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Background
In this paper, we study the existence of anti-periodic (or anti-periodic differentiable) 
mild solutions to the semilinear differential equation

where A is an unbounded linear operator, assumed to be Hille–Yosida of negative ω-
type having the domain D(A) not necessarily dense in some Banach spaces X (for more 
details, see “Preliminaries” section), and f : R× X0 → X is a suitable function.

The problem about the existence of anti-periodic solutions constitutes one of the most 
attractive topics in qualitative theory of differential equations due to its applications in 
engineering, physics, control theory and other subjects. We refer to the works of Afta-
bizadeh et  al. (1994), Al-Islam et  al. (2012), Aizicovici et  al. (2001), Cao et  al. (2012), 
Chen et al. (2007), Haraux (1989), Liu et al. (2015), Liu et al. (2015), N’Guérékata and 
Valmorin (2012), Okochi (1990), Wang and Chen (2013), Yang and Srivastava (2015), 
Abdurahman and Jiang (2015), Xu (2016), Chadli et al. (2016) and the references therein. 
However, most of these problems need to be studied in abstract spaces and operators are 
defined over nondense domain. The literature concerning the existence of anti-periodic 
solutions for differential equations with nondense domain is new.

To the best of our knowledge, the existence of anti-periodic (or anti-periodic differen-
tiable) mild solutions for semilinear differential equation with nondense domain consti-
tutes until now an untreated original problem. This fact is the main motivations of this 

(1)u′(t) = Au(t)+ f (t,u(t)), t ∈ R

Abstract 

In this paper, we investigate the existence of anti-periodic (or anti-periodic differenti-
able) mild solutions to the semilinear differential equation u′(t) = Au(t)+ f (t , u(t)) 
with nondense domain. Furthermore, an example is given to illustrate our results.

Keywords: Anti-periodic (differentiable) function, Mild solutions, Hille–Yosida 
operators, Semilinear differential equations

Mathematics Subject Classification: 35B10, 47D06

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Liu and Zhang  SpringerPlus  (2016) 5:704 
DOI 10.1186/s40064‑016‑2315‑1

*Correspondence:  
ljhcumt@163.com 
1 Department 
of Mathematics 
and Physics, Zhengzhou 
University of Aeronautics, 
Zhengzhou 450015, People’s 
Republic of China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2315-1&domain=pdf


Page 2 of 14Liu and Zhang  SpringerPlus  (2016) 5:704 

paper. To illustrate our abstract results, the existence and uniqueness of anti-periodic 
solutions to a partial differential equation is discussed.

The paper is organized as follows: In “Preliminaries” section, we give some definitions 
and fix notations which will be used in the sequel. In “Main results and proofs” section, 
the existence of anti-periodic (or anti-periodic differentiable) mild solution to some 
semilinear differential equations in Banach space are studied. In “An example” section, 
an example is given to illustrate our main results.

Preliminaries
In this section we recall some definitions and fix notations which will be used in the 
sequel. We assume that X is a Banach space endowed with the norm � · � and B(X) stands 
for the Banach space of all bounded linear operators from X to itself. R+ denotes the 
set of nonnegative real numbers. Cb(R,X) denotes the space of all bounded continu-
ous functions from R → X. Moreover, we denote by C1(R,X) the space of all functions 
R → X which have a continuous derivative on R. C1

b (R,X) is the subspace of C1(R,X) 
consists of such functions satisfying

It is clear that C1
b (R,X) turns out to be a Banach space with the norm

We first recall some properties of Hille–Yosida operators and extrapolation spaces. For 
more details, we refer to Amir and Maniar (1999), Agarwal et al. (2011), Prato and Gris-
vard (1982), Engel and Nagel (2001), Hille and Philips (1975), Nagel and Sinestrari (1994) 
and the references therein.

Definition 1 (Agarwal et al. 2011) Let A be a linear operator with domain D(A). We 
say that (A, D(A)) is a Hille–Yosida operator on X if there exist ω ∈ R and a positive con-
stant M ≥ 1 such that (ω,∞) ⊆ ρ(A) and sup{(�− ω)n�(�− A)�−n} ≤ M. The infini-
mum of such a ω is called the type of A. If the constant ω can be chosen smaller than 
zero, A is said to be of negative type.

From the Hille–Yosida theorem (Engel and Nagel 2001, Theorem II.3.8) we have the 
following result.

Lemma 1 Let (A,  D(A)) be a Hille–Yosida operator on X, X0 = D(A), 
D(A0) = {x ∈ D(A) : Ax ∈ X0} and A0 : D(A0) ⊂ X0 → X0 be the operator defined 
by A0x = Ax. The operator A0 generates a C0 semigroup (T0(t))t≥0 on X0 with 
�T0(t)� ≤ Meωt for t ≥ 0. Moreover, ρ(A) ⊂ ρ(A0) and R(�,A0) = R(�,A)|X0, for 
� ∈ ρ(A).

Let � ∈ ρ(A). we define a norm on space X0 by

sup
t∈R

(�f (t)� + �f ′(t)�) < ∞.

�f �C1
b (R,X)

= sup
t∈R

(�f (t)� + �f ′(t)�).

�x�−1 = �R(�,A0)x�, x ∈ X0.
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The completion of (X0, � · �−1) will be called the extrapolation space of X0 associated with 
A0 and will be denoted by X−1. One can show easily that, T0(t) has a unique bounded linear 
extension T−1(t) to X−1. The operator family (T−1(t))t≥0 is a C0 semigroup on X−1, called 
the extrapolated semigroup of (T0(t))t≥0. The domain of its generator A−1 is equal to A0.

The following results have been established in Amir and Maniar (1999), Agarwal et al. 
(2011), Nagel and Sinestrari (1994).

Lemma 2 Under the previous conditions, the following properties are verified.

(i) D(A−1) = X0 and �T−1(t)�B(X−1) = �T0(t)�B(X0) for every t ≥ 0;
(ii) The operator A−1 : X0 → X−1 is the unique continuous extension of 

A0 : D(A0) ⊂ (X0, � · �) → (X−1, � · �−1) and �− A−1 is an isometry from 
(X0, � · �) to (X−1, � · �−1);

(iii) If � ∈ ρ(A0), then (�− A−1)
−1 exists and (�− A−1)

−1 ∈ B(X−1). In particular, 
� ∈ ρ(A−1) and R(�,A−1)|X0 = R(�,A0);

(iv) The space X0 = D(A) is dense in (X−1, � · �−1). Thus, the extrapolation space 
X−1 is also the completion of (X , � · �−1) and X →֒ X−1. Moreover, A−1 is an 
extension of A to X−1. In particular, if � ∈ ρ(A), then R(�,A−1)|X = R(�,A) and 
R(�,A−1) = D(A).

Lemma 3 f ∈ Cb(R,X) and (A,  D(A)) be a Hille–Yosida operator of negative ω-type. 
Then the following properties are valid.

(i) 
∫ t
−∞

T−1(t − s)f (s)ds ∈ X0, for every t ∈ R;
(ii) �

∫ t
−∞

T−1(t − s)f (s)ds� ≤ Meωt
∫ t
−∞

e−ωs�f (s)�ds where M > 0 is independent 
of t and f;

(iii) The function Ŵ(f )(t) =
∫ t
−∞

T−1(t − s)f (s)ds ∈ X0 is continuous, where the opera-
tor Ŵ : Cb(R,X) → Cb(R,X0).

Now, we recall a useful compactness criterion.
Let h : R → R be a continuous function such that h(t) ≥ 1 for all t ∈ R, and h(t) → ∞ 

as |t| → ∞. We consider the space

endowed with the norm

Lemma 4 (Henríquez and Lizama 2009) A subset K ⊆ Ch(X) is a relatively compact set 
if it verifies the following conditions:

(i) The set K (t) = {u(t) : u ∈ K } is relatively compact in X for each t ∈ R;
(ii) The set K is equicontinuous;
(iii) For each ε > 0 there exists L > 0 such that �u(t)� ≤ εh(t) for all u ∈ K  and all 

|t| > L.

Ch(X) =

{

u ∈ C(R,X) : lim
|t|→∞

u(t)

h(t)
= 0

}

�u�h = sup
t∈R

�u(t)�

h(t)
.
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Remark 1 (Henríquez and Lizama 2009) It is clear that Ch(X) is a Banach space isomet-
rically isomorphic with the space C0(R,X) consisting of functions that vanish at infinity.

Also, we recall some notations about Stepanov bounded functions and anti-periodic 
functions.

Definition 2 (Pankov 1990) The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a func-
tion f(t) on R, with values in X, is defined by

Definition 3 (Pankov 1990) Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded 
functions, with the exponent p, consists of all measurable functions f on R with values in 
X such that f b ∈ L∞(R, Lp(0, 1;X)). This is a Banach space with the norm

Definition 4 (Aizicovici et  al. 2001) A function f ∈ Cb(R,X) is called anti-periodic 
provided that

Denote by PTA(R,X) the set of all anti-periodic functions.

Lemma 5 (N’Guérékata and Valmorin 2012) Let fn ∈ PTA(R,X), such that fn → f  uni-
formly on R. Then f ∈ PTA(R,X).

Lemma 6 (N’Guérékata and Valmorin 2012) The PTA(R,X) is a Banach space equipped 
with the supnorm.

Lemma 7 (N’Guérékata and Valmorin 2012) If f ∈ C1(R,X) is anti-periodic, then 
f ′ ∈ PTA(R,X).

Definition 5 A continuous function f is said to be anti-periodic differentiable if 
f ∈ PTA(R,X) and f ′ ∈ PTA(R,X).

Denote by P′
TA(R,X) the set of all such functions.

Lemma 8 (Liu et al. 2015) P′
TA(R,X) is a Banach space with the supremum norm given 

by

Definition 6 (Amir and Maniar 2000) Let (A, D(A)) be a Hille–Yosida operator of neg-
ative ω-type. A function u(t) : R → X satisfying the equation

f b(t, s) := f (t + s).

�f �Sp = �f b�L∞(R,Lp) = sup
t∈R

(

∫ t+1

t
�f (τ )�pdτ

)1/p

.

f (t + T ) = −f (t), ∀t ∈ R.

�f �P′
TA(R,X)

= sup
t∈R

(�f (t)� + �f ′(t)�).

u(t) = T0(t − s)u(s)+

∫ t

s
T−1(t − τ )f (τ ,u(τ ))dτ ,
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for all t ≥ s > −∞ is called a mild solution of semilinear differential equation

We give the famous Schauder’s fixed point theorem as follows:

Lemma 9 (Smart 1980) Let D be a nonempty, closed, bounded, convex subset of a 
Banach space X. Let F : D → D be a continuous and compact operator, then the operator 
equation Fu = u has a fixed point in D.

Main results and proofs
In this section, we study the existence of anti-periodic (or anti-periodic differentiable) 
mild solutions of Eq. (1). The following are the main results of this work.

First, we list some assumptions.

(H1)  The function f : R× X0 → X is continuous and f (t + T ,−u) = −f (t,u) for 
all t ∈ R, u ∈ X0

(H2)  The function f : R× X0 → X satisfies the condition: 

 for all t ∈ R, x, y ∈ X0, where L(t) ∈ BSp(R).The following theorem is needed to establish 
our next results.

Theorem 1 Let (A, D(A)) be a Hille–Yosida operator of negative ω-type and f satisfy the 
condition (H1). The Ŵ : Cb(R,X) → Cb(R,X0) is a linear operator and Ŵu(t) is defined by

for every t ∈ R.
If u ∈ PTA(R,X0), then Ŵu(t) ∈ PTA(R,X0).

Proof Firstly, it is easily to see that

u′(t) = Au(t)+ f (t,u(t)), t ∈ R.

�f (t, x)− f (t, y)� ≤ L(t)�x − y�

Ŵu(t) =

∫ t

−∞

T−1(t − s)f (s,u(s))ds

�Ŵu(t)� ≤

∫ t

−∞

�T−1(t − s)f (s,u(s))�ds

≤

∫ t

−∞

Meω(t−s)�f (s,u(s))�ds

≤
M

−ω
�f �.
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Thus Ŵ is well defined and Ŵu is bounded.
Secondly, for any t ∈ R, h ∈ R is small enough

Thus, �Ŵu(t + h)− Ŵu(t)� → 0 as h → 0, which proves that Ŵu is continuous.
Finally, It follows from (H1) that for any u ∈ PTA(R,X0) and for each t ∈ R

Therefore, Ŵu is anti-periodic. The proof is complete.  �

Theorem 2 Let (A, D(A)) be a Hille–Yosida operator of negative ω-type and f satisfy the 
conditions (H1) and (H2). Then Eq. (1) has a unique anti-periodic mild solution provided 
that

Proof Define a operator Ŵ as in Theorem 1 on PTA(R,X0) by

for every t ∈ R. By Theorem 1, the operator Ŵ is well defined and maps PTA(R,X0) into 
itself.

Next, we prove that the operator Ŵ has a unique fixed point in PTA(R,X0).
Let u, v ∈ PTA(R,X0), then

∥

∥Ŵu(t + h)− Ŵu(t)
∥

∥ =

∥

∥

∥

∥

∥

∫ t+h

−∞

T−1(t + h− s)f (s,u(s))ds −

∫ t

−∞

T−1(t − s)f (s,u(s))ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

−∞

T−1(t − s)[f (s + h,u(s + h))− f (s,u(s))]ds

∥

∥

∥

∥

≤ Meωt
∫ t

−∞

e−ωs
∥

∥f (s + h,u(s + h))− f (s,u(s))
∥

∥ds

≤
M

−ω

∥

∥f (s + h,u(s + h))− f (s,u(s))
∥

∥.

Ŵu(t + T ) =

∫ t+T

−∞

T−1(t + T − s)f (s,u(s))ds

=

∫ t

−∞

T−1(t − s)f (s + T ,u(s + T ))ds

= −

∫ t

−∞

T−1(t − s)f (s,u(s))ds

= −Ŵu(t).

(

eωq − 1

ωq

)
1
q M

1− eω
�L�SP < 1,

1

p
+

1

q
= 1.

Ŵu(t) =

∫ t

−∞

T−1(t − s)f (s,u(s))ds
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For ( e
ωq−1
ωq )

1
q M
1−eω �L�SP < 1, it follows from the Banach contraction mapping principle 

that Ŵ admits a unique fixed point u ∈ PTA(R,X0).
Moreover, one can see easily that u(t) satisfies the variation of constants formula

that is u(t) is a mild solution of Eq. (1). The proof is complete.  �

Theorem 3 Let (A, D(A)) be a Hille–Yosida operator of negative ω-type and f satisfy the 
conditions (H1) and (H2). If L(t) ∈ BS1(R), then Eq. (1) has a unique anti-periodic mild 
solution provided that 0 < M

1−eω �L�S1 < 1.

Proof Define a operator Ŵ as in Theorem 1 on PTA(R,X0) by

for every t ∈ R. By Theorem 1, the operator Ŵ is well defined and maps PTA(R,X0) into 
itself.

Next, we prove that the operator Ŵ has a unique fixed point in PTA(R,X0).
Let u, v ∈ PTA(R,X0), then

�Ŵu(t)− Ŵv(t)� =

∥

∥

∥

∥

∫ t

−∞

T−1(t − s)[f (s,u(s))− f (s, v(s))]ds

∥

∥

∥

∥

≤ M

∫ t

−∞

eω(t−s)
∥

∥f (s,u(s))− f (s, v(s))
∥

∥ds

≤ M

∫ ∞

0

eωsL(t − s)�u− v�ds

≤ M�u− v�
∑

k≥0

∫ k+1

k
eωsL(t − s)ds

≤ M�u− v�
∑

k≥0

(

∫ k+1

k
eωqsds

)
1
q
(

∫ k+1

k
Lp(t − s)ds

)
1
p

≤ M�L�SP�u− v�
∑

k≥0

(

∫ k+1

k
eωqsds

)
1
q

≤

(

eωq − 1

ωq

)
1
q M

1− eω
�L�SP�u− v�.

u(t) = T0(t − s)u(s)+

∫ t

s
T−1(t − τ )f (τ ,u(τ ))dτ ,

Ŵu(t) =

∫ t

−∞

T−1(t − s)f (s,u(s))ds
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For 0 < M
1−eω �L�S1 < 1, it follows from the Banach contraction mapping principle that Ŵ 

admits a unique fixed point u ∈ PTA(R,X0). The proof is complete.  �

Let L(·) ≡ L, then the following result is now immediate.

Theorem 4 Let (A, D(A)) be a Hille–Yosida operator of negative ω-type. The function f 
satisfies the condition (H1) and the Lipschitz condition

or all t ∈ R, x, y ∈ X0, where L > 0 is a constant. If ML
−ω

< 1 and ω < 0, then the Eq. (1) has 
a unique anti-periodic mild solution.

Proof Similar as the proof of Theorem 3, the proof is omitted.  �

Theorem 5 Let (A, D(A)) be a Hille–Yosida operator of negative ω-type. The function 
f ∈ C1

b (R,X0) satisfies the condition (H1) and

for all t ∈ R, x, y ∈ C1
b (R,X0), where L(t) ∈ BSP(R). If

then the Eq. (1) has a unique anti-periodic differentiable mild solution.

Proof Consider the nonlinear operator V : P′
TA(R,X0) → Cb(R,X0) given by

Firstly, similar as the proof of Theorem 1, V ∈ Cb(R,X0) is well defined.

�Ŵu(t)− Ŵv(t)� =

∥

∥

∥

∥

∫ t

−∞

T−1(t − s)[f (s,u(s))− f (s, v(s))]ds

∥

∥

∥

∥

≤ M

∫ t

−∞

eω(t−s)�f (s,u(s))− f (s, v(s))�ds

≤ M

∫ t

−∞

eω(t−s)L(s)�u− v�ds

≤ M�u− v�
∑

k≥0

eωk
∫ t−k

t−k−1

L(s)ds

≤ M�u− v�
∑

k≥0

eωk�L�S1

≤
M

1− eω
�L�S1�u− v�.

�f (t, x)− f (t, y)� ≤ L�x − y�

�f (t, x)− f (t, y)�C1
b (R,X0)

≤ L(t)�x − y�C1
b (R,X0)

(

eωq − 1

ωq

)
1
q M

1− eω
�L�SP < 1,

1

p
+

1

q
= 1,

(Vu)(t) =

∫ t

−∞

T−1(t − s)f (s,u(s))ds, t ∈ R.
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Next, we will prove that Vu, (Vu)′ ∈ PTA(R,X0). Let g(·) = f (·,u(·)), Since 
f ∈ C1(R,X0) and satisfies condition (H1), by Lemma  7, we have g(t + T ) = −g(t)  
and g ′(t + T ) = −g ′(t) for all t ∈ R. So

we have Vu ∈ PTA(R,X0). Furthermore,

then (Vu)′ ∈ PTA(R,X0).
Finally, we take u, v ∈ P′

TA(R,X0), then we have

which prove that V is a contraction. Hence, by using Banach contraction mapping prin-
ciple that V admits a unique fixed point u ∈ P′

TA(R,X0). The proof is complete.  �

We next study the existence of anti-periodic mild solutions of Eq. (1) when the func-
tion f is not Lipschitz continuous. To abridge the text, We assume that f : R× X0 → X 
satisfies the following conditions:
(A1) There is a continuous nondecreasing function W : R+ → R+, such that

for all t ∈ R, x ∈ X0;
(A2) For each κ ≥ 0, let β(κ) =

∫ t
−∞

eω(t−s)W (κh(s))ds ∈ Cb(R) and Mβ(κ) ≤ r;
(A3)  For each ǫ > 0, there is a δ > 0, such that for every u, v ∈ Ch(X0), �u− v�h ≤ δ 

implies

(A4) T0(t) is a strongly continuous C0 semigroup. Moreover, T0(t) is compact.

(Vu)(t + T ) =

∫ t+T

−∞

T−1(t + T − s)g(s)ds

=

∫ t

−∞

T−1(t − s)g(s + T )ds

= −

∫ t

−∞

T−1(t − s)g(s)ds

=− (Vu)(t),

(Vu)′(t) =

∫ t

−∞

T−1(t − s)g ′(s)ds, t ∈ R,

�(Vu)(t)− (Vv)(t)�P′
TA(R,X0)

=

∥

∥

∥

∥

∫ t

−∞

T−1(t − s)[f (s,u(s))− f (s, v(s))]ds

∥

∥

∥

∥

P′
TA(R,X0)

≤

∫ t

−∞

�T−1(t − s)�L(s)�u(s)− v(s)�P′
TA(R,X0)

ds

≤ M�u− v�P′
TA(R,X0)

∑

k≥0

∫ k+1

k
eωsL(t − s)ds

≤

(

eωq − 1

ωq

)
1
q M

1− eω
�L�SP�u− v�P′

TA(R,X0)
,

�f (t, x)� ≤ W (�x�)

sup
t∈R

∫ t

−∞

eω(t−s)�f (s,u)− f (s, v)�ds ≤ ǫ;
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Theorem 6 Let (A, D(A)) be a Hille–Yosida operator of negative ω-type. The function f 
satisfies the conditions (H1), (A1)− (A4), then Eq. (1) has an anti-periodic mild solution.

Proof Let D = {u ∈ PTA(R,X0) ∩ Ch(X0) : �u� ≤ r}, and D(t) := {Ŵu : u ∈ D}. We 
define the operator Ŵ by

We divide the proof in several steps.
Step 1. For u ∈ D, we have that

So �Ŵu� ≤ r. It follows from condition (A2) that Ŵ : Ch(X0) → Ch(X0).
Step 2. The map Ŵ is continuous. In fact, for ǫ > 0, we take δ involved in condition (A3). 

If u, v ∈ Ch(X0) and �u− v�h ≤ δ, then

which shows the assertion.
Step 3. We will show that Ŵ is a compact operator.
We will prove that D(t) := {Ŵu : u ∈ D} is a relatively compact subset of X0 for each 

t ∈ R.
For each t ∈ R, 0 < ε < 1, define

Since {Ŵu(t − ε)} is bounded and T0(ε) is compact, {Ŵεu,u ∈ D} is a relatively compact 
subset of X0, then

Ŵu(t) =

∫ t

−∞

T−1(t − s)f (s,u(s))ds.

�Ŵu(t)� =

∥

∥

∥

∥

∫ t

−∞

T−1(t − s)f (s,u(s))ds

∥

∥

∥

∥

≤ M

∫ t

−∞

eω(t−s)
∥

∥f (s,u(s))
∥

∥ds

≤ M

∫ t

−∞

eω(t−s)W (�u(s)�)ds

≤ M

∫ t

−∞

eω(t−s)W (�u�hh(s))ds

≤ Mβ(�u�h)

≤ r.

�Ŵu(t)− Ŵv(t)�h =

∥

∥

∥

∫ t
−∞

T−1(t − s)[f (s,u(s))− f (s, v(s))]ds
∥

∥

∥

h(t)

≤
M

∫ t
−∞

eω(t−s)�f (s,u(s))− f (s, v(s))�ds

h(t)

≤ Mǫ,

Ŵεu =

∫ t−ε

−∞

T−1(t − s)f (s,u(s))ds

= T0(ε)

∫ t−ε

−∞

T−1(t − ε − s)f (s,u(s))ds

= T0(ε)Ŵu(t − ε).
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So �Ŵu− Ŵεu�h → 0, as ε → 0.
Thus, D(t) := {Ŵu : u ∈ D} is a relatively compact subset of X0 for each t ∈ R.
Next,we will show that the set D is equicontinuous.
In fact, proceeding as above, for t1 < t2, t1, t2 ∈ R, we can decompose

For each ǫ > 0,

From step 1, we get 
∥

∥

∥

∫ t1−γ

−∞
(T−1(t2 − s)− T−1(t1 − s))f (s,u(s))ds

∥

∥

∥
→ 0 as t2 − t1 → 0 . 

Moreover, similarly estimates as proof of �Ŵu− Ŵεu�, when t2 − t1 → 0, we can prove 
that

and

Combining these estimates, we get

�Ŵu− Ŵεu� =

∥

∥

∥

∥

∫ t

t−ε

T−1(t − s)f (s,u(s))ds

∥

∥

∥

∥

≤

∫ t

t−ε

Meω(t−s)�f (s,u(s))�ds

≤ M

∫ t

t−ε

eω(t−s)W (�u(s)�)ds

≤ M

∫ t

t−ε

eω(t−s)W (�u(s)�hh(s))ds.

≤ MW (�u(s)�hh(s))ε.

Ŵu(t2)− Ŵu(t1) =

∫ t2

−∞

T−1(t2 − s)f (s,u(s))ds −

∫ t1

−∞

T−1(t1 − s)f (s,u(s))ds

=

∫ t1−γ

−∞

(T−1(t2 − s)− T−1(t1 − s))f (s,u(s))ds

+

∫ t1

t1−γ

(T−1(t2 − s)− T−1(t1 − s))f (s,u(s))ds

+

∫ t2

t1

T−1(t2 − s)f (s,u(s))ds.

∥

∥

∥

∥

∫ t1−γ

−∞

(T−1(t2 − s)− T−1(t1 − s))f (s,u(s))ds

∥

∥

∥

∥

=

∥

∥

∥

∥

(T0(t2 − t1 + γ )− T0(γ ))

∫ t1−γ

−∞

T−1(t1 − γ − s)f (s,u(s))ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

T0(t2 − t1 + γ )− T0(γ )

∥

∥

∥

∥

∥

∥

∥

∥

∫ t1−γ

−∞

T−1(t1 − γ − s)f (s,u(s))ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

T0(t2 − t1 + γ )− T0(γ )

∥

∥

∥

∥

∫ t1−γ

−∞

Meω(t1−γ−s)W (�u�hh(s))ds

∥

∥

∥

∥

∫ t1

t1−γ

(T−1(t2 − s)− T−1(t1 − s))f (s,u(s))ds

∥

∥

∥

∥

→ 0

∥

∥

∥

∥

∫ t2

t1

T−1(t2 − s)f (s,u(s))ds

∥

∥

∥

∥

→ 0.
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as t2 − t1 → 0 and independent of u ∈ D.
Finally, applying condition (A2), we can show that

and this convergence is independent of u ∈ D.
Hence D satisfies conditions (i)–(iii) of Lemma 4, so D is a relatively compact set in 

Ch(X0). It follows from the proof of steps 1–3 that Ŵ is a compact operator.
Step4. Applying with Theorem  1, we obtain that Ŵ(PTA(R,X0)) ⊆ PTA(R,X0) . 

Consequently, combining with step 1 and step 2 we infer that 
Ŵ(PTA(R,X0) ∩ Ch(X0)) ⊆ PTA(R,X0) ∩ Ch(X0), and also

where Dh denotes the closure of D in Ch(X0). Applying the Lemma 9 (Schauder’s Fixed 
Point Theorem), we deduce that Ŵ has a fixed point u ∈ PTA(R,X0) ∩ Ch(X0)

h.
Step 5. we prove that u ∈ PTA(R,X0).
Let (un)n be a sequence in PTA(R,X0) ∩ Ch(X0) that converges to u for the topology in 

Ch(X0). It follows from condition (A3) that Ŵun → Ŵu as n → ∞, uniformly on R. This 
implies that u ∈ PTA(R,X0), which completes the proof.  �

Remark 2 The assumption (A3) of Theorem 6 is fulfilled in the following situation:

for all t ∈ R, x, y ∈ X0.
In fact, we use the same notations as in Theorem 6.

Since W is continuous, the above estimate shows that (A3) hold, the remains of proof is 
essentially the same of Theorem 6.

An example
In this section we give an example to illustrate the above results. Consider the following 
partial differential equation:

with boundary initial conditions

�Ŵu(t2)− Ŵu(t1)� → 0

�Ŵu�

h(t)
≤

M

h(t)

∫ t

−∞

eω(t−s)W (rh(s))ds → 0, |t| → ∞,

Ŵ(PTA(R,X0) ∩ Ch(X0)
h
) ⊆ Ŵ(PTA(R,X0) ∩ Ch(X0))

h
⊆ PTA(R,X0) ∩ Ch(X0)

h
.

∥

∥f (t, h(t)x)− f (t, h(t)y)
∥

∥ ≤ W (
∥

∥x − y
∥

∥),

�Ŵu(t)− Ŵv(t)� =

∥

∥

∥

∥

∫ t

−∞

T−1(t − s)[f (s,u(s))− f (s, v(s))]ds

∥

∥

∥

∥

≤ M

∫ t

−∞

eω(t−s)W

(

�u(s)− v(s)�

h(s)

)

ds

≤
M

−ω
W (�u− v�h).

(2)∂tu(t, x) = ∂2x u(t, x)− ωu(t, x)+ F(t,u(t, x)), t ∈ R, x ∈ [0,π ], ω < 0,
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Let X = C([0,π ],R) and the operator A be defined on X by Au = u′′ − ωu, with domain

It is well known that A is a Hille–Yosida operator of type-ω with domain nondense 
(Prato and Sinestrari 1987). The above partial differential equation can be rewritten as 
an abstract system of the Eq. (1), where u(t)(s) = u(t, s).

Let us consider the nonlinearity F(t, x)(s) = βb(t) sin(x(s)) for all x ∈ X and s ∈ [0,π ], 
t ∈ R, where b(t) is a bounded periodic function with period T, thus we have

and

If 
∫ t
−∞

eω(t−s)b(s)ds < 1
|β|M, where ω < 0. Then the Eq. (2) with boundary initial condi-

tions (3) has a unique anti-periodic mild solutions.

Conclusions
This paper is concerned with the semilinear differential equation 
u′(t) = Au(t)+ f (t,u(t)) with nondense domain. Under some suitable conditions, we 
establish the existence of anti-periodic (or anti-periodic differentiable) mild solutions to 
the semilinear differential equation. To the best of our knowledge, it is the first time to 
deal with this problem. Moreover, the method of this paper can be applied to many other 
differential equations, such as impulsive differential equations, neutral functional differ-
ential equations, fractional differential equations and so on.
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