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Background
A vertex in a graph G is said to be a groupie if its degree is not less than the average 
degree of its neighbors. Various properties of groupies have been investigated in deter-
ministic graph theory (Ajtai et al. 1980; Bertram et al. 1994; Ho 2007; Mackey 1996; Pol-
jak et al. 1995). For example, it was proved in Mackey (1996) that there are at least two 
groupies in any simple graphs with at least two vertices. Groupies were even found to be 
related to Ramsey numbers (Ajtai et al. 1980). More recently, Fernandez de la Vega and 
Tuza (2009) showed that, in Erdős-Rényi random graphs G(n, p), the proportion of verti-
ces that are groupies is almost always very near to 1/2 as n → ∞. Later the author Shang 
(2010) obtained a result of similar flavor in random bipartite graphs G(n1, n2, p). It was 
shown that the proportion of groupies in each partite set is almost always very close to 
1/2 if G(n1, n2, p) is balanced, namely, n1 = n2.

In this paper, we consider groupies in a more general random graph model, which we 
call multitype random graphs. Let q be a positive integer. Denote [q] := {1, . . . , q}. Define 
the ‘gene’ for a multitype random graph as a weighted complete graph Kq (having a loop 
at each vertex) on the vertex set [q], with a weight αi > 0 associated to each vertex, and 
a weight 0 ≤ βij ≤ 1 associate to each edge ij. Note that βij = βji since we deal with undi-
rected graphs. We assume 

∑q
i=1 αi = 1. The multitype random graph G(n,Kq) with gene 

Kq is generated as follows. Let n be much larger than q, and let [n] be its vertex set. We 
partition [n] into q sets V1, . . . ,Vq by putting vertex v in Vi with probability αi indepen-
dently. Each pair of vertices v ∈ Vi and u ∈ Vj are connected with probability βij inde-
pendently (all the decisions on vertices and edges are made independently).

For i = 1, . . . , q, let Ni represent the number of the groupies in Vi. Thus, N :=
∑q

i=1Ni 
is the number of groupies in the multitype random graph G(n,Kq). Denote by 
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α = (αi) ∈ R
q and β = (βij) ∈ R

q×q. For generality, we will usually think of β and α as 
functions of n in the same spirit of random graph theory (Bollobás 2001; Janson et al. 
2000). Let 1 = (1, . . . , 1)T ∈ R

q be the all-one vector. All the asymptotic notations used 
in the paper such as O, o, and � are standard, see e.g. Janson et al. (2000). Our first result 
is as follows.

Theorem 1 Let q ≥ 2. Assume that βα = (θ + o(
√
ln n/n))1, where θ > 0 is a constant. 

If mini �=j{αi,βij} > c for some constant c > 0, and maxi{βii} = o(
√
ln n/n), then

 as n → ∞, where ω(n) = �(ln n) is any function tending to infinity. Hence,

 as n → ∞, where ω(n) = �(ln n) is any function tending to infinity.
When β and α are independent of n, the following corollary is immediate.

Corollary 1 Let q ≥ 2. Assume that βα = θ1 for θ > 0, and βii = 0 for all i. Then

as n → ∞, where ω(n) = �(ln n) is any function tending to infinity.
Clearly, by taking q = 2, α1 = α2 = 1/2, and β11 = β22 = 0, we recover the result in 

Shang (2010, Thm. 1) for balanced random bipartite graphs.
Theorem 1 requires that the edges between sets Vi, i = 1, . . . , q are dense, namely, the 

multitype random graph G(n,Kq) in question resembles a dense ‘multipartite’ graph. For 
sparse random graphs on the other hand, we have the following result.

Theorem  2 Let q ≥ 1. Assume that βα = (θ + o(
√
ln n/n))1, where θ = θ(n) is a 

function of n. If mini{αi} > c for some constant c > 0, mini �=j{βij} ≫ (ln n)2/n, and 
maxi{βii} = o(

√
ln n/n), then

 as n → ∞, where ε(n) = �(ln n/
√
n) is any function tending to zero. Hence,

 as n → ∞, where ε(n) = �(ln n/
√
n) is any function tending to zero.

It follows from Theorem 2 that we may reproduce the result for sparse Erdős-Rényi 
random graphs Fernandez de la Vega and Tuza (2009,  Thm. 2) by taking q = α1 = 1 , 
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β11 = o(
√
ln n/n); and the result for sparse balanced random bipartite graphs Shang 

(2010, Thm. 2) by taking q = 2, α1 = α2 = 1/2, β11 = β22 = 0 and β12 ≫ (ln n)2/n.
The multitype random graph G(n,Kq) is generated through a double random process. 

In the following, we will also consider a closely related ‘random-free’ model G′(n,Kq) . 
Given a gene Kq defined as above, the random-free multitype random graph G′(n,Kq) 
(a.k.a. stochastic block model Holland et al. 1983) is constructed by partitioning [n] into 
q sets V1, . . . ,Vq with |Vi| = αin. Recall that 

∑q
i=1 αi = 1. We draw an edge vu with prob-

ability βij independently for v ∈ Vi and u ∈ Vj; thus the first random step in the original 
construction disappears, which explains the name ‘random-free’.

In "Proof of the main results" section, we will show Theorems 1 and 2 by first prov-
ing analogous results for the random-free version G′(n,Kq). To illustrate our theoretical 
results, a numerical example is presented in "Numerical simulations" section.

Proof of the main results

Proposition 1 Theorem 1 holds verbatim for the random-free model G′(n,Kq).

Proof Without loss of generality, we consider i = 1, other values of i being completely 
similar. Take vertex v ∈ V1 and denote by dv the degree of v in G′(n,Kq). Therefore, 
dv =

∑q
i=1 di, where di means the number of neighbors of v in Vi. Let Sv represent the 

sum of degrees of the neighbors of v. Write Bin(n, p) for a Binomial variable with param-
eters n and p. Assuming that v has degree dv, we obtain

where the second and third terms on the right-hand side evaluate the contribution of 
degrees within the neighborhood, while the last two terms correspond to the sum of 
out-going degrees. Here, ∼ means identity of distribution by convention.

For any dv, the expectation of Sv can be computed as

It follows from the assumption maxi{βii} = o(
√
ln n/n) and the reverse Cauchy–

Schwarz inequality Pólya and Szegö (1972,  p. 71) that 
∑q

i=1 d
2
i βii = o(d2v

√
ln n/n) . 

Using βα = (θ + o(
√
ln n/n))1 and the symmetry of β, we obtain 

∑q
i=1

∑q
j=1

djαinβij =
∑q

j=1
dj
∑q

i=1
αinβji = dv(θn+ o(

√
ln n)). Consequently, (2) becomes ESv = dvθn+�(dv) 

+o(d2v

√
ln n/n)+ o(dv

√
ln n). Define the event Av = {α1β11n− (ln n)

√
nβ11 ≤ d1 ≤ α1β11n+

(ln n)
√
nβ11, αiβ1in− (ln n)

√
n ≤ di ≤ αiβ1in+ (ln n)

√
n, for i =2, · · · , q}. Set � =

∑q

i=1
 

di(di − 1)/2+
∑

i<j didj +
∑q

j=1
dj(α1n− d1 − 1)+

∑q
i=2

∑q
j=1

dj(αin− di). In view of 

(1)

Sv ∼ dv + 2

q
∑

i=1

Bin

(
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2
,βii

)

+ 2
∑
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q
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(2)ESv = dv +
q

∑

i=1

d2i βii −
q

∑

i=1

diβii −
q

∑

j=1

djβ1j +
q

∑

i=1

q
∑

j=1

djαinβij .
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(1), the distribution of Sv − dv is identical to that of the sum of � independent random 
variables, each of which is bounded above by 2. This number is �(n2) when the event Av 
occurs. Thus, the large deviation bound Janson et al. (2000, p. 29) gives

Dividing by dv and noting that q ≥ 2, we obtain for any constant C1 ≥ 11
c2

Furthermore, it is straightforward to check that the event Av holds with prob-
ability 1− o(n−1) using the Chernoff bound Janson et  al. (2000,  p. 27) and the fact 
d1 ∼ Bin(α1n− 1,β11) and di ∼ Bin(αin,β1i), i = 2, · · · , q. Therefore, an application of 
the total probability formula yields

Now denote by N+
1  the number of vertices in V1, whose degrees are at least 

θn+ C1

√
ln n . Similarly, denote by N−

1  the number of vertices in V1, whose degrees are 
at most θn− C1

√
ln n. The estimation (3) implies that

where we recall the definition of N1 as the number of groupies in V1. To complete the 
proof, it suffices to show

and the analogous statement for N−
1 , where ω(n) = �(ln n) is any function tending to 

infinity.
We write N+

1  as the sum of indicators, namely, N+
1 =

∑

v∈V1
1{dv≥θn+C1

√
ln n}. Notice 

that dv ∼ Bin(α1n− 1,β11)+
∑q

i=2 Bin(αin,β1i) is a sum of independent binomial vari-
ables. Since dv is flat around its maximum (Butler and Stephens 1993; Drezner and Far-
num 2007), we obtain

Based on the bounded difference inequality (see e.g. Bollobás (2001, p. 24) with the dif-
ference ck ≡ 1), we obtain for any ω(n) = �(ln n),

where ω′(n) is a function tending to infinity as n → ∞. This proves (4). Following the 
same reasoning we can show P(N−

1 ≥ α1n/2− ω(n)
√
n) = o(1), which concludes the 

proof.  �

P(|Sv − dvθn| ≤ 10qn
√
ln n |Av) ≥ P(|Sv − dv − E(Sv − dv)| ≤ 8qn

√
ln n |Av)

≥ 1− e−3 ln n = 1− o(n−1).

P
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− θn

∣

∣ ≤ C1

√
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)
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(3)P
(

∣

∣
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dv
− θn

∣

∣ ≤ C1

√
ln n, for every v ∈ V1

)

= 1− o(1).

P(N+
1 ≤ N1 ≤ α1n− N−

1 ) = 1− o(1),

(4)P
(

N+
1 ≥

α1n

2
− ω(n)

√
n
)

= 1− o(1)

EN+
1 = α1n · P(dv ≥ θn+ C1
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ln n) =

α1n

2
−�(

√
n ln n).

P
(

N+
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α1n

2
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√
n
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= P(N+
1 ≤ EN+
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√
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2ω′2(n)n
n = o(1),
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Proposition 2 Theorem 2 holds verbatim for the random-free model G′(n,Kq), except 
that we herein allow ε(n) = �(

√

ln n/n) as any function tending to zero.

Proof We sketch the proof as it is similar. As in the proof of Proposition  1,  
we consider i = 1 and obtain the expectation of Sv for v ∈ V1 as ES = dvθn+�(dv)+ 
o(d2v

√
ln n/n)+ o(dv

√
ln n). Define the event Bv = {αiβ1in− (ln n)

√
nβ1i ≤ di ≤

αiβ1in+ (ln n)
√
nβ1i, for i = 1, . . . , q}. The Chernoff bound Janson et  al. (2000,  p. 27) 

implies that Bv holds with probability 1− o(n−1). Using the large deviation bound Janson 
et al. (2000, p. 29) we obtain

Dividing by dv, we obtain similarly for some constant C2 > 0

and

Denote by N+
1  the number of vertices in V1, whose degrees are at least θn+ C2

√
ln n . 

Denote by N−
1  the number of vertices in V1, whose degrees are at most θn− C2

√
ln n. 

The result (5) again implies that

It remains to show

and the analogous statement for N−
1 , where ε(n) = �(

√

ln n/n) is any function tending 
to zero.

Set N+
1 =

∑

v∈V1
1{dv≥θn+C2

√
ln n}. As in the proof of Proposition 1, we arrive at

Invoking the bounded difference inequality Bollobás (2001,  p. 24) and taking 
ω(n) := ε(n)

√
n → ∞, we obtain for any ε(n) = �(

√

ln n/n),

P
(

|Sv − dvθn| ≤ 10q ln
5
2 n

∣

∣Bv

)

≥ P
(

|Sv − dv − E(Sv − dv)| ≤ 8q ln
5
2 n

∣

∣Bv

)

≥ 1− e−2 ln n = 1− o(n−1).

P
(

∣

∣
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∣
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√
ln n

∣

∣

∣Bv

)

= 1− o(n−1),

(5)P
(

∣

∣

Sv

dv
− θn

∣

∣ ≤ C2

√
ln n, for every v ∈ V1

)

= 1− o(1).

P(N+
1 ≤ N1 ≤ α1n− N−

1 ) = 1− o(1).

(6)P
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N+
1 ≥

α1n(1− ε(n))

2

)

= 1− o(1)

EN+
1 = α1n · P(dv ≥ θn+ C2

√
ln n) =

α1n
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−�(

√
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P
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2

)

= P(N+
1 ≤ EN+

1 − ω(n)
√
n) ≤ e−2ω2(n) = o(1),



Page 6 of 7Shang  SpringerPlus  (2016) 5:989 

as n → ∞. This completes the proof of (6). Likewise, we have P(N−
1

≥ α1n

(1− ε(n))/2) = o(1) as desired.  �

Proof of Theorem  1 and Theorem  2 These results can be proven in the similar way  
as Propositions  1 and  2 by noting that, in the G(n,Kq) model, P(||Vi| − αin| ≥
ln n

√
n) = o(n−1) for all i = 1, . . . , q.  �

Numerical simulations
To illustrate our theoretical results, in this section we present a numerical example for 
the G(n,Kq) model with q = 3.

Set α = (0.45, 0.35, 0.2)T, β =





0 8/21 1/3
8/21 0 1/7
1/3 1/7 0



, and θ = 0.2. In Fig. 1 we plot the 

numbers of groupies Ni for i = 1, 2, 3 as functions of n, (i) with the above constant β; 
and (ii) with perturbed β +�β, where �β = (ln1/4 n)/n11T . Clearly, the conditions in 
Theorem 1 hold for both situations (i) and (ii). Fig. 1 shows that the agreement between 
the simulations and the theoretical prediction of Theorem 1 is excellent.

Conclusion
In this paper, we have studied the groupies in multitype random graphs. It is discov-
ered that the proportion of groupies is very close to 1/2 in multitype random graphs, 
which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs 
as special examples. We mention that there are several possibilities to continue this line 
of research, both by considering other more realistic random network models as well as 
by analyzing the limit distribution of groupies in random graphs. For example, a natural 
question could be to ask if there are similar results for q = q(n) or edge-independent 
random graphs (e.g. Shang 2016)?
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Fig. 1 Number of groupies Ni (i = 1, 2, 3) versus number of vertices in G(n, K3) with α1 = 0.45, α2 = 0.35, 
α3 = 0.2, and two different choices of {βij}. Each data point is obtained by averaging over a sample of 50 
independent random graphs
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