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Background
Machine-to-Machine (M2M) (Severi et al. 2014) is an important research area in which 
smart homes  (Zhang et  al. 2011; Harper 2006; Jiang et  al. 2004; Teymourzadeh et  al. 
2013) are one of the key areas envisaged to promote its growth. As intelligence in the 
home takes new shape, multi-agent based context-awareness in M2M  (Maracic et  al. 
2014) performs automated reasoning, which supports interoperability among heteroge-
neous systems of connected devices using the expressive power of ontology (McGuin-
ness et  al. 2004; Staab and Studer 2013; Cardoso and Pinto 2015). An ontology in its 
classical form, however, is based on first-order logic, and lacks the built-in, principled 
support, to efficiently represent and reason under uncertainty. But we cannot avoid 
uncertainty in nature, and the fact that knowledge in relation to the entities of the 
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domain can be ambiguous, incomplete, and inconclusive (Orlowska 1998; Yang and Cal-
met 2005), means that, only a fraction of the rules we use for reasoning can be true in all 
situations. Particularly, we cannot be sure when to stop amending the set of reasoning 
rules since not all possibilities can be listed in advance. In probabilistic representation, 
however, probability can capture uncertain knowledge by summarizing a potentially infi-
nite set of possibilities. Therefore, to achieve compact and efficient reasoning, we can 
integrate the inferential power of probabilistic representations with the expressive power 
of ontology to form probabilistic ontology. An ideal form of a probabilistic ontology 
should be able to comprehensively represent and reason under uncertainty in a princi-
pled, structured and shareable way (Boury-Brisset 2003).

Probabilistic extensions to ontology have largely assumed a purely discrete domain of 
discourse (Ongenae et al. 2013; Yang and Calmet 2005; Maurelli et al. 2013). But ontolo-
gies of many real-world problems, especially smart homes, contain continuous quanti-
ties such as temperature and humidity. One possible way of handling the continuous 
quantities is to avoid them by mapping continuous quantities to discrete states through 
discretization  (Pool et  al. 2005). But ideally, continuous quantities consist of infinite 
domains, and subjecting same to discretization often results in intractable conditional 
probability tables (CPTs) with considerable loss of accuracy. Also, it is usually impos-
sible to define a definite boundary between two overlapping discrete states. We are, thus, 
faced with a combination of vagueness and uncertainty, and indeed different from the 
axiomatic notion of probability.

In this paper, we extend the state-of-the-art of probabilistic ontology to include simul-
taneous distributions for discrete and continuous properties in ontology. To achieve a 
generic representation, this novel approach leverages the advantages of probabilistic 
relational models (PRMs) (Friedman et al. 1999; Getoor et al. 2001), and the fuzzy Bayes-
ian approach of (Pan and Liu 2000), and herein called Hybrid(Hy) Probabilistic(Prob-) 
Ontology (HyProb-Ontology). The semantics of HyProb-Ontology encodes uncertainty 
over properties of instances, and uncertainty over the properties of relations between 
instances of ontological classes. In encoding this uncertainty, we provide representations 
that simultaneously specify distributions for continuous and discrete property domains 
in ontology. Thus, for each property of a class in ontology, we specify its probabilistic 
dependence on other properties of the same object as well as the dependence on prop-
erties of related objects. This is a class level probabilistic template that instances of the 
same class share. Similar to any other class in ontology, subclasses of annotated classes 
can extend parents’ distributions as well as overwrite some aspects.

Essentially, this framework with its hybrid probabilistic information can induce an 
equivalent hybrid Bayesian network (HBN) (Lerner 2002) over completions of instances. 
Properties of classes serve as random variables in this HBN. Since the dependency topol-
ogy of the HBN can vary across different domains, pursuing an efficient unified mod-
eling semantics is very vital for future reasoning requirements of M2M. In this regard, 
our semantics requires replacing each continuous variable in the general HBN with a 
fuzzy discrete variable, and extending a link from this fuzzy variable to the continuous 
variable. This fuzzy discrete variable achieves a conditional Gaussian (CG) fuzzification 
of the continuous variable without employing any fuzzy logic  (Yager and Zadeh 2012) 
semantics. We call this generic model a Ground Hybrid Probabilistic Model (GHPM). 
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In its implementation in HyProb-Ontology, reference slots in our ontological relational 
schema are used to achieve the fuzzification of continuous quantities. Note that there is 
no direct mapping between any fuzzy discrete state and the corresponding continuous 
variable. However, we associate the Gaussian parameter, (µ, σ 2), with each discrete state. 
To support Bayesian inference in this approach, we provide the algorithm Construct-
GHPM to aid in constructing the equivalent GHPM from HyProb-Ontology.

We validated this approach using an ontology of a smart home case study. The results 
of our experiments show that the generic model proposed in this paper can achieve 
exact inference with better performance over classical Bayesian networks (BN) (Nielsen 
and Jensen 2009). Also, pursuing approximate inference algorithms in  situations of 
overly complex networks proves efficient with this approach.

Therefore, the major contributions in this paper are: (1) a hybrid probabilistic model 
extension to ontology; (2) data structure that achieves generic dependency topology 
in equivalent DAGs of HyProb-Ontology; (3) algorithm to construct equivalent DAGs 
of HyProb Ontology; and (4) implementation of uncertainty reasoning in future M2M 
frameworks.

We organise the rest of the paper as follows: in the following section, we give a brief 
survey on related work before the research fundamental is presented next; Hyprob-
Ontology modelling section presents a detailed description of the proposed framework, 
which is followed by an implementation of a probabilistic reasoning on this frame-
work to achieve uncertainty reasoning in future M2M; Smart home case study based 
on oneM2M semantics standards section presents a case study and an extension of the 
oneM2M functional model for semantics; next section presents experimental tests and 
discussions of experimental results; finally, we draw conclusions, and propose future 
research.

Related work
Dealing with uncertainty in ontology has extensively been studied for some time now. 
In most of these approaches, ontological engineering tasks such as domain knowledge 
modelling, ontology reasoning and ontology mapping  (Shvaiko and Euzenat 2008) are 
expressed along the lines of fuzzy logic and axiomatic notion of probability. The basis 
for this divide in representation for uncertainty in ontology is attributable to the general 
notion of information as being vague and imprecise in real application domain.

Just like first-order logic was extended to fuzzy logic, corresponding fuzzy ontology 
description languages of OWL DL have been proposed to address vagueness in knowl-
edge (Straccia 2006; Bobillo and Straccia 2011). These extend the classical representation 
of SHOIN (D) to represent domain knowledge using fuzzy sets, and provides reasoning 
capabilities that support degree of entailment and subsumption relationships in an inter-
val [0, 1]. In demonstrating collective decision making with real scene attributes, a fuzzy 
ontology based approach has also been proposed (Pérez et al. 2013). With the underlying 
fuzzy ontology of this approach, relations between concepts and logical rules for rea-
soning are unified towards efficient decision-making under uncertainty that takes into 
account large sets of alternatives. We see also an application of fuzzy ontology in recom-
mender systems as a shift from the sundry approaches in information retrieval (Porcel 
et al. 2015). The adoption of a fuzzy ontology here efficiently characterises users profiles 
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in terms of preferences that accurately generate personalised recommendations. How-
ever, fuzzy logic lacks the capacity to deal with inherent uncertainty by exploiting com-
putational structure, which is fundamental to modelling large-scale systems. Taking 
guidance from statistical relational learning therefore leverages ideas from probability 
theory to address uncertainty in ontology whilst incorporating probabilistic graphical 
models (Getoor 2007).

Probabilistic extension to ontology essentially conveys both the structure of proba-
bilistic representation and ontology. In Carvalho et al. (2013), multi-entity BN theories 
have been implemented towards uncertainty reasoning in ontology under the notion of a 
discrete domain of discourse. To implement probabilistic subsumption problems for the 
Bayesian ontology language BEL (Ceylan and Penaloza 2014), a new Bayesian ontology 
language BORN has been proposed  (Ceylan et al. 2015). This presents the first Bayes-
ian reasoner over Description Logic ontologies based on multiple world semantics. Also, 
the literature presents the first approach that considers model complexity of probabilis-
tic ontology in large-scale knowledge-based systems (Mohammed et al. 2015). Novelty 
of this approach lies in the exploitation of Markov boundary  (De Morais and Aussem 
2010) in ontology to achieve concepts that prove conjunctively useful for probabilistic 
modelling.

Even though an attempt has been made through discretization to deal with continuous 
quantities in probabilistic ontology (Pool et al. 2005), all existing approaches provide no 
compatible representation for simultaneous handling of discrete and continuous quanti-
ties in ontology, and simply mapping continuous information to discrete states through 
quantization can lead to information loss. In our approach therefore, distributions can 
be simultaneously specified over properties with discrete and continuous domains 
in ontology. This representation allows for a derivation of a generic equivalent hybrid 
directed acyclic graph (DAG), which provides a unified dependency structure across all 
domains. Essentially, this unified framework is achieved through conditional Gaussian 
fuzzification of continuous quantities without employing any fuzzy logic semantics, and 
can achieve exact inference, which is not typical of classical hybrid probabilistic models.

Fundamental
In this section, we introduce aspects of the problem of uncertainty reasoning in ontology 
and hybrid probabilistic models in ontology. These form the fundamental concepts of 
the main framework presented in the next section.

Uncertainty reasoning in ontology

Ontologies by default support logic-based reasoning. To incorporate the uncertainty 
inherent in most real application domains, probabilistic annotations can be added to 
the classical specification of ontological concepts. Thus, we can formulate a probabil-
istic ontology as a tuple 〈O,Pr〉, where O represents an ontology, and Pr denotes associ-
ated probabilistic annotations. The problem here is how Pr can be encoded to convey 
both the ontological structure, and the structure of probabilistic representation. With 
such a conceptualization, existing ontologies can get annotated without any structural 
adjustments.
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Probabilistic ontologies based on PRMs associate probabilistic distributions with 
properties of classes as value restrictions. If a property P has domain Dom, we can define 
its range predicate, Rg, as Rg(r, P), where r is the range literal of P. For most real appli-
cation domains, r can represent discrete or continuous value restrictions of a property. 
To avoid the tendency of information loss associated with discretization of continuous 
quantities, distributions can be specified simultaneously for both discrete and continu-
ous quantities in ontology. In this regard, the afore-defined probabilistic ontology can 
then be transformed into a triple 〈O,Prd ,Prc〉, where Prd represents probabilistic annota-
tions of properties with discrete value restrictions, and Prc denotes probabilistic annota-
tions of properties with continuous value restrictions. Using this data structure, we can 
make probabilistic inferences by translating the probabilistic ontology into an equivalent 
hybrid DAG. One other looming problem at this stage would be a lack of restriction on 
the dependency topology of this DAG across different domains. For good model perfor-
mance, the semantics of these annotations should therefore pursue generic DAGs that 
can achieve exact inference in practice across different domains.

Ground hybrid probabilistic model

Motivated by the semantics of PRMs and the FBN approach proposed in (Pan and Liu 
2000), we propose a Ground Hybrid Probabilistic Model (GHPM) that a HyProb-Ontol-
ogy would induce over completions I  of a relational skeleton, where I  represents an 
instance of a relational schema. This network defines a conditional Gaussian (CG) dis-
tribution: given any assignment to the discrete parents of continuous variables, the dis-
tribution over the continuous variables is a multivariate Gaussian (Bishop 2006; Russell 
and Norvig 2005). Properties of instances of classes in the ontology form the random 
variables in this framework.

Strictly following the semantics of PRMs would require a probabilistic ontology and a 
given skeleton to induce a classical BN of some discrete ground type. To relax this con-
straint of a purely discrete domain, HyProb-Ontology specifies distributions over both 
discrete and continuous variables in the domain. Similarly, given an acyclic dependency 
topology of a given skeleton, we can construct an equivalent ground HBN of HyProb-
Ontology as shown in Fig. 1.

A general HBN is a DAG representing a joint probability distribution over a set of dis-
crete and continuous variables X.

where Xd ∈ X denotes a set of discrete variables, Xc ∈ X a set of continuous variables, L 
a set of directed edges between variables, and P a set of conditional probability distribu-
tions (CPDs). Assuming the set of classes and the relations between them to be fixed, we 
consider CPD for only properties of classes.

where Pd and Pc denote set of discrete and continuous parents of X respectively.
Since X can be discrete or continuous, obviously, a discrete or continuous variable can 

have discrete and/or continuous variables as children or parents according to Fig. 1. As 
a consequence, different topologies with arbitrary probability distributions are eminent. 

(1)HBN = (X,L,P) = (Xd ,Xc,L,P)

(2)P = {P(X |Pd ,Pc)}
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Chances are also that different inference algorithms may be required across different 
domains, and typical of HBNs, exact inference may not be tractable in most cases.

As shown in Fig. 2, we present GHPM as a generic representation to check structural 
arbitrariness in equivalent HBNs of hybrid probabilistic ontologies.

Definition 1  (Ground Hybrid Probabilistic Model (GHPM)) Given the HBN in Eq. 1, 
GHPM is a conditional Gaussian-class DAG defined by replacing each continuous vari-
able in the model with an imaginary discrete variable, and extending a directed link from 
these imaginary variables to the corresponding continuous variables.

Based on Definition 1, we can reformulate the general HBN to achieve GHPM as

(3)GHPM = (Xd ,Xdc,Xc,L
′,P′)

Fig. 1  An example of a general HBN. Construction of an equivalent ground hybrid Bayesian network of 
HyProb-Ontology

Fig. 2  An example of a GHPM from HyProb-Ontology. A generic representation of Fig. 1 that defines hybrid 
Bayesian networks with fixed topology across domains
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where Xdc is the set of imaginary discrete variables obtained after discretization of Xc 
such that Xdc ∈ Xdc ↔ Xc ∈ Xc, and L′ is the new set of links after this transformation. 
Thus, ∀Xc ∈ Xc, we replace Xc with Xdc, and a new directed link Xdc → Xc is created. For 
sake of clarity, we use P′ = Pd ∪ Pdc ∪ Pc to represent a composite CPD of the original 
discrete, imaginary discrete and continuous variables in the transformed HBN.

It is worth noting that Xdc and Xc in the GHPM will always form one of the condi-
tional independencies shown in Fig. 3 with a third discrete node. Causal chains shown 
in Fig.  3a give rise to the conditional independence: P(Xc|X ,Xdc) = P(Xc|Xdc). This 
means that the probability of the continuous variable now depends only on its imagi-
nary discrete variable. Also shown in Fig. 3b is the imaginary discrete variable being a 
common ancestor to the continuous node and another discrete node. The conditional 
independence structure of the common ancestor is the same as the causal chains: 
P(Xc|X ,Xdc) = P(Xc|Xdc). This also implies that the two descendants are conditionally 
independent given their common ancestor. If no information is therefore provided about 
either descendant, then observing one descendant increases the belief of the ancestor, 
which in turn increases the belief of the other descendant.

Obviously with this transformation, Pd and Pdc will have the same configuration 
comprising of the original and imaginary discrete variables. Thus, their CPDs can be 
assumed to be multinomial just like in a purely discrete setting. But in a situation of 
Fig.  3b whereby only Xc is observed, the marginal distributions of states of X whose 
beliefs increase with the evidence approximately represents a marginal cumulative dis-
tribution function (CDF) of X given by

(4)

Pd = {P(Xd |Pd)}
Pdc = {P(Xdc|Pdc)}
Pc = {P(Xc|Xdc)}







P′

(5)
FX (x) =

∑

i≤x

f (i)

a

b

Fig. 3  Forms of conditional independences involving continuous nodes in GHPM. a Causal chain. This shows 
that the probability of a continuous variable in the ground hybrid probabilistic model only depends on its 
imaginary discrete variable. b Common ancestor. This implies that discrete and continuous variables in the 
ground hybrid probabilistic model are conditionally independent given an imaginary discrete variable as 
their common ancestor
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where f(i) represents the discrete probability density function of X. The following lemma 
proves this.

Lemma 1  Given a discrete variable X, and its sibling continuous variable Xc of a com-
mon unobserved discrete parent Xdc, the marginal cumulative distribution function of X, 
given by F(X = x), represents increase in beliefs of states of X whenever Xc is observed.

Proof 1  Let FX (x) represent the marginal CDF of node X, and FXc (c) the marginal CDF 
of node Xc. If µ and σ are the mean and standard deviation of Xc corresponding to a state 
x1 in the node Xdc, then increase in belief of x1 exists in the interval [−2σ + µ, 2σ + µ] . 
In effect, the corresponding increase in beliefs in X exists in this same interval. There-
fore, for monotonic increase in beliefs of states of X whenever Xc is observed, we can 
represent the CPD by a conditional CDF. Thus,

Given Xdc, Xc and X are conditionally independent, and FX ,Xc (x, c) = FX (x)FXc (c). 
Hence,

� �

Each continuous variable, however, now has only one discrete parent Xdc. With this 
topology, given any assignment to the discrete variables Xdc, we can approximate the 
CPD of each continuous variable Xc as a CG given by Eq. 8.

where c is the value of the continuous variable Xc, d is the discrete state of Xdc, and the 
parameter vector (µd , σ

2
d ) represents the mean and variance of each discrete state d. This 

parameter in essence means there is no one–to-one mapping between c and d.

Since in the general HBN, Eq. 8 is equivalent to approximating P(Xc|Pd ,Pc) by a con-
ditional Gaussian mixture(CGM) model given by Eq. 9, we can represent the marginal 
probability, p(c), of the continuous variable Xc by a Gaussian mixture model.

(6)

FX ,Xc (X |Xc) = P(X ≤ x|Xc ≤ c)

=
FX ,Xc (x, c)

FXc (c)

(7)

FX ,Xc (X |Xc) = FX (x)

=
∑

i≤x

f (i)

(8)P(Xc = c|Xdc = d) =
1√
2πσd

exp

{

−
(c − µd)

2

2σ 2
d

}

(9)P(c|Pd ,Pc) =
∑

d

P(d|Pd)√
2πσd

exp

{

−
(c − µd)

2

2σ 2
d

}

(10)p(c) =
∑

d

P(c)√
2πσd

exp

{

−
(c − µd)

2

2σ 2
d

}
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Thus, GHPM can provide a good approximation for the general HBN in ontology since 
Gaussian mixture models are well known for approximating arbitrary probability distri-
butions (McLachlan and Peel 2004).

HyProb‑Ontology modelling
In this section, we provide details of our hybrid probabilistic model extension to ontol-
ogy using a smart home semantic control ontology of our case study. The smart home 
ontology basically models rooms and their properties. This ontology also models devices 
such as sensors and home appliances, as well as their properties. In line with the essence 
of our case study, the main properties of devices considered in this ontology are deploy-
ment properties, capability properties, and measurement properties.

Following the semantics of PRMs and Probabilistic Frame-based Systems (Koller and 
Pfeffer 1998), we begin by providing a relational schema. Similarly, our relational schema 
represents a direct mapping between ontologies and relational databases. Principally, 
each class corresponds to a table, and properties of a class map to standard attributes 
in a table. Also, reference slots, which correspond to foreign keys in a database are object 
properties in this framework. Secondly, we give a probabilistic framework to encode 
dependencies among properties of classes in ontology. This aspect deals separately with 
the notion of uncertainty in ontology, and how we can represent such uncertainty in 
ontology.

Ontological relational schema

An ontological relational schema describes a set of classes X = {X1, . . . ,Xn}. This is a 
logical view of an ontology-based model specifying semantics and their relationships. 
Figure 4 shows a section of the relational schema for the smart home domain considered 
in this paper.

Each class X ∈ X , has a set of Properties denoted by P(X). The Property P ∈ P of a 
class X is denoted by X.P, and V(X.P) represents the value space of this property. This 
value space enforces a finite domain on each property object. For example, the class Sta-
tusValue has properties: hasValue; hasState; and hasChannel. Thus, the property Sta-
tusValue.hasState can have a value space {On,Off }.

Also, a set of reference slots of a class X is denoted by R(X). We denote the reference 
slot R of X by X.R. Typically, R ∈ R(X) is of a particular type, and specifies a binary rela-
tion between instances of two classes. In essence, each R in X has a domain type X, and 
the range type is Y ∈ X . Clearly, R is an object property of X, and can be denoted by 
X.R(Y). For instance, the relation Room.hasDevice(Device) defines a binary relation 
in which the reference slot hasDevice has a domain class Room, and the range type is 
Device. Additionally, we can define an inverse reference slot R−1 to denote an inverse 
function of reference slot R. Note that there is no one-to-one mapping between R and 
R−1 because the range of R−1 is the same as the domain of R. For example, the inverse 
reference slot device-In of hasDevice has the range type Room, which is domain of has-
Device, and domain Device, which is also range of hasDevice.

Implicit relation between two classes is defined using a slot chain, which is denoted 
by X .σ for some class X. In this notation, σ represents a sequential list of reference slots, 
R1.R2 . . .Rn, such that any two successive reference slots must obey the relations X .Ri(Y ) 



Page 10 of 27Mohammed et al. SpringerPlus  (2016) 5:706 

and Y .Ri+1(Z), ∀X ,Y ,Z ∈ X . Basically, this means, in σ, the range of a preceding refer-
ence slot must be the domain of its succeeding reference slot. Thus, properties of objects 
defined in terms of their relation to other objects can be referenced using the notation 
X .σ .P. We can designate this mode of referencing properties as property chains. Here, 
the first element of σ has a domain type of class X, and P is a property associated with 
the range class of the last element of σ. For example, to determine a room’s temperature 
value, we can use the slot chain RoomhasDevice.hasStatusValue. hasValue. The refer-
enced property, hasValue, is an attribute of StatusValue, which is the range class of the 
last item of the slot chain.

Finally, an instance I  of a schema would specify a set of class objects x, a value for each 
property x.P, and a value for each reference slot x.R. In a simplified view, a relational 
skeleton, which is a partial specification of a relational schema, contains only objects and 
their relations.

Uncertainty in ontology

For generic representation of uncertainty in ontology, we extend the idea of probabilis-
tic ontology to include simultaneous distributions for discrete and continuous variables. 
Building on the framework of PRMs, we specify for each property of an object, the prob-
abilistic dependence on other properties of the same object as well as the dependence on 

Fig. 4  An extract of a relational schema based on our smart home ontology. A logical view of an ontology-
based model specifying semantics and their relationships as adopted in this approach
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properties of related objects. This is a class level dependency model that objects of the 
same class can instantiate. Thus, subclasses can inherit as well as overwrite distributions 
of their parent classes.

Similar to any dependency model, each property X.P has a set of parents, and a local 
probabilistic model specifying the dependence on these parents. Note that this proba-
bilistic model is either multinomial or multivariate Gaussian for sake of generality. Two 
types of parents can be defined for X.P: dependence on another probabilistic property 
X.Q; and dependence on properties of related objects X .σ .Q. In the latter case where 
the slot chain may not be single-valued, we can use an aggregate notation ψ to achieve 
compact modeling. Specifically, X.P will depend on ψ(X .σ .Q), and for any x ∈ X, x.P will 
depend on ψ(x.σ .Q). We denote the domain of this aggregate function by V(X .σ .Q).

Since dependency properties are shared by objects of the same class, we can use CPDs 
of properties to model dependencies between parent properties and their descendants. 
Thus, the CPD of X.P given its parents Pa is denoted by P(X .P|Pa). Each Ui ∈ Pa has a 
domain V(Ui) in some ground type. Therefore, for the domain V(X .A), we can specify 
the conditional distribution as P(X .A|V(Ui)). We can construct the dependency topol-
ogy of properties in HyProb-Ontology using the following rules:

• • a dependency is a pair X .P ← Y .Q where X and Y are some classes, P is a property of 
X, and Q a property of Y

• • if P is a property of X, and Y = X, then X.Q can be a parent to X.P
• • if P is a property of X, then X .σ .Q is parent to X.P, if Q is a referenced property in Y, 

and Y is the range class of the last item in X .σ

The basic intuition we get from these rules is that this is a class level dependency topol-
ogy, and all instances consistent with these classes share the same topology. An example 
of such a dependency topology based on our smart home ontology is shown in Fig. 5. 
We notice that the reference slots do not have probabilistic dependencies because they 
are assumed to be known and fixed. Shown as the dash lines, the reference slots only 
exist implicitly in the topology. It is worth noting also that even though the slot chain 
StatusValue.statusValue-Of.device-In relates the class Room to another class Status-
Value, only one probabilistic dependence exists between them. The idea is that prop-
erties of these two classes are equivalent, and we choose to ignore the inter-discrete 
dependencies in favour of our approach. This explains the flexibility of HyProb-Ontol-
ogy to partially define distributions over properties of classes.

Encoding hybrid probabilistic information in ontology

The ability to associate distributions with classes and their properties is key towards 
achieving probabilistic extension to ontology. To augment the standard OWL elements 
with this uncertainty information, we define probability and reference slot as resources 
in ontology. An example of an annotated ontology based on HyProb-Ontology is shown 
in Fig. 6.

Under the HyProb-Ontology framework, a mandatory class: SlotChain; is required to 
represent slot chains in ontology. For simplicity, every binary relation in this representa-
tion is considered a slot chain of the form X .σ .P such that
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In this sense, a simple reference slot is also considered a slot chain with cardinality of σ 
being 1. Since σ denotes a sequence of reference slots, a property, element, is required to 

X .σ .P =
{

X .P, if σ = ∅
X .σ .P, if n(σ ) >= 1

Fig. 5  Structural view of probabilistic dependencies between properties in our smart home ontology. 
Dependency topology of properties in HyProb-Ontology based on the rules provided in this paper

Fig. 6  An example of annotation based on HyProb-Ontology. A high-level view of the annotation of hybrid 
probabilistic information in ontology



Page 13 of 27Mohammed et al. SpringerPlus  (2016) 5:706 

list elements of σ. Each element of σ is, thus, described using another property slot, and 
its index in the sequence is maintained by the property slotIndex, which is rdf:datatype 
integer. Note that no referenced property is used in this representation because a class 
instance holds this relation, and every property P of the class shares the same relation. 
All reference slots in the relational schema are therefore instances of this class. For 
example, the reference slot Device.device-In can be represented in ontology as shown in 
Listing 1.

<SlotChain rd f : ID=”&smh ;SC−Device . device−In”>
<smh : e lement>
<smh : s l o t Index rd f : datatype=”&xsd ; i n t e g e r ”>1</smh : s l o t Inde x>
<smh : s l o t rd f : r e s ou r c e=”&smh ; device−In”/>

</smh : e lement>
</ SlotChain>

Listing 1: Encoding a simple reference slot in ontology

Also, the slot chain StatusValue.statusValue-Of.devive-In can be represented in ontol-
ogy as Listing 2. Obviously, what divides the two representations is the number of ele-
ment blocks in their respective representations. Hence, to link properties of a class 
with other properties of relations, we require the definition of a holder of the slot chain 
resource using the property hasSlotChain. This property becomes useful only when inter 
property dependence is required.

<smh : e lement>
<smh : s l o t Index rd f : datatype=”&xsd ; i n t e g e r ”>1</smh : s l o t Index>
<smh : s l o t rd f : r e s ou r c e=”&smh ; statusValue−Of”/>

</smh : e lement>
<smh : e lement>
<smh : s l o t Index rd f : datatype=”&xsd ; i n t e g e r ”>2</smh : s l o t Index>
<smh : s l o t rd f : r e s ou r c e=”&smh ; device−In”/>

</smh : e lement>
</ SlotChain>

Listing 2: Encoding a slot chain in ontology

<SlotChain rd f : ID=”&smh ;SC−SV. statusValue−Of . device−In”>

The idea that an object’s property can depend on other properties of either the same 
object or properties of related objects indicates the possibility of prior and conditional 
distributions existing within a class. In this case, our semantics must provide means for 
annotating properties with prior and conditional probability distributions. Therefore, to 
represent probability in ontology, we define three mandatory classes: Prior; CondP; and 
CondG; to respectively represent prior probability distribution, CPT, and CG distribu-
tion as possible restrictions for probability values of properties of classes. A class con-
taining an annotated property is, thus, termed a probabilistic class, and we will be using 
p-Class to denote same.

To specify the hybrid distribution we seek in this paper, we have to specify three kinds 
of distributions in ontology: prior distribution for properties with discrete value space; 
multinomial distribution for properties with discrete value space given discrete parents; 
and CG distribution for properties with continuous value space given discrete parents. 
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In establishing this generic representation, we define the property, isDiscrete, which 
takes the value True or False in order to simultaneously handle distributions over dis-
crete and continuous variables in ontology.

Discrete distribution

As shown in Listing 3, the prior probability restriction resource of a property is an 
instance of the Prior class. The target property of this distribution is specified using 
the attribute property. Similar to the representation of a slot chain, probability val-
ues of items of a property’s value space are partitioned using the property element. 
We provide also the property domainElement, which describes the elements of the 
annotated property’s value space. We specify values of the elements of this value space 
using the property pValue, which is rdf:datatype double. To ensure that the axioms of 
probability hold, sum of all values, which are specified by pValue of any instance must 
equal 1.

<Pr ior rd f : ID=”&smh ; pr ior−hasTemperature”>
<smh : property rd f : r e s ou r c e=”&smh ; hasTemperature”/>
<smh : e lement>
<smh : domainElement rd f : r e s ou r c e=”&smh ; normal”/>
<smh : pValue rd f : datatype=”&xsd ; double”>0 .39</smh : pValue>

</smh : e lement>
<smh : e lement>
<smh : domainElement rd f : r e s ou r c e=”&smh ; hot”/>
<smh : pValue rd f : datatype=”&xsd ; double”>0 .31</smh : pValue>

</smh : e lement>
<smh : e lement>
<smh : domainElement rd f : r e s ou r c e=”&smh ; very hot ”/>
<smh : pValue rd f : datatype=”&xsd ; double”>0 .30</smh : pValue>

</smh : e lement>
</ Pr ior>

Listing 3: Representation of prior probability distribution in ontology

For a property having a discrete value space, the conditional probability distribu-
tion is represented using a CPT, which is an instance of the class CondP. An example 
of HyProb-Ontology’s representation of CPT in ontology is shown in Listing 4. As can 
be seen in this listing, the structure of the conditional probability distribution is simi-
lar to the prior distribution. The only difference between these two representations is 
that the attribute, domainElement, in the definition of the prior distribution is replaced 
with another property rowCell. Since we seek a tabular representation of the CPT, the 
rowCell attribute defines the item combinations of the value space of the property over 
values of its parents. In each element block, the number of resources defined by rowCell 
is subject to the number of parents a property has. Thus, the number of resources speci-
fied by rowCell in each element block is equal to n+ 1, where n is the number of discrete 
parents of a property. In the example of Listing 4 for instance, the property hasShutter-
Control has a single parent, and so each element block accordingly defines two rowCell 
resources.
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<CondP rd f : ID=”&smh ; cpt−hasShautterContro l”>
<smh : property rd f : r e s ou r c e=”&smh ; hasShutterContro l”/>
<smh : e lement>
<smh : rowCell rd f : r e s ou r c e=”&smh ; windowOpened”/>
<smh : rowCell rd f : r e s ou r c e=”&smh ; openBlinds”/>
<smh : pValue rd f : datatype=”&xsd ; double”>0 .01</smh : pValue>

</smh : e lement>
<smh : e lement>
<smh : rowCell rd f : r e s ou r c e=”&smh ; windowOpened”/>
<smh : rowCell rd f : r e s ou r c e=”&smh ; c l o s eB l i n d s”/>
<smh : pValue rd f : datatype=”&xsd ; double”>0 .99</smh : pValue>

</smh : e lement>
<smh : e lement>
<smh : rowCell rd f : r e s ou r c e=”&smh ; windowClosed”/>
<smh : rowCell rd f : r e s ou r c e=”&smh ; openBlinds”/>
<smh : pValue rd f : datatype=”&xsd ; double”>0 .44</smh : pValue>

</smh : e lement>
<smh : e lement>
<smh : rowCell rd f : r e s ou r c e=”&smh ; windowClosed”/>
<smh : rowCell rd f : r e s ou r c e=”&smh ; c l o s eB l i n d s”/>
<smh : pValue rd f : datatype=”&xsd ; double”>0 .56</smh : pValue>

</smh : e lement>
</CondP>

Listing 4: Representation of conditional probability distribution in ontology for a
discrete variable

Annotating a given property with a discrete prior distribution requires a property 
hasPrior. The value of this property gives the prior distribution restriction, which is also 
a resource defined in the ontology. Also required is the property, isDiscrete, whose value 
is set to True. For instance, the annotation of Room.hasWindowStatus can be repre-
sented in ontology as shown in Listing 5.

<DatatypeProperty rd f : about=”&smh ; hasWindowStatus”>
<r d f s : domain rd f : r e s ou r c e=”&smh ;Room”/>
<r d f s : range rd f : r e s ou r c e=”&xsd ; s t r i ng ”/>
<smh : i sD i s c r e t e rd f : datatype=”&xsd ; s t r i n g ”>T</smh : i sD i s c r e t e>
<smh : hasPr ior rd f : r e s ou r c e=”&smh ; pr ior−hasWindowStatus”/>

</DatatypeProperty>

Listing 5: Representation of annotation of prior distribution for a property with a
discrete domain

Similarly, a property is annotated with a conditional probability distribution just like 
the annotation of the prior distribution. In this case, the property, hasPrior, in the anno-
tation of the prior distribution is replaced with the property hasCPT. Additionally, we 
augment the annotation of the prior distribution with the properties hasParent and 
hasSlotChain. We show in Listing 6 an example of annotation of conditional distribu-
tion based on the semantics of HyProb-Ontology. From this representation, hasParent 
is required to specify parents of the annotated property. Also, the relations between a 
property’s class and those of its parents are specified by the property hasSlotChain. As 
clearly demonstrated in the annotations of both the prior and conditional distributions 
in ontology, our approach achieves compact representation similar to the standard OWL 
definition of properties.
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<DatatypeProperty rd f : about=”&smh ; hasShutterContro l”>
<r d f s : domain rd f : r e s ou r c e=”&smh ;Room”/>
<r d f s : range rd f : r e s ou r c e=”&xsd ; s t r i ng ”/>
<smh : i sD i s c r e t e rd f : datatype=”&xsd ; s t r i n g ”>T</smh : i sD i s c r e t e>
<smh : hasSlotChain rd f : r e s ou r c e=”&smh ; SC−Func . func−Of . device−In ”/>
<smh : hasParent rd f : r e s ou r c e=”&smh ; hasWindowStatus”/>
<smh : hasCPT rd f : r e s ou r c e=”&smh ; cpt−hasShutterContro l”/>

</DatatypeProperty>

Listing 6: Representation of annotation of conditional distribution for a property
with a discrete domain

Continuous distribution

From Definition 1, the generic framework we are seeking requires an ontological rep-
resentation that can achieve CG distribution over properties whose value spaces are 
continuous. In this pursuit, all continuous quantities in the domain should have multi-
variate Gaussian distributions, i.e. CG, of the type CondG. Thus, for each property with 
a continuous value space in ontology, we specify two types of distributions: discrete dis-
tribution over an equivalent property that has a discrete value space of the continuous 
domain; and a CG distribution over the continuous value space of the property. This fic-
titious (equivalent) discrete property serves as the sole parent of the continuous prop-
erty in the equivalent DAG of HyProb-Ontology. The fictitious discrete property hereby 
replaces the continuous property in all dependencies in the ontology, and its representa-
tion follows those of the discrete setting.

Even though we can use owl:equivalentProperty to create the fictitious property in 
ontology, slot chains in HyProb-Ontology do the trick easily. Whilst the continuous 
property is an attribute of the domain class of the slot chain, the fictitious property 
exists in the range class of the last item in the slot chain. In essence, CG fuzzification of 
continuous quantities is achieved in HyProb-Ontology using implicit relations between 
continuous quantities and their corresponding discrete properties. Thus, for a property 
chain X .σ .Q; Y.Q is considered a fictitious discrete equivalent of X.P if only the continu-
ous domain of X.P corresponds to the discrete domain of Y.Q, and Y is the range class of 
the last reference slot in the chain. As shown in Fig. 5, with a typical oneM2M (Sneps-
Sneppe and Namiot 2012) framework for example, slot chains can provide the depend-
ence of the value of a temperature sensor(continuous quantity) on the temperature states 
of a room(discrete states). As an advantage, the adoption of slot chains in this approach 
can greatly simplify the process of semantic annotation in the generic oneM2M func-
tional model for M2M applications. For instance, hasTemperature, which gives the inter-
pretation of the continuous value of the property, hasValue, of a temperature sensor is 
inherently discrete. Clearly, these are two equivalent properties that represent the same 
phenomenon differently using discrete and continuous quantities. Therefore, hasTem-
perature can be the fictitious discrete equivalent, and also the only parent of hasValue in 
the dependency model.

The conditional distribution of properties with continuous value space is defined as an 
instance of the class CondG. Similar to the conditional distribution of discrete proper-
ties, only the property pValue in the definition of the prior distribution of discrete prop-
erties is dropped. We also introduce two additional properties: mean; and std. Just like 
any Gaussian distribution, the properties mean and std respectively represent the mean 



Page 17 of 27Mohammed et al. SpringerPlus  (2016) 5:706 

and variance of the distribution. These two properties form a parameter vector that the 
semantics associates with each discrete state in the domain of a corresponding equiva-
lent fictitious property. We specify each corresponding discrete state of the parameter 
vector using the property domainElement. Shown in Listing 7 is a representation of CG 
distribution of the property hasValue in ontology. As you can see, we associate a param-
eter vector consisting of the mean and variance with each state of the fictitious discrete 
property. Clearly, this data structure achieves a multivariate Gaussian distribution with 
mean, mean ∈ R

n and covariance matrix std ∈ S
n, where n is the length of the discrete 

states of the fictitious discrete property. Therefore, the dimension of the covariance 
matrix depends on the number of discrete states of the fictitious discrete variable.

<CondG rd f : ID=”&smh ; cg−hasValue”>
<smh : property rd f : r e s ou r c e=”&smh ; hasValue”/>
<smh : e lement>
<smh : domainElement rd f : r e s ou r c e=”&smh ; normal”/>
<smh :mean rd f : datatype=”&xsd ; double”>22 .5</smh :mean>
<smh : std rd f : datatype=”&xsd ; double”>6 . 9</smh : std>

</smh : e lement>
<smh : e lement>
<smh : domainElement rd f : r e s ou r c e=”&smh ; hot”/>
<smh :mean rd f : datatype=”&xsd ; double”>32 .9</smh :mean>
<smh : std rd f : datatype=”&xsd ; double”>7 . 4</smh : std>

</smh : e lement>
<smh : e lement>
<smh : domainElement rd f : r e s ou r c e=”&smh ; very hot ”/>
<smh :mean rd f : datatype=”&xsd ; double”>44 .4</smh :mean>
<smh : std rd f : datatype=”&xsd ; double”>7 . 6</smh : std>

</smh : e lement>
</CondG>

Listing 7: Representation of conditional Gaussian distribution in ontology

Similar to the annotation of conditional distribution of discrete properties, the con-
ditional distribution restrictions in the annotation of properties with continuous value 
space are defined using the property hasGD. This replaces the property hasCPT in the 
annotation of discrete conditional distributions, and holds the resource of the Gaussian 
distribution associated with the property. In this setting of continuous domain also, we 
are required to set the property value of isDiscrete to False. An example of representation 
of the annotation of a property with a CG distribution is shown in Listing 8. Note that, 
unlike in the annotation of conditional distribution of discrete properties, this structure 
is fixed for all continuous domains of properties. Thus, whereas multiple parents are pos-
sible in the annotation of conditional distributions of discrete domains, the annotation of 
continuous properties always has the fictitious discrete property as the sole parent.

<DatatypeProperty rd f : about=”&smh ; hasValue”>
<r d f s : domain rd f : r e s ou r c e=”&smh ; TemperatureNow”/>
<r d f s : range rd f : r e s ou r c e=”&xsd ; double”/>
<smh : i sD i s c r e t e rd f : datatype=”&xsd ; s t r i n g ”>F</smh : i sD i s c r e t e>
<smh : hasSlotChain rd f : r e s ou r c e=”&smh ; statusValue−Of . device−In ”/>
<smh : hasParent rd f : r e s ou r c e=”&smh ; hasTemperature”/>
<smh : hasGD rd f : r e s ou r c e=”&smh ; cg−hasValue”/>

</DatatypeProperty>

Listing 8: Representation of annotation of a property with continuous value space
in ontology
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Just like any other class in ontology, the inheritance mechanism provides for one 
annotated class to be a subclass of another. This allows subclasses to extend specifica-
tions of parent classes as well as overwrite some aspects of them. Specifically, a subclass 
can redefine the probability model of one or more properties in the parent template. 
For example, the class Bedroom, which is a subclass of Room can inherit the template 
probabilistic model of a room’s property, hasTemperature. Different bedrooms, however, 
can modify this parent distribution differently. Also, since an instance of a subclass is 
also an instance of the superclass, it can, thus, fill a property whose type is the super-
class. This allows instances of subclasses to be referenced directly using properties of the 
superclass.

Probabilistic reasoning on HyProb‑Ontology
In this section, we show how probabilistic reasoning based on HyProb-Ontology can 
achieve uncertainty reasoning in our extended generic functional model for support-
ing semantics in M2M applications. This can be represented by a piece of software that 
can support both probabilistic rule-based reasoning and Bayesian reasoning. Whilst the 
Bayesian reasoner propagates beliefs based on property values, the rule-based reasoner 
can infer new implicit knowledge not explicitly expressed in ontology.

Rule‑based reasoning

The rule-based reasoner consists of a probabilistic rule base, which can be interpreted 
by merging probabilistic rules with semantically annotated data and probabilistic knowl-
edge base. In context, a probabilistic rule is an ordered pair of properties of ontological 
concepts, which has a left-hand side and a right-hand side, and annotated with probabil-
istic information. Note that this rule base has a predetermined, total ordering to provide 
support for sequential execution of rules. Since the rule base is open to inclusion of new 
rules, reordering must always be performed to maintain the right order of execution 
whenever an update on rules occurs.
Figure  7 illustrates the basic operation of the rule-based reasoner. In interpreting 
rules, the reasoner first performs ontological matching by scanning the left-hand side 
of each rule using the semantically annotated data until a successful match is found in 
the knowledge base. This is followed by beliefs updating in which property values of 
matched instances of concepts are set based on evidence from the semantically anno-
tated data. At this point, the right-hand side of the rule is updated with the property’s 
value with the highest probability, and the process either continues with the next rule or 
begins again with the first rule. To infer new implicit knowledge for example, a simple 
rule could be that the light status of a room can establish states of the room’s bulbs. If 
for instance, we observe the room to be bright, then the inference would be based on: 
Pr(hasLightStatus(Room,Bright), 1.0) ⇒ Pr(hasStatusValue.hasState(Bullb,On), 0.8) . 
This rule in probabilistic representation is the same as

The advantage with this approach is that this same rule requires no modification in 
order to reason about the antecedent given the consequent as evidence. Thus, a proba-
bilistic rule can be viewed as a conditional probability statement, and the Baye’s theorem 

P(hasState|Room, hasLightStatus = Bright).
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offers such flexibility for manipulations. Hence, the invocation of probabilistic rules can 
be described as a sequence of actions chained by modus ponens (Buchanan et al. 1984).

Similarly, we can reason about concepts not explicitly expressed in ontology using 
this same reasoner. In this case, implication propagation based on predefined rules 
over instances is the working principle of the reasoner. For example, with the reference 
slot ac1bedRoom1.device − In.Y , we can infer from the ontology that Y must be of type 
Room to ensure satisfiability.

Bayesian reasoning

Bayesian reasoning can be used to answer queries about values of properties based on 
the GHPM. To facilitate automatic discovery of GHPM from HyProb-Ontology, we pro-
pose an algorithm Construct-GHPM. In this algorithm, we denote the DAG by G, and 
each node in G has the form I.P, where I represents an instance of a p-Class and P is a 
property of a class. The algorithm maintains the list L of all nodes to be processed. To 
begin, L is initialized to only properties of named instances. In each iteration, the algo-
rithm removes a node from L, and processes it as follows: for each parent I .σ .Pi, an edge 
is added from I .σ .Pi to I.P; if I .σ .Pi /∈ G, add I .σ .Pi to G and L; when parents of I.P no 
longer exist, and depending on the value of isDiscrete in the annotation of I.P, CPT or 
CG is then constructed using the hasCPT or hasGD restriction of I.P.

Now with the network constructed, the Bayesian reasoner can infer probabilities of 
nodes given evidence. Update of beliefs in the network propagates belief updating of 
properties in the probabilistic ontology.

Inference

Probabilistic inference can be done on an acyclic and a fixed structure GHPM. The 
process here is similar to first-order logical inference using propositional inference on 
equivalent propositional knowledge base. Even though our semantics guarantees exact 
inference with the GHPM, it makes sense also considering approximate inference meth-
ods because in large and densely connected networks, the exact inference becomes 
intractable. Approximation algorithms such as Markov Chain Monte Carlo (MCMC) 
(Russell and Norvig 2005), are therefore useful for inference in HyProb-Ontology. These 
algorithms provide approximate answers whose accuracy grows with the number of 
samples generated.

Fig. 7  Logic flow of the rule-based reasoner. Illustration of the basic operation of a rule-based reasoner
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To make inference on an acyclic and a fixed structure GHPM using MCMC, the 
algorithm samples from the possible worlds defined by value spaces of properties of 
instances in HyProb-Ontology. MCMC generates each event by randomly changing the 
preceding event. Thus, it performs random movements around the state space, flipping 
one variable at a time whilst maintaining the evidence variables.

Smart home case study based on oneM2M semantics standards
As M2M becomes more pervasive (Wu et al. 2011; Zhang et al. 2011), oneM2M is the 
current vendors’ standards association that envisions a standardized connected devices 
platform. Semantics in oneM2M are required to provide machine interpretable descrip-
tions using meta-data and annotations. To demonstrate feasibility of uncertainty reason-
ing in the oneM2M generic functional model for semantics (oneM2M 2014), we consider 
in this paper a case study of a smart home based on the oneM2M Use Case on Semantic 
Home Automation Control System proposed in technical report TR-0007 (Zhang and Ju 
2014).

Extended generic functional model for supporting semantics

As one of the three main functional blocks of the generic oneM2M functional model 
for semantics, this paper is focused on Abstraction and Semantics. Specifically, Semantic 
reasoning and Ontology modelling are our main focus. Semantic reasoning, of course, is 
of interest because it has been identified as one of the key technologies that can support 
semantics in oneM2M.

As shown in Fig.  8, we propose an extended oneM2M generic functional model for 
semantics. In this model, Common Services Entities constitute a multi-agent system, 
whose operational and environmental dynamics are described using semantics. Because 
uncertainty in nature is unavoidable, and coupled with the lack of complete knowledge 
about the world, incorporating uncertainty into the semantics can enable these agents’ 
support for decision-making under uncertainty. As such, it is important that domain 
uncertainty is considered during the process of ontology modelling since ontological 
representation form the underlying semantics of this model. In this regard, this new 
architecture, which is based on our HyProb-Ontology, handles uncertainty during onto-
logical modelling by incorporating probabilistic information. As shown in the archi-
tecture, the product of this uncertainty-based ontological modelling is a repository for 
probabilistic knowledge bases, which are semantically connected to support interoper-
ability. Thus, this repository can guarantee storing, retrieving and maintaining proba-
bilistic knowledge bases, and can merge with semantically annotated data to support 
uncertainty-based distributed reasoning. New implicit knowledge based on semantically 
annotated data can therefore be derived taking into account both domain and context 
uncertainties.

Case study

We consider a semantic home automation control system as a case study. In this case 
study, a home’s energy consumption can be minimised by autonomously adjusting the 
home’s devices to attain optimal operations. Lighting control, temperature control 
and window control are some of the functionalities of this scenario. Though resource 
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consumption is key in the control strategy of this system, comfort of the home’s inhabit-
ants can not be overlooked too. Therefore, we are confronted with some level of uncer-
tainty over minimizing the home’s energy consumption whilst maintaining the comfort 
of the home’s inhabitants.

For instance, on a cool sunny day, the smart home automation system might find it 
optimal to conserve energy by opening windows, turning air conditioners off, and turn-
ing lights off. What is uncertain is whether such a strategy would always ensure the com-
fort of the user. Particularly, opening windows to achieve favourable indoor temperature 
when the outdoor air is heavily polluted can cause a lot of discomfort to the user. Also, 
when the environment is noisy, and this strategy is employed whilst the inhabitants are 
studying would be undesirable. Clearly, uncertainty would always exist in nature, and 
how best we manage that determines the effectiveness of these technological systems.

Results and discussion
This section presents description of experiments, and analyses of results to show effi-
ciency of our approach. In our experiments, we constructed two probabilistic ontolo-
gies: one based on HyProb-Ontology; and another based on discretization of continuous 
quantities in ontology(classical probabilistic ontology). It is important to note that both 
probabilistic ontologies used the same smart home ontology of our case study. And 
since propagation of beliefs based on property values of concepts handles uncertainty 
in the probabilistic rule-based reasoner of our extended oneM2M functional model for 
semantics, we considered only Bayesian reasoning in our experiments. In this regard, we 
constructed an equivalent GHPM of our HyProb-Ontology, and an equivalent classical 

Fig. 8  Extended generic functional model for supporting semantics in M2M applications. This shows our 
version of the oneM2M generic functional model for semantics in an attempt to addressing uncertainty 
reasoning in future M2M applications
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BN of the classical probabilistic ontology to perform probabilistic inferences. In these 
DAGs whereby n continuous quantities exist in the ontology, our GHPM would contain 
2n nodes more than the classical BN. Thus, where as the GHPM is a hybrid probabilistic 
model, the classical BN contained only discrete nodes. We performed all experiments 
using an HP Workstation with specification given in Table 1.

To validate the performance of our approach, we performed inferences on our GHPM 
and the classical BN using marginal distributions of equivalent nodes in both graphs. 
Discrete states in the classical BN, continuous values in the GHPM, and continuous val-
ues together with discrete states of the fictitious(fuzzy) discrete variables in the GHPM 
were evidences considered in the experiments. To begin with, we generated three dif-
ferent samples:100; 500; and 1000; and learned model parameters of each DAG based 
on each sample using maximum likelihood parameter estimation. One key condition we 
imposed on these experiments was to guard against inconsistences in priors of equiva-
lent nodes in the DAGs. In particular, parameters of the CG nodes in the GHPM were 
learned to be consistent with the range of values specified in the discretization of cor-
responding discrete nodes in the classical BN. Specifically, the fuzzy discrete node of a 
continuous temperature node in the GHPM is ancestor to both the continuous node and 
a discrete node for temperature control. In this case, temperature values of the continu-
ous node, representing the comfort index of a room, were discretized into three states: 
normal; hot; and very hot; in the equivalent node of the classical BN. Each discrete state 
spanned a range of continuous values, and directly affected states’ beliefs in the tem-
perature control node during the experiments. For example, we defined a normal tem-
perature state in these experiments to be the range (18–27 ºC), and used a mean of 22.5 
in the Gaussian parameters of its continuous node in the GHPM. Thus, all things being 
equal, using the state normal in the classical BN, or any continuous value in the range of 
this discrete state as evidence, the influence on states’ beliefs of the temperature control-
ler’s node should be the same.

In all analyses, the probability values represent average values over all the three sam-
ples considered. Figure 9 illustrates the marginal distributions of the same node based on 
our GHPM, and the classical BN. As expected, given a state of a node as evidence, and 
keeping other variables put in the classical BN, we obtained constant marginal distribu-
tions for states of the target node. In the GHPM however, we partitioned the evidence 
into values below and above the mean of the Gaussian distribution of the CG node. 
When we considered values below the mean as evidence, we obtained the results shown 
in Fig. 9a, which is inconspicuously different from the marginals obtained with the clas-
sical BN. This variation in marginal distributions becomes more obvious above the 
mean value, and gives indication of some loss of information inherent in discretization 

Table 1  Specification of computer for experiments

Description Parameter

Processor Intel(R) Core(TM) i5-3470

CPU @ 3.20 GHz

RAM 8 GB

System type 64-bit Operating System
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of continuous variables. Specifically illustrated in Fig. 9b, when values above the mean 
value, 22.5, were used as evidence in the GHPM, we obtained impressive results in the 
marginal distributions with the GHPM as compared to both the classical BN, and joint 
distribution involving both the continuous value and a corresponding fuzzy discrete 
state in the GHPM. In these DAGs, set is the temperature controller’s state that a nor-
mal temperature value should directly influence. Given a continuous value as evidence 
for normal temperature in GHPM, it is obvious from Fig. 9b that GHPM produced the 
highest increase in belief for this state. Also, the belief of Decrease is influenced more by 
the states: hot; and very hot. By observing this state, we notice that all three distributions 
approximately overlap, and the edge of GHPM can be seen in our choice of evidence, 27. 
This evidence is slightly beyond −2 standard deviations of the mean of the state hot (28–
38), and thus would have less effect on this state. In the last state too, GHPM produced 
the least marginal distribution compared to both the classical BN and the joint distribu-
tion. When we compare this distribution to the marginal distributions in Fig. 9a, this is 
a good observation because the range of this state is approximately within −4 standard 
deviations of the evidence, and reduction in belief is realised.

In the GHPM, joint distribution involving the continuous node and its fuzzy discrete 
node is the same as using the fuzzy discrete state as evidence. As shown in Fig. 10, when 
the fuzzy discrete node is unobserved, any continuous value used as evidence increases 
the belief of the fuzzy discrete node, which in turn increases the belief of the temper-
ature controller node. If we examine these graphs carefully, we will notice that within 
−2 standard deviations of the mean of our defined normal temperature range, any given 
continuous value evidence would increase the marginal distribution of the normal tem-
perature state of the fuzzy discrete node. This increment is above the prior probability 
and even very close to certainty, i.e. approximately 1. Whilst this increases, the marginal 
distribution of the state of the temperature control node also increases slightly. Interest-
ingly, from the mean value to the point of +2 standard deviations of the mean, whilst the 
probability of the state of the fuzzy discrete node decreases sharply, the probability of 
the state of the temperature control node also increases sharply until both approximately 

a b

Fig. 9  Node distributions. Illustration of marginal distributions of the same node based on our GHPM and 
classical BN, a marginal distribution below mean. Using values below the mean as evidence, both the GHPM 
and classical BN give approximately the same results. b Marginal distribution above mean. Using values 
above the mean as evidence, results obtained using GHPM significantly differ from the results of the classical 
BN
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converge to the prior probability of the state of the fuzzy discrete node. At this point, the 
posterior distribution of the fuzzy discrete state is the same as the likelihood when this 
state is not observed, and the posterior distribution converges to the prior distribution.

If however, the fuzzy discrete node is observable, any additional continuous value used 
as evidence would have no effect on the distributions of the temperature control node. 
Hence, the discrete node and the continuous node are conditionally independent given 
the fuzzy discrete node, and the effect of the joint distribution is the same as that of the 
fuzzy discrete node only.

To gain more insight into the extent of information loss through discretization of the 
continuous variable, we measured the marginal distributions of a state of the tempera-
ture control node using the range of values in the domain of normal as evidence. As 
shown in Fig.  11, the distribution of the continuous evidence follows the pattern of a 
CDF, and the variation becomes more significant between the mean value and +2 stand-
ard deviations of the mean value. What we can infer here is that discretization reflects 
perhaps the true state of the measured quantity within −2 standard deviations of the 
mean.

We concluded our experiments by examining the performance of MCMC-based infer-
ence on GHPM. As shown in Fig. 12, you notice that the accuracy of the MCMC based 
inference approaches the exact solution as more samples are considered. If we consider 
the cases of 1000 and 5000 random samples for example, it is clear from this figure 
that the latter is much closer to the exact solution than the former. This approximate 
approach, thus, proves useful for HyProb-Ontology when large-scale knowledge bases 
are encountered.

From above discussions, it is obvious that even though BNs remain powerful in the 
design of expert systems in uncertainty frameworks, the required discretization of 
continuous quantities in real systems makes BNs less efficient compared with this 
paper’s approach. Even if clear boundaries exist between discrete states obtained from 

Fig. 10  Propagation of belief using continuous data as evidence. This shows that the joint distribution 
involving the continuous node and its fuzzy discrete node is the same as using the fuzzy discrete state alone 
as evidence
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continuous nodes, filling the CPT of a node requires up to O(2k) combinations. This pre-
sents a great deal of intractability, which is overcome in the standardised pattern of our 
GHPM by supplying much easier fewer parameters than this exponential number in the 
BN. Since the equivalent DAG of HyProb-Ontology is GHPM, many advantages there-
fore come with this design.

A key advantage of our approach is to provide a better alternative to the full discre-
tization of continuous data in probabilistic ontologies. Once we seek to solve M2M real 
domain problems, continuous quantities are unavoidable, and application of continu-
ous models instead of discrete models can avoid information loss due to discretization 
for better performance in practice. Additionally, the unified dependency model that this 

Fig. 11  Marginal distributions obtained with GHPM and classical BN. With the same experimental condition, 
comparisons between results of GHPM and classical BN show the extent of information loss through discre‑
tization of continuous variables

Fig. 12  Inference on GHPM using MCMC. This shows the performance of Hyprob-Ontology using approxi‑
mate inference methods for large scale knowledge bases
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framework presents is essential for cross-domain computations in oneM2M. Instead of 
employing different algorithms to deal with different domains with varying dependency 
topologies, the generality of this framework allows us to use a single algorithm, which 
can achieve exact inference across board.

Even though this approach proves efficient empirically, the directed dependency topol-
ogy of the underlying DAG of HyProb-Ontology is not suitable for modelling cyclic rela-
tions in knowledge. Another limitation of this approach is the inability of our semantics 
to represent relational uncertainty at this stage. Once we relax the fundamental notion of 
relations being known and fixed a priori, uncertainty in relations between class objects is 
essential for model accuracy.

Conclusion
In an attempt to curtail the loss of information inherent in discretization of continuous 
quantities, we have proposed a hybrid probabilistic model extension to ontology. In this 
framework, probability distributions can be specified simultaneously over properties 
with discrete domain, and properties with continuous domain in ontology. This presents 
a class level probability template that instances can inherit as well as overwrite some 
aspects. To restrict the dependency topology of the equivalent hybrid DAG that can be 
constructed from HyProb-Ontology, this approach achieves a generic representation by 
conditional Gaussian fuzzification of continuous quantities in ontology. Based on the 
results of our experiments, this approach can achieve exact inference with better per-
formance over classical Bayesian networks. Future work of this research shall consider 
relational uncertainty currently not implemented in order to relax the constraint that 
objects and their relations are known and fixed a priori. This assumption is not practical, 
especially in oneM2M, where the number of connected devices and their relations can 
not be fixed. Also, since the acyclicity constraints of DAGs limit their applicability to 
relational data due to the cyclicity problem, future work shall exploit undirected models, 
which are capable of handling cyclic relations in data.
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