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Background
Recently, the generalizations of Apostol-Bernoulli, Apostol-Euler and Apostol-Genoc-
chi polynomials have been studied and investigated in Milovanović and Rassias (2014), 
Borwein and Erdelyi (1995), Agarwal (2014), Choi and Agarwal (2014), Srivastava et al. 
(2014), Agarwal (2012), Luo et al. (2014), Agarwal and Koul (2003), Apostol (1951), Araci 
(2014), Araci et al. (2014a, b), Bell (1934), Dattoli et al. (1999), Dere and Simsek (2015), 
Dere et al. (2013), Guo and Qi (2002), Gaboury and Kurt (2012), He et al. (2015), Jolany 
et  al. (2013), Khan et  al. (2008), Khan (2015, 2016a, b), Kim and Hu (2012), Kim and 
Adiga (2004), Kim (2007, 1999), Kurt and Kurt (2011), Luo et al. (2003a, b), Luo (2006, 
2009, 2011), Luo and Srivastava (2005, 2011, 2006), Milne Thomsons (1933), Pathan and 
Khan (2014a, b, 2015a, b, c, d), Srivastava and Manocha (1984), Srivastava (2000, 2011), 
Yang (2008), Zhang and Yang (2008). The generalized Apostol-Bernoulli polynomials 
B
(α)
n (x; �) of order α ∈ C, the generalized Apostol-Euler polynomials E(α)

n (x; �) of order 
α ∈ C and the generalized Apostol-Genocchi polynomials G(α)

n (x; �) of order α ∈ C are 
defined, respectively, by the following generating functions:
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and

where, if we take x = 0 in the above, we have

calling Apostol-Bernoulli numbers of order α, Apostol-Euler numbers of order α and 
Apostol-Genocchi numbers of order α, respectively. Also,

             
See Dere et al. (2013), He et al. (2015), Jolany et al. (2013), Luo (2009), Luo and Sriv-

astava (2005), Luo and Srivastava (2011) and Luo and Srivastava (2006) for a systematic 
work about the Apostol type polynomials.

Dere and Simsek (2015) gave a new class of the Milne-Thomson’s polynomials �(α)
n (x) 

as �(α)
n (x, y) of degree n and order α by means of the following generating function:

where f (t,α) is a function of t and integer α. Observe that �(α)
n (x, 0) = �

(α)
n (x) (see Luo 

and Srivastava 2006 for details). From here, setting f (t,α) =
(

2t
�et+1

)α

 in (4) gives

where G(α)
n (x, y; �) denotes the Apostol-Genocchi polynomials of higher order α based 

on Milne-Thomson’s polynomials.
It immediately follows from (4) and (5) that

Taking h
(

t, y
)

= yt2 in (5) gives

(1)

(

t

�et − 1

)α

ext =

∞
∑

n=0

B(α)
n (x; �)

tn

n!
, (|t + log �| < 2π , 1α := 1)

(2)

(

2

�et + 1

)α

ext =

∞
∑

n=0

E(α)
n (x; �)

tn

n!
, (|t + log �| < π , 1α := 1)

(3)

(

2t

�et + 1

)α

ext =

∞
∑

n=0

G(α)
n (x; �)

tn

n!
, (|t + log �| < π , 1α := 1)

B(α)
n (0; �) := B(α)

n (�),E(α)
n (0; �) := E(α)

n (�) and G(α)
n (0; �) := G(α)

n (�)

B(α)
n (x) := B(α)

n (x; 1),E(α)
n (x) := E(α)

n (x; 1) and G(α)
n (x) = G(α)

n (x; 1).

(4)

∞
∑

n=0

�(α)
n (x, y)

tn

n!
= f (t,α)ext+h(t,y)

(5)

∞
∑

n=0

G(α)
n (x, y; �)

tn

n!
=

(

2t

�et + 1

)α

ext+h(t,y)

G(α)
n (0, 0; �) := G(α)

n (�).

(6)

∞
∑

n=0

HG
(α)
n (x, y; �)

tn

n!
=

(

2t

�et + 1

)α

ext+yt2
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where HG(α)
n (x, y; �) is called generalized Apostol-Hermite Genocchi polynomials (see 

Gaboury and Kurt 2012). In the case α = 1 in (6), it reduces to Apostol-Hermite Genoc-
chi polynomials defined by Dattoli et al. (1999) in the following form:

Dattoli et  al. (1999) and Luo et  al. (2003a, b) gave the generalization of Bernoulli and 
Euler polynomials with a and b parameters, as follows:

Let a and b be positive integers. The generalized Apostol-Genocchi polynomials with 
the parameters a, b and c are given by means of the following generating function, i.e., a 
Taylor expansion about t = 0:

For a real or complex parameter α, the Apostol-Genocchi polynomials G(α)
n (x; a, b, c; �) 

of order α with parameters a, b and c are defined by means of the following generating 
function:

from which it follows that G(1)
n (x; a, b, c; �) := Gn(x; a, b, c; �) cf. Jolany et al. (2013).

Definition 1  Let c be positive integer. The generalized 2-variable 1-parameter Hermite 
Kamp’e de Feriet polynomials Hn(x, y, c) for nonnegative integer n are stated by

which is an extention of 2-variable Hermite Kamp’e de Feriet polynomials Hn(x, y) 
defined by

(7)

∞
∑

n=0

HGn(x, y)
tn

n!
=

2t

et + 1
ext+yt2 .

(8)

∞
∑

n=0

Bn(a, b)
tn

n!
=

t

bt − at
,

(∣

∣

∣

∣

t log
b

a

∣

∣

∣

∣

< 2π

)

(9)

∞
∑

n=0

En(a, b)
tn

n!
=

2

bt + at
,

(∣

∣

∣

∣

t log
b

a

∣

∣

∣

∣

< π

)

.

(10)

∞
∑

n=0

Gn(x; a, b, c; �)
tn

n!
=

2t

�bt + at
cxt (see Jolany et al. 2013).

∞
∑

n=0

G(α)
n (x; a, b, c; �)

tn

n!
=

(

2t

�bt + at

)α

cxt

(11)

∞
∑

n=0

Hn(x, y, c)
tn

n!
= cxt+yt2

(12)

∞
∑

n=0

Hn(x, y)
tn

n!
= ext+yt2 (see Bell 1934; Pathan and Khan 2015a, b).
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It immediately follows from Definition 1 that

and by (11), we have

Motivated by their importance and potential for applications in certain problems in 
number theory, combinatorics, classical and numerical analysis and other fields of 
applied mathematics, several kinds of some special numbers and polynomials were 
recently studied by many authors (see Milovanović and Rassias 2014; Borwein and Erde-
lyi 1995; Agarwal 2014; Choi and Agarwal 2014; Srivastava et al. 2014; Agarwal 2012; 
Luo et al. 2014; Agarwal and Koul 2003; Apostol 1951; Araci 2014; Araci et al. 2014a, b; 
Bell 1934; Dattoli et al. 1999; Dere and Simsek 2015; Dere et al. 2013; Guo and Qi 2002; 
Gaboury and Kurt 2012; He et al. 2015; Jolany et al. 2013; Khan et al. 2008; Khan 2015, 
2016a, b; Kim and Hu 2012; Kim and Adiga 2004; Kim 2007, 1999; Kurt and Kurt 2011; 
Luo et al. 2003a, b; Luo 2006, 2009, 2011; Luo and Srivastava 2005, 2011, 2006; Milne 
Thomsons 1933; Pathan and Khan 2014a, b, 2015a, b, c, d; Srivastava and Manocha 1984; 
Srivastava 2000, 2011; Yang 2008; Zhang and Yang 2008).

In Kurt and Kurt (2011), Kurt and Kurt first introduced the definition of Hermite–
Apostol-Genocchi polynomials and derived some explicit formulas. Gaboury and Kurt 
(2012) also gave the generating function of Hermite–Apostol-Genocchi polynomials 
with three parameters. Their definitions are motivated us to write this paper. In sum-
mary, we introduce a new family of the generalized Apostol type Genocchi polynomi-
als G(α)

n (x, y; a, b, c; �) as Definition 2 in the next section, which generalizes the concepts 
stated above and then research their basic properties and relationships with Genocchi 
numbers Gn, Genocchi polynomials Gn(x) and the generalized Apostol Genocchi num-
bers Gn(a, b; �), generalized Apsotol Genocchi polynomials Gn(x; a, b, c; �) of Jolany 
et al. (2013), Hermite–Genocchi polynomial HGn(x, y) of Dattoli et al. (1999) and gen-
eralized Apostol Hermite–Genocchi polynomials HG(α)

n (x, y; �). The remainder of this 
paper is organized as follows: We modify generating functions for the Milne-Thomson’s 
polynomials as defined in Luo and Srivastava (2006) and derive some identities related 
to Hermite polynomials and Genocchi polynomials. Some implicit summation formu-
lae and general symmetric identities are derived arising from different analytical means 
and applying generating functions. These results extend some known summations and 
identities of Hermite–Bernoulli, Euler and Hermite–Genocchi polynomials studied ear-
lier by Dattoli et al. (1999), Jolany et al. (2013), Khan (2015, 2016a, b), Luo (2009, 2011), 
Pathan and Khan (2014a, 2015a), Yang (2008), Zhang and Yang (2008).

On the generalized Apostol type Hermite–Genocchi polynomials
In this section, by (4) and f (t,α; �) =

(

2t
�bt+at

)α

, we derive a new class of Apostol Her-
mite–Genocchi polynomials and investigate its properties. Now we start at the following 
definition.

Hn(x, y, e) := Hn(x, y).

(13)Hn(x, y, c) =

[ n2 ]
∑

j=0

(

n
j

)

(log c)n−jxn−2jyj (see Pathan and Khan 2015a, b).
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Definition 2  Let a, b and c be positive integers with the condition a �= b. A new gener-
alization of Apostol-Genocchi polynomials G(α)

n (x, ν; a, b, c; �) for nonnegative integer n 
is defined by

Setting h(t, y) = yt2 in (14), we get the following corollary.

Corollary 1  Let a, b and c be positive integers with the condition a �= b. The general-
ized Apostol Hermite–Genocchi polynomials HG(α)

n (x, y; a, b, c; �) for nonnegative integer 
n are defined by Gaboury and Kurt (2012)

For α = 1 in (15), we have

In the case x = 0 in (15), we see that

Also in the case x = y = 0 and c = 1 in Definition 1, it leads to the extension of the gen-
eralized Apostol-Genocchi numbers denoted by G(α)

n (a, b; �) for nonnegative integer n 
defined earlier in Jolany et al. (2013) and

holds.

Corollary 2  Taking c = e in Eq. (15), we have Gaboury and Kurt (2012)

By using Corollary 1, we state the following theorem.

(14)

∞
∑

n=0

G(α)
n (x, y; a, b, c; �)

tn

n!
=

(

2t

�bt + at

)α

cxt+h(t,y)

(

|t| <

∣

∣

∣

∣

∣

log(−�)

log( ba )

∣

∣

∣

∣

∣

; a ∈ C \ {0}, b, c ∈ R
+; 1α := 1

)

.

(15)

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!
=

(

2t

�bt + at

)α

cxt+yt2

(

|t| <

∣

∣

∣

∣

∣

log(−�)

log( ba )

∣

∣

∣

∣

∣

; a ∈ C \ {0}, b, c ∈ R
+; 1α := 1

)

.

(16)
∞
∑

n=0

HGn(x, y; a, b, c; �)
tn

n!
=

2t

�bt + bt
cxt+yt2 (seeGaboury andKurt 2012).

(17)HG
(α)
n (0, y; a, b, c; �) =

[ n2 ]
∑

k=0

n!

k!(n− 2k)!
(log c)kG

(α)

n−2k(a, b; �)y
k .

(18)G(α+β)
n (a, b; �) =

n
∑

k=0

(

n
k

)

G
(α)

k (a, b; �)G
(α)

n−k(a, b; �)

(19)

∞
∑

n=0

HG
(α)
n (x, y; a, b, e; �)

tn

n!
=

(

2t

�bt + at

)α

ext+yt2

(

|t| <

∣

∣

∣

∣

∣

log(−�)

log( ba )

∣

∣

∣

∣

∣

; a ∈ C \ {0}, b ∈ R
+; 1α := 1

)

.
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Theorem 1  Let a, b and c be positive integers with the rule a �= b. For x ∈ R and n ≥ 0 . 
Then we have

Proof  The expressions stated in (20) are obvious from their generating functions. By 
using Definition 2, we have

B comparing the coefficients of t
n

n!, we get the Eq. (21). By the similar way, we readily 
derive the Eq. (22). Hence, we complete the proof of theorem.� □

Implicit summation formulae on the generalized Apostol type Hermite–
Genocchi polynomials
We give here implicit summation formulae for Apostol Hermite–Genocchi polynomials. 
We now begin with the following theorem.

Theorem 2  Let a, b and c positive integers, by a �= b. Then, for x, y ∈ R and m, n ≥ 0, we 
have

Proof  We first replace t by t + u and rewrite the generating function (15) as

Replacing x by z in (24), we have

(20)

HG
(α)
n (x, y; 1, e, e; �) := HG

(α)
n (x, y; �),HG

(α)
n (0, 0; a, b, 1; �) := G(α)

n (a, b; �),

HG
(α)
n (0, 0; 1, e, 1, 1) := G(α)

n ,HG
(1)
n (0, 0; a, b, 1, 1) := Gn(a, b)

(21)

HG
(α+β)
n (x + y, z + u; a, b, c; �) =

n
∑

k=0

(

n
k

)

HG
(α)

n−k(y, z; a, b, c; �)HG
(β)

k (x,u; a, b, c; �)

(22)HG
(α)
n (x + z, y; a, b, c; �) =

n
∑

k=0

(

n
k

)

G
(α)

n−k(z; a, b, c; �)Hk(x, y; c).

∞
∑

n=0

HG
(α+β)
n (x + y, z + u; a, b, c; �)

tn

n!

=

(

∞
∑

n=0

HG
(α)
n (y, z; a, b, c; �)

tn

n!

)(

∞
∑

n=0

HG
(β)
n (x,u; a, b, c; �)

tn

n!

)

=

∞
∑

n=0

(

n
∑

k=0

(

n
k

)

HG
(β)

k (x,u; a, b, c; �)HG
(α)

n−k(y, z; a, b, c; �)

)

tn

n!
.

(23)

HG
(α)
m+n(z, y; a, b, c; �) =

m
∑

s=0

n
∑

k=0

(

m
s

)(

n
k

)

(

log c
)s+k

(z − x)s+k
HG

(α)

m+n−s−k(x, y; a, b, c; �).

(24)

(

2(t + u)

�bt+u + at+u

)α

cy(t+u)2

= c−x(t+u)
∞
∑

n=0

∞
∑

m=0

HG
(α)
m+n(x, y; a, b, c; �)

tn

n!

um

m!
.
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By applying

to c(z−x)(t+u) in (25), we get

It follows from (26) that

Replacing n by n− k and s by m− s and using the lemma in [44, p. 100 (1)] gives

By comparing the coefficients tnum in (28), we arrive at the desired result.� □

Corollary 3  For m = 0 in (23), we have

Corollary 4  Replacing z by z + x and taking y = 0 in (23), we get

(25)

c(z−x)(t+u)
∞
∑

n=0

∞
∑

m=0

HG
(α)
n+m(x, y; a, b, c; �)

tn

n!

um

m!

=

∞
∑

n=0

∞
∑

m=0

HG
(α)
n+m(z, y; a, b, c; �)

tn

n!

um

m!
.

∞
∑

N=0

f (N )
(x + y)N

N !
=

∞
∑

n=0

∞
∑

m=0

f (n+m)
xn

n!

ym

m!
[see Pathan and Khan (2015d), p.52(2)]

(26)

∞
∑

N=0

[(z − x)(t + u)]N

N !

∞
∑

n=0

∞
∑

m=0

HG
(α)
n+m(x, y; a, b, c)

tn

n!

um

m!

=

∞
∑

n=0

∞
∑

m=0

HG
(α)
n+m(z, y; a, b, c; �)

tn

n!

um

m!
.

(27)

∞
∑

k=0

∞
∑

s=0

(

log c
)s+k

(z − x)k+stkus

k!s!

∞
∑

n=0

∞
∑

m=0

HG
(α)
m+n(x, y; a, b, c; �)

tn

n!

um

m!

=

∞
∑

n=0

∞
∑

m=0

HG
(α)
n+m(z, y; a, b, c; �)

tn

n!

um

m!
.

(28)

∞
∑

n=0

∞
∑

m=0

(

∞
∑

k=0

∞
∑

s=0

(

log c
)s+k

(z − x)k+s

k!s!
HG

(α)

m+n−k−s(x, y; a, b, c; �)

)

tn

(n− k)!

um

(m− s)!

=

∞
∑

m=0

∞
∑

n=0

HG
(α)
n+m(z, y; a, b, c; �)

tn

n!

um

m!
.

(29)HG
(α)
n (z, y; a, b, c; �) =

n
∑

k=0

(

n
k

)

(

log c
)k
(z − x)kHG

(α)

n−k(x, y, a, b, c; �).

(30)

G
(α)
m+n(z + x; a, b, c; �) =

m
∑

s=0

n
∑

k=0

(

m
s

)(

n
k

)

(

log c
)s+k

zk+sG
(α)

m+n−k−s(x; a, b, c; �).
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Moreover, taking z = 0 in (23), we have

We also derive additional results arising from Eq. (23), as follows.

Corollary 5  For y = 0 in (23), we have

Corollary 6  For α = 1 in (23), we have

where HGm+n(z, y; a, b, c; �) denotes the generalized Apostol type Hermite–Genocchi 
polynomials.

Theorem 3  Let a, b and c be positive integers, by a �= b. Then, for x, y ∈ R and n ≥ 0, we 
have

where [.] is Gauss’ notation, and represents the maximum integer which does not exceed a 
number in the square brackets.

Proof  By the exponential generating function of the polynomial HG(α)
n

(

x + α, y; a, b, c; �
)

 , 
we have

(31)

G
(α)
m+n(y; a, b, c; �) =

m
∑

s=0

n
∑

k=0

(

m
s

)(

n
k

)

(

log c
)s+k

(−x)k+s
HG

(α)

m+n−k−s(x, y; a, b, c; �).

(32)

G
(α)
m+n(z; a, b, c; �) =

m
∑

s=0

n
∑

k=0

(

m
s

)(

n
k

)

(

log c
)s+k

(z − x)k+sG
(α)

m+n−k−s(x; a, b, c; �).

(33)HGk+l(z, y; a, b, c; �) =

m
∑

s=0

n
∑

k=0

(

m

s

)(

n

k

)

(

log c
)s+k

(z − x)k+s
HGm+n−k−s(x, y; a, b, c; �).

(34)HG
(α)
n (x + α, y; a, b, c; �) =

[ n2 ]
∑

k=0

(

n
2k

)

yk(log c)kG
(α)

n−2k(x;
a

c
,
b

c
, c; �)

∞
�

n=0

HG
(α)
n (x + α, y; a, b, c; �)

tn

n!
=

�

2t

�bt + at

�α

c(x+α)t+yt2

=

�

2t

�( bc )
t + ( ac )

t

�α

cxtcyt
2

=

�

∞
�

n=0

G(α)
n (x;

a

c
,
b

c
, c; �)

tn

n!

��

∞
�

n=0

yn(log c)n
t2n

n!

�

∞
�

n=0





[ n2 ]
�

k=0

�

n
2k

�

yk(log c)kG
(α)

n−2k(x;
a

c
,
b

c
, c; �)





tn

n!
.
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Thus we get the desired result.� □

Corollary 7  Taking α = 1 in (34) gives

where [.] is Gauss’ notation, and represents the maximum integer which does not exceed a 
number in the square brackets.

Theorem 4  Let a, b and c be positive integers, by a �= b. Then, for x, y ∈ R and n ≥ 0, we 
have

Proof  By (11) and (15), we have

Thus we complete the proof of theorem.� □

Corollary 8  Putting c = e in (35) yields to

Theorem 5  Let a, b and c be positive integers, by a �= b. Then, for x, y ∈ R and n ≥ 0, we 
have

where [.] is Gauss’ notation, and represents the maximum integer which does not exceed a 
number in the square brackets.

HGn(x + 1, y; a, b, c; �) =

[ n2 ]
∑

k=0

(

n
2k

)

yk(log c)kGn−2k(x;
a

c
,
b

c
, c; �)

(35)HG
(α)
n (x, y; a, b, c; �) =

n
∑

k=0

(

n
k

)

G
(α)

n−k(a, b; �)Hk(x, y, c).

(

2t

�bt + at

)α

cxt+yt2 =

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!

=

(

∞
∑

n=0

G(α)
n (a, b; �)

tn

n!

)(

∞
∑

n=0

Hn(x, y; c)
tn

n!

)

=

∞
∑

n=0

(

n
∑

k=0

(

n
k

)

G
(α)

n−k(a, b; �)Hk(x, y, c)

)

tn

n!
.

HG
(α)
n (x, y; a, b, e; �) =

n
∑

k=0

(

n
k

)

G
(α)

n−k(a, b; �)Hk(x, y).

(36)
HG

(α)
n (x, y; a, b, c; �)

n!
=

[ n2 ]
�

j=0





n−2j
�

k=0

(log c)n−k−jxn−k−2jyj

j!(n− 2j − k)!





G
(α)

k (a, b; �)

k!
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Proof  Since

we have

Replacing n by n− 2j in the right hand side, we have

Hence, our assertion follows from (37).� □

Corollary 9  For y = 0 in (36), we get

Moreover, setting x = 0 reduces (17).

Theorem 6  Let a, b and c be positive integers, by a �= b. Then, for x, y ∈ R and n ≥ 0, we 
have

where [.] is Gauss’ notation, and represents the maximum integer which does not exceed a 
number in the square brackets.

Proof  It follows from (15) that

�

2t

�bt + at

�α

cxt+yt2 =

�

∞
�

k=0

G
(α)

k (a, b; �)
tk

k!

��

∞
�

n=0

xn(log c)n
tn

n!

�





∞
�

j=0

yj(log c)j
t2j

j!





=

∞
�

n=0

�

n
�

k=0

�

n
k

�

(log c)n−kG
(α)

k (a, b; �)xn−k

�

tn

n!





∞
�

j=0

yj(log c)j
t2j

j!



.

(37)
∞
�

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!
=

∞
�

n=0





[ n2 ]
�

j=0

n−2j
�

k=0

�

n− 2j

k

�

(log c)n−k−jG
(α)

k (a, b; �)xn−k−2jyj





tn

(n− 2j)!j!
.

G(α)
n (x; a, b, c; �) =

n
∑

k=0

(

n
k

)

(log c)n−kG
(α)

k (a, b; �)xn−k .

(38)HG
(α)
n (x + 1, y; a, b, c; �) =

[ n2 ]
∑

j=0

n−2j
∑

k=0

(

n− 2j
k

)

(log c)n−k−jyjG
(α)

k (x; a, b, c; �)

∞
�

n=0

HG
(α)
n (x + 1, y; a, b, c; �)

tn

n!
=

�

2t

�bt + at

�α

c(x+1)t+yt2

=

�

∞
�

k=0

G
(α)

k (x; a, b, c; �)
tk

k!

��

∞
�

n=0

(log c)n
tn

n!

�





∞
�

j=0

yj(log c)j
t2j

j!





=

∞
�

n=0

n
�

k=0

�

n

k

�

(log c)n−kG
(α)

k (x; a, b, c; �)
tn

n!





∞
�

j=0

yj(log c)j
t2j

j!





=

∞
�

n=0

∞
�

j=0

n
�

k=0

�

n

k

�

(log c)n−k+jG
(α)

k (x; a, b, c; �)
tn+2j

n!j!

=

∞
�

n=0

[ n2 ]
�

j=0

n−2j
�

k=0

�

n− 2j

k

�

(log c)n−k−jyjG
(α)

k (x; a, b, c; �)
tn

(n− 2j)!j!
.
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Hence, our assertion completes the proof of theorem.� □

Theorem 7  Let a and b be positive integers, by a �= b. Then, for x, y ∈ R and n ≥ 0, we 
have

Proof  It is proved by using

and Cauchy product formula.� □

Theorem  8  For arbitrary real or complex parameter α, the following implicit sum-
mation formula involving generalized Apostol type Hermite–Genoccchi polynomials 
HG

(α)
n (x, y; a, b, c; �) holds true:

Proof  By (15), we have

By equating the coefficients of the like powers of tn, we arrive at the desired result.� □

Theorem  9  For arbitrary real or complex parameter α, the following implicit sum-
mation formula involving generalized Apostol type Hermite Genocchi polynomials 
HG

(α)
n (x, y; a, b, c; �) holds true:

HG
(α+1)
n (x, y; a, b, e; �) =

n
∑

k=0

(

n
k

)

Gn−k(a, b; �)HG
(α)
m (x, y; a, b, e; �).

2t

�bt + at

(

2t

�bt + at

)α

ext+yt2 =
2t

�bt + at

∞
∑

n=0

HG
(α)
n (x, y; a, b, e; �)

tn

n!

(39)HG
(α)
n (x + 1, y; a, b, c; �) =

n
∑

k=0

(

n
k

)

(log c)n−k
HG

(α)

k (x, y; a, b, c; �).

∞
∑

n=0

HG
(α)
n (x + 1, y; a, b, c; �)

tn

n!
−

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!

=

(

2t

�bt + at

)α

cxt+yt2(ct − 1)

=

(

∞
∑

k=0

HG
(α)

k (x, y; a, b, c; �)
tk

k!

)(

∞
∑

n=0

(log c)n
tn

n!

)

−

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!

=

∞
∑

n=0

n
∑

k=0

(

n
k

)

(log c)n−k
HG

(α)

k (x, y; a, b, c; �)
tn

n!
−

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!
.

(40)

n
∑

k=0

(

n
k

)

(log ab)kαk
HG

(α)

n−k(−x, y; a, b, c; �) = (−1)nHG
(α)
n (x, y; a, b, c; �)
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and

Proof  By (15), we have

which is equivalent to

By equating coefficients of like powers of tn, we complete (40). In order to show the proof 
of (41), it is sufficient to see that

and

� □

Corollary 10  Setting b = c = e and � = a = 1 in (40), we have

Corollary 11  For b = c = e and a = 1 in (40), we have

which is known as symmetry property of the generalized Hermite–Apostol Genocchi 
polynomials.

(41)HG
(α)
n (α − x, y;

c

a
,
c

b
, c; �) = (−1)nHG

(α)
n (x, y; a, b, c; �).

cyt
2
[(

2t

�bt + at

)α

(cxt − (ab)αt c−xt)

]

=

∞
∑

n=0

[1− (−1)n]HG
(α)
n (x, y; a, b, c; �)

tn

n!

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!
−

(

∞
∑

m=0

αm(log ab)m
tm

m!

)

∞
∑

n=0

HG
(α)
n (−x, y; a, b, c; �)

tn

n!

=

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!
−

(

∞
∑

n=0

n
∑

m=0

αm(log ab)m

)

HG
(α)
n−m(−x, y; a, b, c; �)

tn

(n−m)!

=

∞
∑

n=0

[1− (−1)n]HG
(α)
n (x, y; a, b, c; �)

tn

n!
.

cyt
2

[

(

2t

�bt + at

)α

cxt −

(

2t

�( ca )
t + ( c

b
)t

)αt

c(α−x)t

]

=

∞
∑

n=0

[1− (−1)n]HG
(α)
n (x, y; a, b, c; �)

tn

n!

∞
∑

n=0

HG
(α)
n (x, y; a, b, c; �)

tn

n!
−

∞
∑

n=0

HG
(α)
n (α − x, y;

c

a
,
c

b
, c; �)

tn

n!

=

∞
∑

n=0

[1− (−1)n]HG
(α)
n (x, y; a, b, c; �)

tn

n!
.

n
∑

k=0

(

n
k

)

αk
HG

(α)

n−k(−x, y; �) = (−1)nHG
(α)
n (x, y; �).

HG
(α)
n (α − x, y; �) = (−1)nHG

(α)
n (x, y; �)
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General symmetry identities
In this section, we investigate and derive symmetric identities for the generalized Apos-
tol type Hermite–Genocchi polynomials HG(α)

n (x, y; a, b, c; �) and Apostol Genocchi 
numbers G(α)

n (a, b; �). It turns out that some well known identities of Khan et al. (2008), 
Khan (2015, a), Milne Thomsons (1933), Pathan and Khan (2014a, b, 2015a, b, c), Sriv-
astava (2011) and Yang (2008). As it has been mentioned in previous sections, α will be 
considered as an arbitrary real or a complex parameter.

Theorem 10  Let a, b and c be positive integers, by a �= b. Then, for x, y ∈ R and n ≥ 0 , 
we have

Proof  Let us consider

Then we see that g(t) is symmetric in a and b, and therefore we consider g(t) in two ways: 
Firstly

Secondly

By comparing the coefficients of tn on the right hand sides of two ways, we arrive at the 
desired result.� □

Corollary 12  Setting b = 1 in Theorem 10 gives

n
∑

k=0

(

n
k

)

an−kbkHG
(α)

n−k(bx, b
2y;A,B, c; �)HG

(α)

k (ax, a2y;A,B, c; �)

=

n
∑

k=0

(

n
k

)

bn−kakHG
(α)

n−k(ax, a
2y;A,B, c; �)HG

(α)

k (bx, b2y;A,B, c; �).

(42)g(t) =

(

(2t)2

(�Aat + Bat)(�Abt + Bbt)

)α

cabxt+a2b2yt2 .

(43)

g(t) =

∞
∑

n=0

HG
(α)
n (bx, b2y;A,B, c; �)

(at)n

n!

∞
∑

k=0

HG
(α)

k (ax, a2y;A,B, c; �)
(bt)k

k!

=
1

(ab)α

∞
∑

n=0

n
∑

k=0

HG
(α)

n−k(bx, b
2y;A,B, c; �)

an−k

(n− k)!
HG

(α)

k (bx, b2y;A,B, c; �)
bktn

k!
.

g(t) =

∞
∑

n=0

HG
(α)
n (ax, a2x;A,B, c; �)

(bt)n

n!

∞
∑

k=0

HG
(α)

k (bx, b2y;A,B, c; �)
(at)k

k!

=
1

(ab)α

∞
∑

n=0

n
∑

k=0

HG
(α)

n−k(ax, a
2y;A,B, c; �)

bn−k

(n− k)!
HG

(α)

k (bx, b2y;A,B, c; �)
aktn

k!
.

n
∑

k=0

(

n
k

)

an−k
HG

(α)

n−k(x, y;A,B, c; �)HG
(α)

k (ax, a2y;A,B, c; �)

=

n
∑

k=0

(

n
k

)

akHG
(α)

n−k(ax, a
2y;A,B, c; �)HG

(α)

k (x, y;A,B, c; �)
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Theorem 11  Let a, b and c be positive integeres, by a �= b. Then, for x, y ∈ R and n ≥ 0, 
the following identity holds true:

Proof  Let us first consider the following function:

which equals to

From here, we have

Our assertion follows from comparing the coefficients of t
n

n! on the right hand sides of the 
above.� □

Theorem 12  For each pair of integers a and b and n ≥ 0, the following identity holds 
true:

Proof  The proof is similar to that of Theorem 10. So we omit the proof of the theo-
rem.� □

n
∑

k=0

(

n
k

)

an−kbk
a−1
∑

i=0

b−1
∑

j=0

(−�)i+j
HG

(α)

n−k

(

bx +
b

a
i + j, b2z; c; �

)

G
(α)

k (ay; c, �)

=

n
∑

k=0

(

n
k

)

bn−kak
b−1
∑

i=0

a−1
∑

j=0

(−�)i+j
HG

(α)

n−k

(

ax +
a

b
i + j, a2z; c, �

)

G
(α)

k (by; c, �).

g(t) =
(2at)α(2bt)α(�cabt + 1)2cab(x+y)t+a2b2zt2

(�cat + 1)α+1(�cbt + 1)α+1

g(t) =

(

2at

�cat + 1

)α

cabxt+a2b2zt2

(

�cabt + 1

�cbt + 1

)

(

2bt

�cbt + 1

)α

cabyt

(

�cabt + 1

�cat + 1

)

.

=

∞
�

n=0





n
�

k=0

�

n
k

�

an−kbk
a−1
�

i=0

b−1
�

j=0

(−�)i+j
HG

(α)

n−k

�

ax +
b

a
i + j, b2z; c, �

�

G
(α)

k (ay; c, �)





tn

n!

∞
�

n=0





n
�

k=0

�

n
k

�

bn−kak
b−1
�

i=0

a−1
�

j=0

(−�)i+j
HG

(α)

n−k

�

bx +
a

b
i + j, a2z, c, �

�

G
(α)

k (by; c, �)





tn

n!
.

n
∑

k=0

(

n
k

)

an−kbk
a−1
∑

i=0

b−1
∑

j=0

(−�)i+j
HG

(α)

n−k

(

bx +
b

a
i, b2z; c, �

)

G
(α)

k (ay+
a

b
j; c; �)

=

n
∑

k=0

(

n
k

)

bn−kak
b−1
∑

i=0

a−1
∑

j=0

(−�)i+j
HG

(α)

n−k

(

ax +
a

b
i, a2z; c; �

)

G
(α)

k (by+
b

a
j; c; �).
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Corollary 13  By setting y = 0 in Theorem 12, we have

Theorem 13  Let a, b and c be positive integers, by a �= b. Then, for x, y ∈ R and n ≥ 0 , 
we have

Proof  Let

Then we have

from which we see that

and

Hence we complete the proof of the theorem by the equality I1 = I2.� □

Conclusion
In this paper, we have introduced a new family of Apostol Hermite–Genocchi poly-
nomials based on modified Milne-Thomson’s polynomial earlier defined by Dere and 
Simsek (2015). We have analysed the properties of these polynomials according to famil-
iar properties of Apostol Hermite–Genocchi polynomials given by Gaboury and Kurt 

n
∑

k=0

(

n
k

)

an−kbk
a−1
∑

i=0

b−1
∑

j=0

(−�)i+j
HG

(α)

n−k

(

bx +
b

a
i, b2z, c, �

)

G
(α)

k (
a

b
j, c; �)

=

n
∑

k=0

(

n
k

)

bn−kak
b−1
∑

i=0

a−1
∑

j=0

(−�)i+j
HG

(α)

n−k

(

ax +
a

b
i, a2z, c, �

)

G
(α)

k (
b

a
j, c; �).

n
∑

k=0

(

n
k

)

bn−kakG
(α)

n−k(ay; c, �)

a−1
∑

i=0

(−�)iHG
(α)

k

(

bx +
b

a
i, b2z; c; �

)

=

n
∑

k=0

(

n
k

)

an−kbkG
(α)

n−k(by; c, �)

b−1
∑

i=0

(−�)iHG
(α)

k

(

ax +
a

b
i, a2z; c, �

)

.

g(t) =
(2at)α(2bt)α(1+ �(−1)a+1cabt)cab(x+y)t+a2b2zt2

(�cat + 1)α(�cbt + 1)α+1
.

g(t) =

(

2at

�cat + 1

)α

cabxt+a2b2zt2

(

1− �(−cbt)a

�cbt + 1

)

(

2bt

�cbt + 1

)α

cabyt

=

∞
∑

k=0

a−1
∑

i=0

(−�)iHG
(α)

k

(

bx +
b

a
i, b2z; c, �

)

ak

k!

∞
∑

n=0

G(α)
n (ay; c, �)bn

tn+k

n!

I1 =

∞
∑

n=0

(

n
∑

k=0

(

n
k

)

bn−kak
a−1
∑

i=0

(−�)iHG
(α)

k

(

bx +
b

a
i, b2z; c, �

)

G
(α)

n−k(ay; c, �)

)

tn

n!

I2 =

∞
∑

n=0

(

n
∑

k=0

(

n
k

)

an−kbk
b−1
∑

i=0

(−�)iHG
(α)

k

(

ax +
a

b
i, a2z, c, �

)

G
(α)

n−k(by; c, �)

)

tn

n!
.
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(2012) and Kurt and Kurt (2011). Also we have derived the general symmetric identities 
arising from different analytical means and generating functions method.
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