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Background
With the rapid development of the nation’s economy, subways have become an impor-
tant traffic reduction strategy in congested urban areas in China (Guo et al. 2012). Nev-
ertheless, subway vibration loading may lead to the non-uniform settlement on subway 
foundation. Furthermore, it may cause the cracking of tunnel lining and structural crack-
ing. Hence the surrounding environment is adversely affected by vibration (Luo et  al. 
2015). Accordingly, it is necessary to estimate the settlement during operation, and it 
represents a key research topic in the design of urban mass transit.

The dynamic modulus is an important parameter used to evaluate the dynamic char-
acteristics of the soil. It is primarily divided into three types, namely the field shear wave 
test, empirical calculating method and the estimation method (Kyung and Yoo 2014). 
Nonetheless, the relationship between dynamic modulus and dynamic creep strain is 
not to establish. Meanwhile, the systematic methods of settlement estimation for evalu-
ating the dynamic characteristics of subway foundation cannot be established.
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Numerous research projects have been conducted on the dynamic creep strain 
function. For instance, Monismith and Ogawan (1975) presented an exponential 
empirical formula of time-dependent dynamic strain formula. Meanwhile, Li and 
Selig (1996); Chai and Miura (2002) proposed an improved model based on Moni-
smith’s theory, implementing the settlement prediction. Nonetheless, none of them 
evaluated the dynamic characteristics of soil. The Singh–Mitchell exponential empiri-
cal formulas creep strain model (Singh and Mitchell 1968) evaluated the engineering 
characteristics of soil. This model can be used to estimate the range from 20 to 80 % 
shear stress level. However, when the shear stress level is equal to zero, the strain esti-
mation will be less than zero error results. In an attempt to address this issue, Mesri 
modified the Singh–Mitchell model to devise the Mesri empirical formulas model 
(Mesri et al. 1981; Kondner 1963). Subsequently, it can be computed arbitrary shear 
stress level. Accordingly, it is suitable for the analysis of low stress level, including 
subway vibration loading.

Meanwhile, the dynamic stress amplitude is required for estimating the settlement of 
subway foundation, and the finite element method is commonly utilized (Olsson and 
Kallsner 2015). Metrikine and Vrouwenvelder (2000); Paulo et  al. (2015) devised the 
subway finite element model to determine the dynamic stress and analyzed dynamic 
response under vibration loading. In order to analyze the dynamic characteristics of 
the subway foundation soil along different direction during operation, Forrest and Hunt 
(2006) created the 3D finite element model to estimate the settlement.

As such, this research focuses on the dynamic characteristics of soft soil and the settle-
ment prediction. The dynamic shear modulus formula considering vibration frequency 
was established, then the proposed formula was introduced into the dynamic creep 
strain function. Subsequently, the dynamic stress of the subway foundation was obtained 
through finite element simulation. Then the improved dynamic creep strain curve was 
determined by the dynamic stress. Thereby, the settlement of the subway foundation was 
estimated. This study would be helpful to illuminate new theoretical soft soil research on 
dynamic characteristics and settlement prediction. It also has profound guiding signifi-
cance in subway engineering practices.

Experimental study on dynamic shear modulus
Analysis of dynamic triaxial test

Shield segment can be affected by subway vibration loading during operations (Shen 
et al. 2014). In order to simulate the subway vibration loading on soil, the dynamic tri-
axial test was performed.

Firstly, using the thin soil sampler (as shown in Fig.  1) to collect the in-situ undis-
turbed soil. The location of the obtained undisturbed soil was in the Hexi area of Nan-
jing, China, Metro Line 2 of Nanjing crossed through the area. In order to facilitate the 
test, the undisturbed soil samples were made of cylinder sample cylinders that were 
38 mm in diameter and 75 mm in height. Meanwhile, the researcher ensured that the 
sample preparation was performed carefully to ensure the structure of undisturbed soil 
samples were not disturbed.
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Thereafter, the physical and mechanical indexes of undisturbed soil were obtained 
through normal laboratory experiments, as detailed in Table 1.

Studies have shown that the subway loading produce a vibration waveform which is 
similar to the sine wave (Rucker 1977). Based on this, during the dynamic triaxial test, 
the loading mode used in the test is shown in Fig. 2. Where σ ′

3 is effective confining pres-
sure whereas σ ′

3 + σd is the total vertical effective dynamic stress. The dynamic triaxial 
test was performed with the undisturbed cylinders samples (left-hand section of Fig. 2). 
The test process is shown on the right-hand side of Fig. 2. Firstly, the saturation stage 
is carried out (0–A), before the sample is subjected to the effective confining pressure 
σ

′

3 during the isotropic consolidation process (A–B). Thereafter, the vertical effective 
load is loaded during the vibration stage (B–C) (Zhang et al. 2013). For instance, when 
the effective confining pressure σ ′

3 was 75 kPa, and the dynamic stress σd was 8.3 kPa, 
and the median value of dynamic stress was 4.15 kPa. Hence, the total vertical effective 
dynamic stress σ ′

3 + σd was 83.3 kPa.
In Fig. 3, it was the dynamic triaxial apparatus. During operation, the vibration staff 

(controlled by the vibration controller) driver the oscillating vibration head up and down 
so that vibration loading was applied to the soil in the cell chamber.

Fig. 1  Thin soil sampler

Table 1  Physical and mechanical properties of soft clay

Natural water content w/% Specific gravity ds Density ρ/g/cm3 Void ratio e Plastic index Ip

37.3–45 2.72 1.877 1.14 17

Fig. 2  Loading mode
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Meanwhile, with the different in-situ sampling depth of the soil, the confining pressure 
was different. According to the effective unit weight of soil and sampling depth required to 
determine the corresponding effective confining pressure during the dynamic triaxial test.

Based on the hypothesis of isotropy, the effective confining pressure σ ′

3 = d · γ
′ is con-

ducted during the dynamic triaxial test. Where d is the sampling depth of undisturbed 
soil, γ ′

= ρ
′

· g the effective unit weight of soil, ρ ′ the effective density of soil and g the 
acceleration of gravity.

In this research, the effective confining pressure was 75 and 150 kPa, respectively. It 
used a half Sine wave load (Rucker 1977).

The dynamic loads were 10, 15, and 20 N, (8.3, 12.5, 16.7 kPa) respectively;
According to the existing literature (Ng et al. 2013), the vibration loading of subways 

was predominantly in the low frequency range, so the frequency of the test was set as: 1, 
0.5 and 2 Hz respectively. Moreover, it established 10,000 vibration times.

Experimental estimation of dynamic shear modulus

The dynamic shear modulus is Gd = τd
/

γd under vibration loading. Where τd is dynamic 
shear stress and γd is dynamic shear strain, and they are the test results automatically 
obtained by the dynamic triaxial apparatus.

The case of dynamic loading was Fd = 20 N(σd = 16.7 kPa) f = 1, 0.5 and 2 Hz respec-
tively, and the strain range of this study is 5 ×  10−4 to 5 ×  10−2. The corresponding 
dynamic shear modulus when the strain equals to 0 are shown in Table 2.

Fig. 3  Dynamic triaxial apparatus

Table 2  The test values of dynamic shear modulus

Effective confining pressure/kPa Frequency/Hz Dynamic shear modulus/MPa

75 0.5 26

1 33

2 39

150 0.5 41

1 45

2 54
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Under the same conditions, by increasing the effective confining pressure, the soil was 
compacted, the void ratio of soil decreased, the dynamic deformation reduced and the 
dynamic shear modulus increased. Thereafter, by increasing the vibration frequency, the 
time was shorter and the deformation of soil decreased, whilst corresponding dynamic 
shear modulus increased when the strain equals to 0.

Empirical formula of the dynamic shear modulus

When lacking the necessary test equipment, the empirical method based on the physi-
cal and mechanical properties can accurately estimate the dynamic shear modulus (Luo 
et al. 2015).

In order to illustrate the influence of frequency, according to the existing literature (Ng 
et  al. 2013; Liu 2013; Zhai and Liu 2005), the frequency was changed with the varied 
speed when the subway run. The effect of speed on subway vibration loading under the 
same sampling depth mainly changes by frequency. Hence, in this case, the vibration 
frequency affected the dynamic stress σd. Therefore, the frequency of the soft soil was a 
pivotal factor. The relationship between frequency and dynamic shear modulus can be 
expressed by a hyperbolic function, as shown in Fig. 4. Based on Kagawa (1992) empiri-
cal formula, the improved formula for frequency was proposed.

Kgawa’s empirical formula is as follows:

where Ip is plastic index, σ ′

3 is effective confining pressure and e void ratio of soil.
According to the reference (Sas et al. 2015), the dynamic shear modulus improved for-

mula was analyzed by square regression:

where the unit of  f is dimensionless, which is frequency; Ip = 17 is plastic index, e = 1.14 
in Table 1; a1, a2 and a3 are calculated by square regression analysis, as shown in Table 3.

(1)G =
358− 3.8Ip

0.4 + 0.7e
σ

′

3

(2)Gd =
358− 3.8Ip

0.4 + 0.7e
σ

′

3 ·

(

a1 · f
2
+ a2 · f + a3

)

Fig. 4  Relation curves between the dynamic shear modulus and frequency
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Therefore, based on Kgawa’s model, an improved model considering the frequency is 
established for estimating the dynamic shear modulus and dynamic creep strain.

Estimation and analysis of dynamic creep strain
Estimation of dynamic creep strain

Mesri creep model (Mesri et al. 1981) was calculated for the dynamic creep strain time 
history curve. When the time last long under dynamic loading, the soft soil would occur 
creep strain, so it is called the dynamic creep strain. The Singh-Mitchell model (Singh 
and Mitchell 1968) only describes the characteristics of soil under shear stress in the 
range of 20–80 %. When the shear stress level was zero, the estimation of strain would 
be less than zero. Due to these shortcomings, Mesri improved the Singh–Mitchell creep 
model. Mesri model can be used to calculate the creep strain of the soil under arbitrary 
shear stress levels. The shear stress level was no longer limited to the range of 20–80 %, 
instead including all the stress levels (0–100 %), with the deduction as follows.

According to the Mesri formula:

where m are the model parameters, (t)i the unit time, t the time, 
D = (σ1 − σ3)

/

(σ1 − σ3)f the shear stress level and Su = (σ1 − σ3)f
/

2 the undrained 
shear strength. The dynamic modulus Ed = Gd · 2(1+ µ) (Hardin and Drnevich 1972) is 
calculated by Formula (2). Rf = (σ1 − σ3)f

/

(σ1 − σ3)ult the damage ratio.
According to Formula (3), the dynamic creep strain time history curve was calculated, 

thereby determining the parameter m. As shown in Fig.  5, owing to the action of the 
vibration loading, the corresponding test value of dynamic creep strain time history 
curve appeared the pulse phenomenon.

The parameters of this established dynamic creep strain model under different factors 
by Formula (3) were in Table 4.

Comparative analysis of dynamic creep strain

According to the above formula, the influence of dynamic stress, frequency, effective 
confining pressure and natural water content on the dynamic creep strain of soil was 
analyzed.

(3)εts =
2

(Ed/Su)

D

1− (Rf ) · D

[

(t)i

t

]m

Table 3  Parameters of the dynamic shear modulus formula

Effective confining  
pressure/kPa

f Coefficients Correlation values

a1 a2 a3

75 0.5 −4.16 18.52 18.35 0.993

1 −1.74 14.91 11.15 0.994

2 0.31 11.12 4.58 0.991

150 0.5 −3.9 20.5 5.8 0.996

1 −5.3 20.1 23.3 0.993

2 0.22 8.14 37.4 0.992
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The influence of dynamic stress

In Fig.  6, under the same condition, the vibration loading was greater, the larger the 
vibration energy was, thus the soil had greater kinetic energy, as was the corresponding 
dynamic creep strain.

Fig. 5  Dynamic strain time history curve

Table 4  Parameters of dynamic creep strain model

Natural water 
content w/%

Dynamic stress 
amplitude σd/kPa

Effective  
confining  
pressure σ

′

3
/kPa

Frequency  
f/Hz

Ed/Su Rf m Correlation 
values

37 8.33 75 0.5 1025 0.72 0.933 0.978

1.0 1614 0.75 0.948 0.981

2.0 2839 0.77 0.903 0.913

37 8.33 150 0.5 947 0.64 0.947 0.827

1.0 1407 0.67 0.903 0.913

2.0 1958 0.66 0.945 0.870

37 12.5 75 0.5 1836 0.71 0.925 0.965

1.0 2454 0.72 0.934 0.933

2.0 3450 0.74 0.926 0.935

37 12.5 150 0.5 2031 0. 57 0.909 0.975

1.0 2424 0. 64 0.896 0.984

2.0 2662 0. 61 0.918 0.906

37 16.67 75 0.5 2679 0.72 0.938 0.884

1.0 3296 0.70 0.936 0.979

2.0 3914 0.74 0.865 0.913

37 16.67 150 0.5 2600 0.52 0.851 0.998

1.0 2864 0.56 0.923 0.965

2.0 3420 0.57 0.847 0.993

45 16.67 75 0.5 1257 0.69 0.972 0.919

1.0 1786 0.73 0.941 0.826

2.0 2568 0.71 0.918 0.889

45 16.67 150 0.5 1300 0.51 0.945 0.870

1.0 1527 0.55 0.903 0.913

2.0 1773 0.53 0.934 0.933
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However, although the dynamic stress was in a certain linear proportion (8.3, 12.5 and 
16.6 kPa), the corresponding dynamic creep strain was not similar to the linear law. It 
revealed that the soil was a non-linear material.

The influence of frequency

The essence of the effect of frequency on the dynamic creep strain was the different dura-
tion of dynamic load. Therefore, the higher the frequency, the faster the load changed, 
the shorter the action lasted, the less energy that was transferred and the smaller the 
dynamic strain was. Such findings are shown by Fig. 7.

The influence of effective confining pressure

The influence of effective confining pressure on the dynamic strain is due to the differ-
ence in density degree. When the dynamic triaxial test was carried out, different levels 
of effective confining pressure were set. In Fig. 8, according to the sampling depth and 

Fig. 6  Dynamic strain time history curve under different dynamic stress amplitude
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Fig. 7  Dynamic strain time history curve under different frequencies

Fig. 8  Dynamic creep strain time history curve under different confining pressure
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density of the undisturbed soil, the greater sampling depth, the lower the dynamic creep 
strain of the soil.

The influence of natural water content

Natural water content was a parameter of physical and mechanical properties, measur-
ing the moisture content of soil in the natural state. In Fig. 9, the effect on dynamic creep 
strain reflected that when the natural water was large, the film layer of soil particles was 
also thick, particle spacing was bigger, the attraction between soil particles decreased, 
and were prone to dislocation. Therefore, the larger natural water content would pro-
duce a greater dynamic creep strain deformation under vibration loading.

Estimation of dynamic stress under vibration loading
Subway foundation soil would occur settlement during operation, which can be esti-
mated by establishing the improved dynamic creep strain formula. The corresponding 
dynamic stress of each soil layer should be obtained before estimating the settlement (Ju 
2009).

According to the design of dynamic stress formula:

where σd0 is dynamic stress acting on the track bed, P the subway train weight and V 
subway speed, recorded at 80 km/h.

It obtained σd0 = 69 kPa, which was then substituted into the subway finite element 
model (Ju 2009). The varied additional stress σdi with sampling depth can be obtained at 
the bottom of the tunnel axis by the finite clement calculation, then determined the cor-
responding dynamic creep strain under first cyclic load. Subsequently, the following was 
settlement estimation. The case study was Yuantong station of Nanjing subway tunnel, 
which had a distance of 9–12 m from ground, thereby establishing the two-dimensional 
model of the subway.

(4)σd0 = 0.26P(1± 0.04V)

Fig. 9  Dynamic creep strain time history curve under different natural water content
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Case analysis

The subway inner diameter is 5.6 m, the outside diameter 6.2 m. The lining thickness is 
0.35 m, the lateral width 100 m. The center of the tunnel from ground is 9 m, the center 
of the tunnel from the bottom 18 m and the height 50 m. As shown in Fig. 10, the sub-
way vibration load acted on the center of the tunnel.

Constitutive model parameters

In order to obtain the constitutive model parameters of the soft soil on the subway foun-
dation, the parameters were obtained through dynamic and static triaxial test as shown 
in Table 5.

Estimation of dynamic stress with sampling depth

It obtained σdi the additional stress curve with sampling depth illustrated in Fig. 11.

Settlement estimation
Steps

The improved dynamic creep strain in Formula  3 and the additional stress σdi with 
sampling depth are used to estimate the settlement of the subway foundation, the main 
calculation steps are as follows:

1.	 Firstly, the dynamic stress amplitude acting on the track bed was determined, and 
the dynamic stress at the bottom of 0 m sampling depth was σd0 = 69 kPa.

2.	 The above step results were substituted into the subway finite element model, then 
the additional stress σdi with sampling depth was estimated.

3.	 According to the influence of the vibration response, thickness of the vertical defor-
mation could be determined, and the vertical layers were divided by norms.

4.	 The vertical strain deformation of each layer was estimated by the improved dynamic 
creep strain function.

5.	 The settlement of subway soil foundation was estimated by the layer-wise summation 
method of norm, expressed as (Jin 2004):

Fig. 10  The simulation of finite element
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where εzi is the vertical accumulated creep strain of the i layer; Hi the height of the i 
layer and n the number of layers in the scope of influence distance on the bottom of the 
tunnel.

Comparative analysis

Based on the above steps, the long-term settlement under the condition of different fre-
quencies (0.5, 1 and 2 Hz) can be estimated. Meanwhile, using the long-term settlement 
of measured values obtained by the field test data, the results are shown in Fig. 12. It 
reveals that the estimated values closed to the measured values obtained in the field test.

Conclusion
The following conclusions were obtained by analyzing the dynamic characteristics and 
long-term settlement of the soil under vibration loading. The methods of laboratory 
testing, theoretical analysis and numerical simulation were using.

1.	 The case of dynamic load by dynamic triaxial test was Fd = 20 N(16.7 kPa), the fre-
quency f = 1, 0.5, 2 Hz respectively. And the case test results showed that under the 
same conditions, by increasing the effective confining pressure, the dynamic defor-
mation reduced and the corresponding dynamic shear modulus increased when the 
strain equals to 0. Thereafter, by increasing the frequency, the time of load acting on 
the soil was shorter and the deformation of the soil decreased, whilst the dynamic 
shear modulus increased.

(9)�H =

n
∑

i=1

εziHi

Table 5  Parameters of constitutive model

Ed/MPa c/kPa φ/°

38 10 11

Fig. 11  Additional stress with sampling depth in the bottom of the tunnel



Page 13 of 14Luo and Miao ﻿SpringerPlus  (2016) 5:1252 

2.	 Based on the Kgawa model, the improved dynamic shear modulus formula which 
considered the frequency was established. The results demonstrate that the correla-
tion values of estimation calculated by the improved dynamic shear modulus formula 
are between 0.991–0.996, thereby verifying the validity of the improved formula.

3.	 Subsequently, the improved formula was applied to the dynamic creep strain model 
function. It suggested that the correlation values of the estimated values generated by 
the improved dynamic creep strain formula are between 0.826–0.998.

4.	 Meanwhile, the effects of amplitude, frequency, effective confining pressure and nat-
ural water content on the dynamic creep strain were analyzed. It showed that the 
larger the vibration amplitude, the greater the dynamic creep strain, whilst the larger 
the frequency, the smaller the dynamic creep strain. Likewise, the larger the effective 
confining pressure, the smaller the dynamic creep strain, and the larger the natural 
water content, the greater the dynamic creep strain.

5.	 The speed of case subway train recorded at 80 km/h. According to the design of the 
dynamic stress formula, the dynamic stress acting on the track bed at the bottom of 
0  m sampling depth is 69  kPa. Thereafter, the dynamic stress was substituted into 
the subway finite element simulation to obtain additional stress curve with sampling 
depth acting on the soil foundation. Based on the improved dynamic creep strain 
function and additional stress, the long-term settlement was obtained under subway 
vibration loading by norms. It showed that the estimated values of the long-term set-
tlement under the conditions of different frequencies (0.5, 1 and 2 Hz) closed to the 
measured values obtained through the field test.
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