexity, model identification has developed 

Abstract 

To compute the stability of underground engineering, a constitutive model of sur-
rounding rock must be identified. Many constitutive models for rock mass have been 
proposed. In this model identification study, a generalized constitutive law for an 
elastic–plastic constitutive model is applied. Using the generalized constitutive law, the 
problem of model identification is transformed to a problem of parameter identifica-
tion, which is a typical and complicated optimization. To improve the efficiency of the 
traditional optimization method, an immunized genetic algorithm that is proposed 
by the author is applied in this study. In this new algorithm, the principle of artificial 
immune algorithm is combined with the genetic algorithm. Therefore, the entire 
computation efficiency of model identification will be improved. Using this new model 
identification method, a numerical example and an engineering example are used to 
verify the computing ability of the algorithm. The results show that this new model 
identification algorithm can significantly improve the computation efficiency and the 
computation effect.

Keywords:  Elastic–plastic constitutive model, Surrounding rock, Identification, 
Immunized genetic algorithm, Underground engineering

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Gao et al. SpringerPlus  (2016) 5:1050 
DOI 10.1186/s40064-016-2726-z

*Correspondence:  
wgaowh@163.com 
Key Laboratory 
of Ministry of Education 
for Geomechanics 
and Embankment 
Engineering, College 
of Civil and Transportation 
Engineering, Hohai 
University, 1 Xikang Road, 
Nanjing 210098, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2726-z&domain=pdf


Page 2 of 19Gao et al. SpringerPlus  (2016) 5:1050 

very slowly. Different from parameter identification, in model identification, the con-
stitutive model of surrounding rock is unknown. Based on the measurement informa-
tion, such as displacement, the structure and parameters of the constitutive model can 
be identified. Because it is very complex to select the structure and parameters of the 
constitutive model at the same time, generally, the structure of the constitutive model is 
determined by the prior knowledge, such as engineering experience, and then only the 
parameters of the constitutive model are identified based on measurement information. 
Thus, the model identification can be simplified as similar as the parameter identifica-
tion. However, the model identification is more complex than the parameter identifica-
tion. In model identification, the model parameters and the mechanical parameters can 
be identified at the same time. And the structure of the constitutive model determined 
by the prior knowledge is generally more complex than the assumed simple model used 
in parameter identification. Moreover, different from the mechanical parameters, which 
have the clear physical and mechanical meaning, and can be determined by the tests eas-
ily, the model parameters, which only describe the constitutive model, can not be deter-
mined by the tests. In 1987, Gioda and Sakurai proposed that model identification based 
on displacement should be the main development for back analysis (Gioda and Sakurai 
1987). In 1997, Sakurai demonstrated that the identification of a constitutive model is 
critical (Sakurai 1997). Therefore, researchers have investigated the identification of a 
constitutive model. Based on the displacement measurements of an underground road-
way, Liu (2011) identified the visco-elastic constitutive model of rock mass based on the 
traditional nonlinear optimum technique. Wang et  al. (2007) identified the geo-mate-
rial constitutive model based on their constitutive model database and several identifi-
cation algorithms. Yang and Wang (2009) presented a numerical model to identify the 
unknown equivalent constitutive model in the elastic layered rock mass of an under-
ground opening by the Gauss–Newton technique.

Because model identification is a very complicated optimization problem (Gao and 
Liu 2009), whose objective function can be shown as in Fig. 1, traditional optimization 
techniques have some shortcomings. The relationship between objective function and 
the optimization method can be described as in Fig. 2 (Gao and Liu 2009). From Fig. 2, 
the global optimization is one suitable method to solve model identification problem. 
Therefore, some important contributions to global optimization algorithms have been 
achieved. Su et al. (2008) identified the structure and parameters of the rheological con-
stitutive model of the surrounding rocks of the Jinping tunnels in China using a differen-
tial evolution algorithm. Feng et al. (2006) identified a visco-elastic model of surrounding 
rocks in the Goupitan hydroelectric power station in China using genetic programming 

 Model 

   O
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Fig. 1  Optimization objective function of model identification for underground engineering
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and a modified particle swarm optimization algorithm. Meier et  al. (2007) have per-
formed model identification of surrounding rocks for tunneling by particle swarm opti-
mization. Sha et al. (2011) presented three methods to identify the constitutive model 
of rocks based on a genetic algorithm, a back propagation neural network and genetic 
programming and compared all methods. Surajit and Wathugala (1996) calibrated a 
constitutive model using genetic algorithms. Gao (2007) proposed a method to identify 
the rheological constitutive model for rock mass of an underground roadway based on 
the fast-convergent genetic algorithm. Moreover, Gao et al. (2004) presented an identi-
fication method for the surrounding rock of an underground power house based on a 
new intelligent bionics algorithm. Because these global optimization algorithms com-
prise random search algorithms, their computational efficiency is very low. This low effi-
ciency is problematic when the model identification is extremely complicated. In this 
study, a new method to identify the constitutive model based on an immunized genetic 
algorithm is proposed. The elastic–plastic constitutive model is the main model of geo-
materials which has been comprehensively evaluated (Nakai 2012; Zheng et  al. 2002). 
In the last years, many studies (Cui et al. 2015; Lee and Pietruszczak 2008; Spiezia et al. 
2016; Zhang et al. 2012) have been carried out investigating the elasto-plastic behavior 
of rock surrounding underground excavations. And those researches have proved that 
the elastic–plastic constitutive model can describe the mechanical behaviour of rock 
surrounding underground excavation very well. Therefore, the elastic–plastic constitu-
tive model is analyzed in this study.

Generalized constitutive law of elastic–plastic model for rock materials
The generalized constitutive law of surrounding rock in strain space is

where Dijkl is the tensor of the elastic stiffness coefficient, g(σij, k) is the plastic poten-
tial function, f(σij, σijp, k) is the yield function of the stress space, F(ɛij, ɛijp, k) is the yield 

(1)

{

dσij = Dijkldεkl − 1
ADijmn

∂g
∂σmn

〈

∂F
∂εkl

dεij

〉

dσij = Dijkldεkl
if

{

f = 0
f < 0

multiple hump 
function 

Single hump 
function 

C
om

plexity 

Objective function 

Gradient algorithm 

Hansen matrix 
 algorithm 

Exhaust algorithm 

Evolutionary 
 algorithm 
(GA EP
ES et al) 

C
onvergence property  

R
obustness  

Optimization method 
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function of the strain space, σijp and ɛijp the plastic stress and strain, respectively, A is the 
hardening or softening parameter, whose form is as follows (Zheng et al. 2002; Zheng 
and Kong 2010):

k is a plastic internal variable, h is a parameter, whose form is as follows (Zheng and 
Kong 2010):

where wp is the plastic power, θp is the plastic expansion, ε̄p is the equivalent plastic 
strain.

The switch function �·� describes the loading and unloading criterion, whose form is as 
follows (Zheng and Kong 2010):

The relationship of the two yield functions is as follows:

Equation (1) can be summarized by a matrix as

where Dp is a plastic matrix, Dep is the elastic–plastic matrix [Dep] = [De] − [Dp].
Therefore, the elastic–plastic constitutive model law can be described by a plastic 

matrix. According to the mechanics derivation (Koichi 2009), the plastic matrix [Dp] can 
be described as

where Φ is the loading function, G is the plastic potential.
In this study, the surrounding rock is supposed as perfect elastic–plastic. Therefore, its 

elastic–plastic constitutive model can be simply described as follows (Nakai 2012):
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F can be described as (Zheng et al. 2002)

where I1 is the first invariant of stress, J2 is the second invariant, J3 is the third invariant 
of the stress deviator.

For the non-associative flow rule, the plastic potential G is different from the yield 
function F. And it is a very hard work to construct the function of G (Nakai 2012). More-
over, there is no generalized form for the function of G (Zheng et al. 2002). However, the 
elastic–plastic constitutive model with the associative flow rule can describe the main 
mechanical behaviours of geo-meterials well (Zheng and Kong 2010). Thus, in this study, 
simply, G = F.

Therefore, only two terms are to be determined in this elastic–plastic constitutive law: 
the stress yield function F and the elastic matrix [De]. The problem of identification for 
the elastic–plastic constitutive model can be transformed to the problem of identifica-
tion for the stress yield function F and the elastic parameters E and μ.

The generalized form of the stress yield function is (Zheng et al. 2002)

where σ̄ n
+ =

√
J2

s(θ), s(θ) is a function to describe the shape of yield function (Liu and Zheng 
1997; Zheng and Kong 2010), θ is the Lode angle, α, β and K are unknown parameters.

Because the Eq.  (10) is the generalized form of the yield functions, with the differ-
ent parameters, mainly α and K, the different yield functions can be obtained (Zheng 
et al. 2002). These yield functions include almost all widely used yield functions, such as 
Mohr–Coulomb (M–C) yield criterion, Mises yield criterion, two improved Mises yield 
criterions (exterior angle circle and interior angle circle), Drucker–Prager (D–P) yield 
criterion, Tresca yield criterion, three Zienkiewicz–Pande (Z–P) yield criterions (ellip-
tic curve, hyperbolic curve and parabolic curve) and twin-shear yield criterion, etc. The 
detailed specific relationship between different parameters and different yield functions 
can be found in reference (Zheng et al. 2002). The curves of the Eq. (10) for some gener-
ally used yield functions are shown in Fig. 3.

Using this generalized constitutive law for an elastic–plastic model, the problem of 
model identification can be transformed to a parameter identification.

To simply analyze without a loss of generalization, we assume that the parameter 
β = 0; thus, only the two parameters α and K need to be identified. In addition to the 
elastic parameters E and μ, four model parameters need to be identified: E, μ, α and K.

Model identification by immunized genetic algorithm
To improve the main operations of genetic algorithm, such as creation of initial popu-
lation, reproduction operation, crossover operation, mutation operation and selection 
operation, one new immunized genetic algorithm has been proposed by author, whose 
flow chart is as shown in Fig. 4. The details of the immunized genetic algorithm can be 
found in reference (Gao 2012).

Based on new immunized genetic algorithm, the model identification method can be 
proposed, whose flow chart is as shown in Fig. 5.

The detailed procedure of the model identification is described in the following.

(9)F(I1, J2, J3) = 0

(10)F = βI21 + αI1 − K + σ̄ n
+ = 0
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1.	 Parameter initialization

Before the algorithm is performed, all parameters must be initialized. These parameters 
include the number of individuals in the initial population, the maximum number of 

Fig. 3  Some yield function curves by the generalized form of the yield function
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Fig. 4  Flow chart of immunized genetic algorithm
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iterations and the ranges for the inversed model parameters, which are Young’s Modulus 
E, Poisson’s ratio μ, model parameters α and K.

2.	 Individual expression

In this study, an individual is expressed as X = (E, μ, α, K). An individual corresponds to 
an elastic–plastic constitutive model.

3.	 Creation of the initial population

Initial population is created by SRCM (Gao and Yin 2011).

4.	 Fitness function

In this study, the objective function is defined as

where e(i) is the error between the displacement computations and the displacement 
measurements and Num is the number of monitor points.

The fitness function is as follows:

5.	 Optimization process

The optimization operation is as same as in immunized genetic algorithm (Gao 2012).

(11)f (i) =
Num
∑

i=1

|e(i)|

(12)F(i) = 1.0/(1.0+ f (i))
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Fig. 5  Flow chart of model identification based on immunized genetic algorithm
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6.	 Termination condition

In this study, the termination criterion specifies that the difference of the maximum 
fitness value and the average fitness value is less than 10e-5. To avoid infinite iteration, a 
maximum number of evolutionary generations is also specified.

Case study
Numerical example

A numerical testing example is employed to test the proposed algorithm. The example is 
an underground tunnel with a radius of 3 m. The details of this example can be found in 
reference (Gao 2016).

For computation, the mechanical property of the surrounding rock is assumed as 
follows:

The surrounding rock is an elastic–plastic material. The associated parameters are 
Young’s Modulus E = 2100 MPa, Poisson’s ratio μ = 0.2, cohesion C = 1.1 MPa and fric-
tion angle ϕ = 30°. Because the yield function is the Drucker–Prager theory, the defini-
tions of α and K (Zheng et al. 2002) are as follows,

According to the definition of α and K, we can obtain the values of α and K from the 
values of C and ϕ, which are as follows: α = 0.165872, K = 0.875726 MPa.

Because the ranges of the parameters only affect the computing efficiency and have 
minimal influence on the computing results, the ranges for the four parameters are as 
follows:

For comparison study, the traditional genetic algorithm (GA), fast genetic algorithm 
(FGA) (Gao 2007) and the immunized genetic algorithm (IGA) are all applied for this 
example.

Based on testing and experience, the parameters for three algorithms are summarized 
in Table 1.

To compare the computation effect, the results of GA, FGA and IGA are summarized 
in Table 2.

(13)α =
3 sin ϕ

√
3
√

3+ sin2 ϕ

(14)K =
3C sin ϕ

√
3
√

3+ sin2 ϕ

2000MPa ≤ E ≤ 2400MPa, 0.1 ≤ µ ≤ 0.3, 0.0 ≤ α ≤ 0.6, 0.0 < K ≤ 2.5MPa.

Table 1  Parameters for three algorithms (GA, FGA and IGA)

n is the number of individuals, m is maximum number of evolutionary generations, pc is the probability of crossover and pm 
is the probability of mutation

n m pc pm

GA 100 500 0.65 0.15

FGA 100 500 – –

IGA 100 500 – –
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As shown in Table 2, the results of the IGA are superior to the results of the GA and 
FGA; therefore, the computation effect in this study is reasonable.

To simply evaluate the computational efficiency of the GA, FGA and IGA, the number 
of objective function evaluations during the search for the optimum, which is denoted 
by NOF and represents the computation time required by the optimization algorithm, is 
applied. The NOFs of the GA, FGA and IGA methods are given in Fig. 6.

As shown in Fig. 6, the NOF of IGA is much less than those of other algorithms, and 
then the computational speed of IGA in this study is very faster than those of other algo-
rithms in the literature. In other words, the computational efficiency of the IGA in this 
study is the best and is superior to those of other algorithms.

The results of these studies conclude that the IGA method can be used to obtain a 
suitable model with higher accuracy and less effort.

Engineering example

The Huainan coal mine is located north of Huainan city, of Anhui Province in China. 
As an old mining, the entire mine has been integrated into the stage of deep mining. 
The different geological environments range from shallow rock roadway to the deep rock 
roadway; as a result, the mechanical characteristics are very complicated. To analyze the 
failure mechanism of the surrounding rock for deep rock roadway, a constitutive model 

Table 2  Comparison of model identification results

E/MPa μ α K/MPa

Theory values 2157 0.2 0.165872 0.875726

Identified values by GA 2135 0.182 0.171365 0.853471

Relative error of computing results for GA (%) 1.02 9 3.31 2.54

Identified values by FGA 2140 0.182 0.168442 0.853532

Relative error of computing results for FGA (%) 0.79 9 1.55 2.54

Identified values by IGA 2143 0.188 0.167812 0.854621

Relative error of computing results for IGA (%) 0.65 6 1.17 2.41

Fig. 6  Comparison of NOFs for GA, FGA and IGA
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of the surrounding rock based on the displacement measurement results must be identi-
fied. In this study, two main types of surrounding rock are identified: types III and II (Liu 
et al. 2010).

The surrounding rock of the −780 CS
13 floor haulage roadway in the Xieyi mine is char-

acterized as the moderate poor type, which is associated with type III. The depth of this 
roadway is 800 m. Its main lithology consists of fine sandstone and limestone, and its 
integrity is satisfactory. The roadway cross-section is shown in Fig. 7. Its width is 3.8 m, 
the height of the side wall is 1.3 m, the height of the crown is 1.9 m and the depth of the 
floor arch is 0.5 m.

To analyze the stability of the roadway, some site monitoring studies have been 
performed, including surface displacement measurements and deep displacement 
measurements.

For the surface displacement measurements, the convergence between both sides and 
the convergence between the roof and the floor were completely measured. The layout of 
the monitoring points is illustrated in Fig. 7. The layout of the monitoring points for the 
deep displacement measurements is also illustrated in Fig. 7. The depth of each moni-
toring hole was 15 m. Six monitoring points were installed along each monitoring hole, 
with distances of 1, 3, 5, 7, 10 and 15 m, which are designated point 1, point 2, point 3, 
point 4, point 5 and point 6. Assuming the point at a depth of 15 m is stationary, the 
relative displacement of the remaining points can be obtained.

The surface convergence displacement measurement and deep multi-point displace-
ment are shown in Figs. 8 and 9.

According to the field monitoring of the hydraulic fracturing technique, the vertical 
initial stress is 13.2 MPa and the horizontal initial stress is 19.5 MPa. The FEM model is 
shown in Fig. 10.

Fig. 7  Layout of the monitoring points for −780 CS
13

 floor haulage roadway in the Xieyi mine
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Because the ranges of the parameters only affect the computing efficiency and have 
minimal influence on the computing results, the ranges of the four model parameters are 
as follows:

Based on the surface convergence displacement, the constitutive model of the sur-
rounding rock can be performed by this new method.

The parameters of model identification method are as follows:
The number of individuals is 150, and the maximum number of evolutionary genera-

tions is 500.
The identified model parameters are as follows:

In previous studies (Liu et al. 2010), based on some laboratory experiments and engi-
neering experience, the suggestion values for mechanical parameters of typical sur-
rounding rock were given to conduct the support design. Because the suggestion values 
can consider the complicated geological environment for surrounding rock, they are 
very suitable to be used to test the identified parameters in this study. The suggestion 
values of mechanical parameters for surrounding rock of type III are as follows (Liu et al. 
2010).
E is between 6 and 15 GPa, μ is almost 0.3, C is between 1.0 and 1.5  MPa and ϕ is 

between 30° and 45°.
Thus, the identified values for parameters E and μ are agree with the suggestion values 

well. However, the two model parameters α and K can not be obtained directly from the 
tests, and they can be determined from the parameters c and φ based on the yield func-
tion. To obtain the model parameters, the yield function of the surrounding rock must 
be constructed, but it is a very hard work. Because this study is only to analyze the stabil-
ity of surrounding rock, the hard work to construct the yield function of the surrounding 

1GPa ≤ E ≤ 25GPa, 0.15 ≤ µ ≤ 0.35, 0.0 ≤ α ≤ 0.8, 0.0 < K ≤ 3.5MPa.

E = 12.6GPa, µ = 0.3, α = 0.2056, K = 0.9216MPa.
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rock is not conducted. Therefore, the model parameters α and K can only be verified by 
the comparison of measured deep multi-point displacements and the computed deep 
multi-point displacements by FEM with the identified model.
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To verify the model identification results, the deep multi-point displacements can be 
computed by the FEM with the identified model. The results are shown in Fig. 11. For 
comparison, the stable displacement of each monitoring point is utilized.

As shown in Fig. 11, the computation displacements correspond with the measured dis-
placements. Therefore, the identified model for the surrounding rock of the −780 CS

13 floor 
haulage roadway in the Xieyi mine can adequately describe the real rock performance.

The surrounding rock of the −720 rock level crosscut in the Xieqiao mine is the mod-
erate type, which corresponds to type II. The depth of this roadway is 720 m. Its main 
lithology consists of fine sandstone, fine siltstone and medium fine sandstone, and its 
integrity is satisfactory. The cross-section of the roadway shown in Fig. 12. Its width is 
4.5 m, the height of the side wall is 1.5 m and the height of the crown is 2.25 m.

The layout of the monitoring points is illustrated in Fig. 12. The layout of the moni-
toring points for the deep displacement measurements is also illustrated in Fig. 12. The 
depth of each monitoring hole was 15  m. Six monitoring points were installed along 
each monitoring hole, with distances of 1, 3, 5, 7, 10 and 15  m, which are designated 
point 1, point 2, point 3, point 4, point 5 and point 6. Assuming that the point at a depth 
of 15 m is stationary, the relative displacement of the remaining points can be obtained.

The surface convergence displacement measurement and deep multi-point displace-
ments are shown in Figs. 13 and 14. 

According to the field monitoring results, the vertical initial stress is 20.1 MPa and the 
horizontal initial stress is 15.6 MPa. The FEM model is shown in Fig. 15.

Because the ranges of the parameters only affect the computing efficiency and have 
minimal influence on the computing results, the ranges for the four model parameters 
are as follows:

1GPa ≤ E ≤ 30GPa, 0.15 ≤ µ ≤ 0.35, 0.0 ≤ α ≤ 0.85, 0.0 < K ≤ 4.5MPa.

Fig. 10  FEM computation model for −780 CS
13

 floor haulage roadway in the Xieyi mine
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Based on the surface convergence displacement, the constitutive model of the surround-
ing rock can be performed by this new method.

The parameters of model identification method are as follows:
The number of individuals is 150, and the maximum number of evolutionary genera-

tions is 500.
The identified model parameters are as follows:

As the same studies for surrounding rock of type III, the two mechanical parameters 
E and μ are verified by the suggestion values of mechanical parameters in previous 

E = 14.6GPa, µ = 0.26, α = 0.1871, K = 0.8841MPa.

Fig. 12  Layout of the monitoring points for −720 rock level crosscut in the Xieqiao mine
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study and the model parameters α and K are verified by measured deep multi-point 
displacements.

The suggestion values of mechanical parameters for surrounding rock of type II are as 
follows (Liu et al. 2010).
E is between 10 and 25 GPa, μ is almost 0.25, C is between 1.2 and 2.0 MPa and φ is 

between 40° and 55°.
Thus, the identified values for parameters E and μ are agree with the suggestion values 

well. The model parameters α and K are verified by the comparison of measured deep 
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multi-point displacements and the computed deep multi-point displacements by FEM 
with the identified model.

To verify the model identification results, the deep multi-point displacements can be 
computed by the FEM with the identified model. The results are shown in Fig. 16. For 
comparison, the stable displacement of each monitoring point is employed.

As shown in Fig. 16, the computation displacements coincide with the measured dis-
placements. Therefore, the identified model for the surrounding rock can adequately 
describe the real rock performance.

In this study, the surrounding rock is assumed as one equivalent homogeneous mate-
rial. Therefore, the computed displacements at both sides are equal. In fact, the meas-
urement displacements at both sides are different. In other words, the inhomogeneous 
displacement as shown in Figs. 11 and 16 can not be described in this study.

The engineering applications prove that the new model identification method pro-
posed in this study can be used to identify a suitable constitutive model for the sur-
rounding rock of the underground engineering with reasonable efficiency using only 
surface displacement measurements.

Conclusion
The identification of a rock constitutive model is very important. From the theory analy-
sis of the elastic–plastic constitutive law of rock materials, the generalized law of consti-
tutive model is presented. Using this generalized law, the problem of identification of a 
constitutive model can be transformed to parameter identification. Therefore, the new 
immunized genetic algorithm proposed by the author is applied to an elastic–plastic 

Fig. 15  FEM computation model for −720 rock level crosscut in the Xieqiao mine
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model identification problem. Using a numerical example and an engineering example, 
this new method is verified. The results indicate that the proposed method can be used 
to identify a suitable constitutive model with high accuracy and efficiency.
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