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Background
 The field assisted sintering technique (FAST) or spark plasma sintering (SPS) originates 
from pulsed electrical currents flowing directly through a graphite die or powder mate-
rials, the process features high energy requirements (typically a few thousand amperes 
and several volts), high heating rates (up to 1000 K/min), and high temperature gradi-
ent processing (Groza and Zavaliangos 2000; Hungria et  al. 2009; Zhang et  al. 2014). 
Although several fundamental investigations on the process have been conducted, 
knowledge of transient mechanism involving pulse currents and high heat rates under 
pressure remains lacking because of the complex effects of thermal, electrical, and 
mechanical processes on mass transport (Antou et  al. 2015). For example, in original 
SPS theory, electrical discharges are believed to exist in the gaps between powder parti-
cles, these charges can generate plasma to enhance the thermal diffusion ability of mate-
rial (Kasperski et al. 2013) and promote sintering (Perera et al. 1998). However, no clear 
evidence has been presented to demonstrate the occurrence of discharges and the pres-
ence of spark plasma during the SPS process (Hulbert et al. 2009). Hulbert used a num-
ber of different methods, including in  situ atomic emission spectroscopy, direct visual 
observations, and ultrafast in situ voltage measurements under a variety of SPS condi-
tions to investigate the presence of spark plasma and occurrence of discharge during 
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sintering, thereafter concluding that plasma, sparking, or arcing does not occur during 
either the initial or final stage of SPS (Hulbert et al. 2009). Tomino measured the current 
passing through Al2O3 samples and found a value close to zero (Tomino et  al. 1997). 
On the other hand, Wang et al. (2000) found that compact Al2O3 powder is denser at 
the edges than in the middle of the sample at short holding times. Wang et al. (2000) 
concluded that rapid sintering may be attributed to efficient heat transfer because the 
graphite mold and punches function as heating elements. Rapid sintering may also be 
attributed to application of a high heat rate during SPS.

The mechanisms of FAST/SPS are commonly described in terms of mechanical, ther-
mal, and electrical effects. However, in non-conductive Al2O3 powders, high electric 
currents flow through the surrounding (graphite) die rather than directly through the 
sample. Thus, electrical fields cannot be considered in this work. Based on a previous 
investigation, we suppose the following considerations in Al2O3 powder: first, mechani-
cal and thermal effects dominate the SPS process. Moreover, the velocity of heat con-
duction exerts obvious lagging effects on the process, which means the Fourier heat 
conduction law may not be appropriate for the present situation because it implies ther-
mal propagation velocity is infinite. Since discrete compact particles feature remarkable 
porous structures or non-homogeneous inner structures (it means the original state), 
obvious non-Fourier heat conduction characteristics may be observed during transient 
heat conduction under the condition of an extra-high heating rates and temperature gra-
dients. In this case, the relaxation time is not confined to the molecular or lattice levels 
and completely differs from the heat transfer mechanism observed metal or non-metal 
materials (Ignaczak 1989; Tamma and Zhou 1998). The existing experiences show that 
the relaxation time of microstructural materials or discrete particulate materials may 
have a magnitude of seconds (Tamma and Zhou 1998; Kaminski 1990; Mitra et al. 1995). 
The relaxation time of compact Al2O3 powder (at temperatures of 15–25 °C, the average 
particle size is 130 nm) ranges from 5 to 45 s, as shown by Roetzel et al. (2003). Although 
working conditions (e.g., temperature, pressure, etc.) often differ from the test environ-
ment, but for the transient behavior at the initial sintering stage instead of the whole 
densification process, non-Fourier heat conduction is feasible. Therefore, heat transport 
and thermal focusing will be come out in a constrained space and transient timescale. 
It may be one of keys to reveal the effects of high local temperature on the neck of non-
conductive Al2O3 powder in the early stages of SPS.

A double equal-sized spherical model with a particle radius of r = 0.07µm is estab-
lished. Two kinds of diffusion mechanisms (surface diffusion and volume diffusion) are 
considered. At the initial stage of SPS, surface diffusion causes neck growth but not 
shrinkage. Thus, no change of the double equal-sized spherical particles in the center-to-
center distance can be observed, as shown in Fig. 1a. Under volume diffusion, the neck 
grows, the center-to-center distance decreases, resulting in shrinkage and densification. 
This finding is presented in Fig. 1b, where a is the neck radius and c is half of the length 
of the cord, in the present case, c = 0.74a. The neck growth rate is defined as X = a/r. 
In this paper, we only consider the initial stage of SPS, that is, X ≤ 0.3.

The initial conditions (t = 0) are as follows

θ(x, y, t) = 0, T,i(x, y, t) = 0
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The boundary conditions are as follows
The step temperature and extra pressure are applied on both ends of the parti-

cles, x = −r, 3r:T = T̄ ∗ 1(t), P = 35MPa. The rest area of particles is adiabatic and 
stress-free.

The driving force of neck growth is provided by the vacancy concentration gradient. 
The vacancy concentration difference �c between the sink and the cross section of the 
particles is described as follows during pressure-less sintering:

Here, � is a volume of vacancy, c0 presents equilibrium concentration of the vacancy of 
stress free zone, k, T  are Boltzman constant and absolute temperature, respectively. σ is 
the intrinsic Laplace stress.

On the condition of a high heat rate under pressure, we propose that the vacancy con-
centration difference of SPS considering the extra applied pressure and thermal stress is 
shown as follows

here, γ, P denote the surface energy, and the extra applied pressure. r, a are radius of 
particle and neck. σT is thermal stress caused by the thermo-mechanical interaction. In 
hot-pressure (HP) sintering, σT = 0.

To calculate σT, the generalized thermo-elastic equations are introduced (Zhang et al. 
2015).

(1)�c = 2c0 · σ�/kT

(2)Surface diffusion: �c = (c0�/a2kT )(2rγ + 4Pr2/π + a2�σT )

(3)Volume diffusion: �c = (c0�/a2kT )(4rγ + 4Pr2/π + a2�σT )

(4)k ′θ,ii = ρ′Cε

(

θ̇ + τ0θ̈
)

+ (3�+ 2µ)αT0(ε̇kk + τ0ε̈kk)

Fig. 1  Double equal-sized spherical model. a Surface diffusion. b Volume diffusion
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here uj, θ, τ0 and εij represent the displacement tensor, temperature increment relative 
to reference temperature T0(θ = T − T0), relaxation time and the strain tensor, respec-
tively. k ′, ρ′ and Cε are the heat conductivity coefficient, density and the specific heat of 
equal strain. �, µ are lame constants. α represents the coefficient of linear expansion.

The material parameters are described as follows (Wang et  al. 2010; Olevsky 
and Froyen 2009): modulus of elasticity E = 300GPa, Poisson’s ratio ν = 0.22, 
α = 8.0× 10−6 K−1, τ = 0.2 s, ρ′ = 3900 kg/m3, k ′ = 27W/(mK), Cε = 900 J/(kgK), 
k = 1.3806505× 10−23 J/K, γ = 1.5 Jm−2 and � = 4.25× 10−29 m3.

Figure  2 clearly demonstrates the thermal focusing effect because of superposition 
of heat waves under generalized thermo-elastic theory as well as the non-Fourier heat 
conduction law. It cannot access from the classical Fourier heat conduction law since it 
implies that thermal diffusion velocity is infinite (the classical Fourier heat conduction 
law may apply to the conventional pressure-less sintering and hot press sintering). At the 
center point of the neck, no significant temperature difference was noted between the 
surface diffusion and volume diffusion mechanisms. However, the difference between 
these diffusion mechanisms appears at the edge of the neck because shrinkage between 
two centers of particles can be observed. The superposition effect of heat waves induces 
a maximum ultimate temperature (about 2242 K), which is much larger than the given 
temperature (1073 K). It should be notice that the zones close to the neck in both parti-
cles will keep at high temperature soon afterwards due to the reflection and secondary 
superposition of heat wave. However it is just the result of theoretical deduction and 
it is hard to get the experimental monitoring under the same conditions actually, but 
we can find some related phenomena in the similar experiments. For non-conductive 
Al2O3, Carney and Mah (2008) pointed out the shrinkage began at 988  K (heating at 
110 K/min). Xiong and Wang (2008) and Wang and Fu (2002) reported that the center 
temperature of the sample is higher than the boundary. The biggest temperature differ-
ence between the center and the border point is about 220 K (for non-conductive BN 
powder) and 450 K (for TiB2 + BN ceramic composite). Besides Kim and Johnson (1983) 
put forward a model which requires firing temperatures in the range of 3400–3800  K 

(5)ρüi = (�+ µ)uj,ij + µui,jj − (3�+ 2µ)αθ,i

Fig. 2  Temperature distribution with the heat wave propagation
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for 1-μm-radius alumina particles and 5500–7600  K for 10-μm-radius particles. Since 
the melting point of alumina is 2320 K, such absurdly large numbers clearly indicate the 
breakdown of conventional sintering mechanism models (Young and McPherson 1989).

The relaxation time is an important parameter used to determine the disciplinarian of 
propagation time scale and space scale. Figure 3 shows no obvious temperature differ-
ence when we take different relaxation times for the same point. In fact, only the arrival 
times of the wave fronts differ.

Figure  4 shows that the concentration difference decreases as the neck growth rate 
increases in different sintering methods (e.g., pressure-less, HP and SPS) according to the 
surface diffusion or volume diffusion mechanism. The magnitude and speed observed 
are fairly high at the beginning of sintering but decrease thereafter, likely because the 
effect of stress concentration decreases with increasing curvature of the neck, the corre-
sponding thermal stress changes in the same manner. As the neck grows, the decreasing 
concentration difference gradually resembles that found during pressure-less sintering 
and HP. However, in SPS, the concentration difference retains a relatively higher value, 

Fig. 3  Influence of relaxation time on temperature at center point

Fig. 4  Changes of the concentration difference by neck growing rate in different sintering methods (extra 
pressure is 35 MPa, the sintering temperature is 1273 K)
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that is, about 3–5 times that of the other processes. It will accelerate the sintering pro-
ceed in a short time.

Conclusions
In summary, the generalized thermo-elastic coupling equations were introduced to 
explain how low sintering temperatures realize high local temperatures in compact 
Al2O3 under the condition of an extra-high heat rate and temperature gradient during 
FAST/SPS. Calculations of the vacancy concentration difference showed that the driv-
ing force of sintering during FAST/SPS is indeed much greater than that during con-
ventional pressure-less or HP sintering. In general, the influences of temperature and 
temperature gradient are collectively belong to the thermal effect in the SPS process, 
however, for the non-conduction powder compact, the influence of heat wave in the ini-
tial stage sintering should not be a ignored factor which have not mentioned before.
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