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Background
Fractional calculus has found many demonstrated applications in extensive areas of 
applied science such as dynamical system in control theory, viscoelasticity, electrochem-
istry, signal processing and model of neurons in biology (Podlubny 1999; Hilfer 2000; 
Adjabi et al. 2016; Baleanu et al. 2016; Kilbas et al. 2006; Glöckle and Nonnenmacher 
1991; Mathai et al. 2010). Recent studies observed that the solutions of fractional order 
differential equations could model real-life situations better, particularly in reaction-
diffusion type problems. Due to the potential applicability to wide variety of problems, 
fractional calculus is developed to large area of Mathematics physics and other engineer-
ing applications. Several researchers have investigated fractional kinetic equations as 
its possible applications in diverse physical problems. In this connection, one can refer 
to the monograph by various works (Saichev and Zaslavsky 1997; Haubold and Mathai 
2000; Saxena et al. 2002, 2004, 2006; Saxena and Kalla 2008; Chaurasia and Pandey 2008; 
Gupta and Sharma 2011; Chouhan and Sarswat 2012; Chouhan et al. 2013; Gupta and 
Parihar 2014). Recently, many papers investigated the solutions of generalized fractional 
kinetic equations (GFKE) involving various types of special functions. For instance, the 
solutions of GFKE involving M-series (Chaurasia and Kumar 2010), generalized Bessel 
function of the first kind (Kumar et al. 2015), Aleph function (Choi and Kumar 2015) 
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and the generalized Struve function of the first kind (Nisar et al. 2016b). Here, in this 
paper, we aim at presenting the integral transforms and the solutions of certain general 
families of fractional kinetic equations associated with newly defined Galué type gener-
alization of Struve function.

Galué (2003) introduced a generalization of the Bessel function of order p given by

Baricz (2010) investigated Galué-type generalization of modified Bessel function as:

The Struve function of order p given by

is a particular solution of the non-homogeneous Bessel differential equation

where Ŵ is the classical gamma function whose Euler’s integral is given by (see, e.g., Sriv-
astava and Choi 2012, Section 1.1):

The Struve function and its more generalizations are found in many papers (Bhow-
mick 1962, 1963; Kanth 1981; Singh 1974; Nisar and Atangana 2016; Singh 1985, 1988a, 
b, 1989). The generalized Struve function given by Bhowmick (1962)

and by Kanth (1981)

Singh (1974) found another generalized form as

(1)aJp(x) :=
∞
∑

k=0

(−1)k

Ŵ(ak + p+ 1)k!
(

x
2

)2k+p
, x ∈ R, a ∈ N ={1, 2, 3, . . .}

(2)aIp(x) :=
∞
∑

k=0

1

Ŵ(ak + p+ 1)k!
(

x
2

)2k+p
, x ∈ R, a ∈ N

(3)Hp(x) :=
∞
∑

k=0

(−1)k

Ŵ(k + 3/2)Ŵ

(

k + p+ 3
2

)

(

x
2

)2k+p+1
,

(4)x2y
′′
(x)+ xy

′
(x)+

(

x2 − p2
)

y(x) =
4
(

x
2

)p+1

√
πŴ(p+ 1/2)

(5)Ŵ(z) =
∫ ∞

0

e−t tz−1dt, Re(z) > 0

(6)H�

l (x) =
∞
∑

k=0

(−1)k
(

t
2

)2k+l+1

Ŵ

(

�k + l + 3
2

)

Ŵ

(

k + 3
2

) , � > 0

(7)H�,α
l (x) =

∞
∑

k=0

(−1)k
(

x
2

)2k+l+1

Ŵ

(

�k + l + 3
2

)

Ŵ

(

αk + 3
2

) , � > 0,α > 0

(8)H�

l,ξ (x) =
∞
∑

k=0

(−1)k
(

x
2

)2k+l+1

Ŵ

(

�k + l
ξ
+ 3

2

)

Ŵ

(

k + 3
2

) , � > 0, ξ > 0



Page 3 of 13Nisar et al. SpringerPlus  (2016) 5:910 

The generalized Struve function of four parameters was given by Singh (1985) (also, see 
Nisar and Atangana 2016) as:

where � > 0,α > 0 and µ is an arbitrary parameter. Another generalization of Struve 
function by Orhan and Yagmur (2014, 2013) is,

Motivated from (1), (3) and (10), here we define the following generalized form of 
Struve function named as generalized Galué type Struve function (GTSF) as:

where α > 0, ξ > 0 and µ is an arbitrary parameter and studied fractional integral repre-
sentations of generalized GTSF.

The generalized integral transforms defined for x > 0 and �, σ ,ϑ ∈ C with R(�) > 0 
are given in Saigo (1977), (also, see Samko et al. 1987) respectively as

and

where Ŵ(�) is the familiar Gamma function (see, e.g., Srivastava and Choi 
2012, Section 1.1) and pFq is the generalized hypergeometric series defined by (see, e.g., 
Rainville 1960, p. 73):

(�)n being the Pochhammer symbol defined (for � ∈ C) by (see Srivastava and Choi 
2012, p. 2 and p. 5):
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The results given in Kiryakova (1977), Miller and Ross (1993), Srivastava et al. (2006) 
can be referred for some basic results on fractional calculus. The Fox–Wright function 
p�q defined by (see, for details, Srivastava and Karlsson 1985, p. 21)

where the coefficients α1, . . . , αp, β1, . . . , βq ∈ R+ such that

For more detailed properties of p�q including its asymptotic behavior, one may refer 
to works (for example Kilbas and Sebastian 2008; Kilbas et al. 2002; Kilbas and Sebastian 
2010; Srivastava 2007; Wright 1940a, b).

Fractional integration of (11)
The following lemmas proved in Kilbas and Sebastian (2008) are needed to prove our 
main results.
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Proof Notice that the condition given in Eq. (17) holds for 3�4 given in (20) and then 
interchanging the integration and summation, (11) and (12) together imply

For any k = 0, 1, 2, . . ., clearly R(l + 2k + ρ + 1) ≥ R(ρ + l + 1) > max[0,R(σ − ϑ)] 
and hence by Lemma 1,

In view of definition of Fox–Wright function (16) we obtain the desired result.  �
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2
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Nisar et al. (2016a) as follows:
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Proof The Fox–Wright function 3�4 given in (22) is well-defined as it satisfy inequality 
(17) and changing the order of integration and summation, (13) and (16) together imply

Now using Lemma 2 and the under the conditions mentioned in Theorem 2, we have

Now (22) can be deduced from (23) by using (17), hence the proof.  �

If we take α = a = 1,µ = 3
2
 and ξ = 1 in Theorem 2 then we obtain the theorem 2 of 

Nisar et al. (2016a) as:

Corollary 2 Let �, σ , l, b, c ∈ C be ∋ (l + b/2) �= −1,−2,−3 . . ., R(�) > 0, and 
R(ρ − l) < 2+min[R(σ ),R(ϑ)]. Then

where Hl,b,c(t) is given in (10)

Application
In this section, we infer the solution of fractional kinetic equation including generalized 
GTSF as an application. For this investigation, we need the following definitions:

The Swedish mathematician Mittag-Leffler introduced the so called Mittag-Leffler 
function Eα(z) (see Mittag-Leffler 1905):

and Eµ,η(z) defined by Wiman (1905) as
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The familiar Riemann-Liouville fractional integral operator (see, e.g., Miller and Ross 
1993; Kilbas et al. 2006) defined by

and the Laplace transform of Riemann-Liouville fractional integral operator ( Erdélyi 
et al. 1954; Srivastava and Saxena 2001) is

where F(p) is the Laplace transform of f(t) is given by

whenever the limit exist (as a finite number).

Kinetic equations

The standard kinetic equation is of the form,

with Ni(t = 0) = N0, which is the number of density of species i at time t = 0 and ci > 0 . 
The integration of (29) gives an alternate form as follows:

where 0D−1
t  is the special case of the Riemann-Liouville integral operator and c is a con-

stant. The fractional generalization of (30) is given by Haubold and Mathai (2000) as:
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Recently, Saxena and Kalla (2008) considered the following equation

and obtained the solution as:
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For more details about the solution of kinetic equations interesting readers can refer 
(Saxena and Kalla 2008; Nisar and Atangana 2016).

Solution of fractional kinetic equation involving (11)

In this section, we will discuss about the solution fractional kinetic equation involving 
newly defined function generalized GTSF to show the potential of newly defined func-
tion in application level.

Given the equation

where e, t, v ∈ R+, a, b, c, l ∈ C and R(l) > −1.

Taking the Laplace transform of (34) and using (11) and (27), gives
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The following results are more general than (38) and they can derive parallel as above, 
so the details are omitted.

Let e, t, v ∈ R+, a, b, c, l ∈ C with R(l) > −1 then the equation

have the following solution

and the solution of the equation

is

where a �= e. The Figs. 1, 2, 3, 4, 5 and 6 are presented to show the behavior of the solu-
tion N(t) for different values of a and ν. The comparison between solutions of GFKE 
involving generalized Bessel function (solid green line) and generalized Galué type gen-
eralization of Struve function (dashed red line) are shown in Fig. 7.
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∞
∑

k=0

(−c)kŴ(2kυ + υl + υ + 1)

Ŵ(αk + µ)Ŵ

(

ak + l
ξ
+ b+2

2

)

(

eυ

2

)2k+l+1

× tυ(2k+l+1)Ev,(2k+l+1)υ+1

(

−a
υ tυ

)
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Fig. 1 Solution (38) for a = 1, N0 = 1,α = µ = ξ = 1 and b = c = l = e = 1
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Conclusion
In this paper, we investigated the integral transforms of Galué type generalization of 
Struve function and the results expressed in terms of Fox–Wright function. By substi-
tuting the appropriate value for the parameters, we obtained some results existing in 
the literature as corollaries. The results derived in section "Application" of this paper 
are general in character and likely to find certain applications in the theory of fractional 
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Fig. 5 Solution (38) for a = 1.5, N0 = 1, α = µ = ξ = 1 and b = c = l = e = 1
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Fig. 6 Solution (40) for a = 2, N0 = 1, α = µ = ξ = 1 and b = c = l = e = 1
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and (18) of Kumar et al. (2015)
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calculus and special functions. The solutions of certain general families of fractional 
kinetic equations involving generalized GTSF presented in section "Conclusion". The 
main results given in section "Solution of fractional kinetic equation involving (11)" are 
general enough to be specialized to yield many new and known solutions of the corre-
sponding generalized fractional kinetic equations. For instance, if we put a = α = ξ = 1 
and µ = 3

2
 in (34), (39) and (41), then we get the Eqs. (15), (19) and (24) of Nisar et al. 

(2016b).
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