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Introduction
Databases (DBs) are present everywhere, many applications access them at all times, and 
in many cases information obtained from them is used for making important business 
decisions. Obtaining unusual or complex information from a database demands from 
users to have broad knowledge of a DB query language such as SQL. Unfortunately, 
most users (for example, high-ranking managers) do not have the necessary expertise for 
formulating queries for obtaining such information.

NLIDBs are important tools since they allow users accessing information in a database 
by a query formulated in natural language (NL). The purpose of these systems is to facili-
tate the querying task to users by sparing them the burden of having to learn a DB query 
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language. With a NLIDB, a user simply types a query in natural language, similarly as he/
she would do when communicating with another person, and the interface interprets 
the query and translates it to a DB query language statement, which is submitted by the 
NLIDB to a DB management system to get the information requested.

There exists another type of systems similar to NLIDBs, known as Question and 
Answering (Q&A) systems. Unlike these, NLIDBs return a result which is the output 
of a query submitted to a database. Additionally, Q&A systems return a set of results 
(which can be derived from a search in documents, texts, etc.), from which the user has 
to choose the one that he/she considers correct. An example of this type of Q&A sys-
tems is presented in Komiya et al. (2013).

One of the most complex problems faced by NLIDBs concerns their ability to be used 
for querying different databases (known as domain independence). Each time a domain 
independent NLIDB is required to query a new database, it is necessary to previously 
customize it for this particular database. To this end, it is necessary to supply the system 
with the words and necessary concepts for the new domain, which are related to the 
information stored in the database.

At this point it is convenient to emphasize that the success rate of NLIDBs highly 
depends on the quality of their customization. Additionally, it is important to take into 
consideration that, for domain independent NLIDBs, it is difficult to obtain a success 
rate (percentage of correctly translated queries) higher than 90 %. Therefore, the impor-
tance of carrying out the best customization possible in order to obtain the maximum 
success rate that a NLIDB can achieve. Normally, the customization process for adapting 
a NLIDB to a specific database requires a high level of expertise from DB administrators 
and spending long times in the customization process, which sometimes is carried out 
by trial and error.

Despite the fact that NLIDBs have been implemented since the 60s, their performance 
(success rate) has been disappointing, since there does not exist a domain independent 
NLIDB that achieves a success rate (recall) close to 100 %. An indication of the complex-
ity of the issues present in the translation process is revealed by the current situation of 
commercial NLIDBs: LanguageAccess (developed by IBM), English Query (commercial-
ized by Microsoft) and DataTalker (developed by Natural Language Inc.), among others, 
have been discontinued.

In this article we present results from an experiment aimed at comparing the effective-
ness and easiness of customization of ELF (Elf 2015) and our NLIDB, which is based on 
a new semantically-enriched data model described in Pazos et al. (2011) and a layered 
architecture for the translation of NL queries to SQL. The data dictionary (called seman-
tic information dictionary) of our interface permits to carry out a customization, which 
consists of: relating words or phrases from different syntactic categories (such as nouns, 
verbs, adjectives and prepositions) to DB tables and columns, as well as defining impre-
cise values (those that represent a value range, such as morning, afternoon, evening) as 
equivalent to value ranges, and defining aliases (those values that can be denoted in dif-
ferent ways, such as: noon, equivalent to 12:00 hrs.; midnight, equivalent to 0:00 hrs.; 
dozen, equivalent to 12) as equivalent to specific values. This functionality permits to 
solve problems not previously addressed by other NLIDBs.
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Background
The first NLIDBs were developed in the 60s and were basically natural language inter-
faces for expert systems, which were custom made for a specific domain. Most of those 
NLIDBs were developed having in mind a particular database. Consequently, they could 
not be easily modified for querying a different database and it was impossible to port 
them to other application domains. These systems had a knowledge base manually cre-
ated by domain experts, which was tightly interwoven with the interface source code.

Currently, NLIBDs that offer portability to different databases use techniques for 
achieving some semi-customization of the domain dictionary, such as automatically 
obtaining information of the DB structure from the DB schema, adding synonyms to 
the descriptions of DB tables and columns, and obtaining information from pairs of NL 
queries and SQL statements.

Easiness of customization is a very desirable feature in NLIDBs, and it should be pro-
vided in such a way that a DB administrator could be able to customize the interface 
without a deep knowledge of the inner workings of the system in order to achieve the 
highest success rate possible for the interface.

Of the vast amount of the literature published on NLIDBs, only a small proportion 
deals with NLIDB customization, and from this, just a few articles present performance 
results where the NLIDBs are customized by users different from the implement-
ers. The rest of this section describes the most recent and relevant works on NLIDB 
customization.

Masque/sql (Androutsopoulos et  al. 1993) is an interface that performs a semiauto-
matic customization process. Unlike previously developed interfaces, Masque/sql has a 
simple domain editor for helping users to relate words to concepts of the DB schema 
and to define the meaning of each word in terms of logical predicates. The interface was 
tested on a geographical database from a real-life application, for which the customiza-
tion process consisted of relating 86 words to the elements of the DB schema (tables 
and columns). Unfortunately, no quantitative results are reported on the performance of 
Masque/sql.

NLIDBs such as Precise (Popescu et al. 2004a) use an automatic customization, where 
the names of all the DB elements are extracted and separated into words with their 
respective synonyms, so they can be later identified during the translation process. Addi-
tionally, the interface permits manually augmenting the lexicon with relevant synonyms, 
prepositions, etc. Experiments were conducted using a customization of the lexicon per-
formed by the implementers and the databases described in Tang and Mooney (2001) 
and the ATIS database (Atis 2015). For the first databases Precise obtained approx-
imately 80  % recall (and 100  % accuracy), and for ATIS the interface obtained 93.8  % 
accuracy (Popescu et al. 2004b); unfortunately no recall value was reported for ATIS.

The virtual library of the Concordia University uses a NLIDB called NLPQC (Strat-
ica et al. 2005). This interface can be manually customized by the NLIDB administrator 
using files that contain templates with the semantic structure of the queries supported. 
Despite claims that NLPQC is domain independent, only tests for a library domain have 
been reported. The experiments reported are of the proof-of-functionality type and no 
accuracy or recall figures are given.
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In the Clinical E-Science Framework (CLEF), which is a repository of clinical histo-
ries for biomedical research and medical care, a technique known as WYSIWYM (Hal-
let et  al. 2007) is used, which uses a semantic graph inspired by the one described in 
Zhang et al. (1999). The customization was carried out by the implementers by supply-
ing a knowledge base of the semantic part of the database (semantic graph), which per-
mits generating automatically the components that users may choose. The experiment 
for that system involved 15 physicians with knowledge of the domain, which were given 
a 5-to-10-min briefing on the interface operation and a set of four queries. The average 
time that took them to formulate a query was 3.9 min and the reported recall was 100 %. 
Finally, it is important to mention that WYSIWYM does not permit formulating queries 
in unrestricted natural language, but rather the user starts by editing a basic query tem-
plate, where concepts to be instantiated are clickable spans of text with associated pop-
up menus containing options for expanding the query.

DaNaLIX (Li et al. 2007) is an interface for querying XML databases. The system uses 
transformation rules (like those used in Prolog), where query elements are compared by 
using parse trees. This system can be automatically customized by learning new rules 
from its interaction with users. The evaluation was carried out by comparing DaNa-
LIX, a previous version (NaLIX) and two other systems: Cocktail and GENLEX. The test 
was performed on two deductive databases Geobase and Jobdata with corpora consist-
ing of 880 and 640 queries respectively (Tang and Mooney 2001). In the experiment the 
customization consisted of extracting rules from the training corpora for each domain, 
afterwards the rules were loaded into NaLIX, and the results of the translation process 
are XQuery statements (a query language for XML). NaLIX attained 81 % recall for both 
corpora.

One of the current NLIDBs that has a large customization functionality is C-Phrase 
(Minock 2010). It has an authoring tool for editing the interface data dictionary for a 
specific domain, by which it can relate words to DB tables, columns and join paths of 
the DB schema. It also permits to edit rules and patterns supported by the interface and 
substitutions of phrases by concepts that the interface can interpret. The evaluation of 
C-Phrase was carried out on the Geoquery database described in Tang and Mooney 
(2001), and it was customized by several undergraduate students, which were given a 
user manual of the interface and a training set of 100 randomly selected queries for cus-
tomizing the interface in 2 h. C-Phrase attained approximately 75 % recall.

In Giordani and Moschitti (2009) a work is presented that focuses on the use of 
machine learning algorithms for automatically mapping NL queries to SQL statements. 
Their approach consists of selecting SQL statements for NL queries, where the selec-
tion of the correct SQL statement is modeled as a ranking problem using Support Vec-
tor Machines and several kernels. For training their system the Geoquery250 and the 
Restquery250 corpora were used, where after the generalization of queries, pairs of (NL 
query)–(SQL statement) were generated including positive and negative examples. The 
results obtained with several combined kernels were approximately 76 and 85 % accu-
racy for Geoquery250 and Restquery250 respectively.

In their most recent work (Giordani and Moschitti 2012), they improve their approach, 
using an SQL generator, which exploits syntactic dependencies in the NL queries 
and the DB metadata. They also used advanced machine learning techniques such as 
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kernel-based rerankers, which improve the initial list of candidates provided by the gen-
erative analyzer. For comparison with other systems, they used the Geoquery500 corpus 
and the Geoquery700 corpus, obtaining an f-measure of 87 % for Geoquery500 and 85 % 
for Geoquery700, where f-measure is the harmonic mean of accuracy and recall.

Several NLIDBs were developed for commercialization. Some of the most successful 
were INTELLECT (Harris 1984), Q&A (Hendrix 1986), English Wizard (Roberts 1998) 
and English Query (Blum 1999). However, most of them have been discontinued.

One of the few surviving commercial interfaces, reputed as having good performance, 
is Access ELF. The customization of ELF is automatic, and it generates a domain diction-
ary that relates DB tables and columns to words of different syntactic categories. The dic-
tionary also keeps information on the relations among DB elements, and the values stored 
in the database together with a reference to the DB columns where the values are stored. 
Additionally, ELF has a domain editor where the NLIDB administrator can relate (or mod-
ify the relation of) words to DB tables and columns. In the tests presented in Conlon et al. 
(2004), where the interface was customized by an expert and the end users were human 
resource professionals, the success rate reported (presumably recall) was 70–80 %.

Table 1 summarizes important aspects of works on the customization and evaluation 
of NLIDBs. The table shows that in many cases NLIDBs are customized by the imple-
menters; unfortunately, the performance results obtained this way do not show what the 
performance would be if the NLIDBs were customized by users (DB administrators). 
Only C-Phrase reports experiments where the interface was customized by undergradu-
ate students.

Description of our NLIDB
There have been several versions of the NLIDB developed by us (all of them permit for-
mulating queries in Spanish). The first version, described in Pazos et  al. (2005) uses a 
pre-processor that automatically builds a data dictionary, which permits to deal with 
domain independence. The translation technique involves the interpretation of nouns, 
prepositions and conjunctions. The second version, described in Pazos et  al. (2010) 
includes domain-independent dialogue processes, which are based on a typification of 
problems occurring in queries that involve most of the cases found in queries. The expe-
rience gained in the development of these versions served us to be aware of the complex-
ity of the problems involved in NLIDBs.

The design of the new version of our NLIDB is based on the following premise: the 
translation from a NL query to an SQL statement is an extremely complex problem. The 
approach used in this project differs from those utilized in other NLIDBs, in which one 
or a few mechanisms (v.g., pattern matching, case-based reasoning, supervised learning, 
statistical methods) have been applied for solving the problems occurring in queries. Our 
analysis of query corpora (ATIS, Geoquery, Northwind) has revealed that the problems 
present in queries are of very diverse nature; therefore, we think that they can not be solved 
by one or a few heuristics. Consequently, in this project query problems were identified 
and classified in order to develop a specific method for solving each class of problems. 
Specifically, a layered architecture was devised (similar to the OSI model for communica-
tion networks), where each functionality layer deals with a different problem in the transla-
tion process. This architecture is explained in “Proposed architecture” section.
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Additionally, in order to solve several problems, described in Pazos et  al. (2011), in 
the current version of our NLIDB we have proposed an architecture for the semantic 
information dictionary (SID) based on a new semantically-enriched database model 
(SEDBM), described in Aguirre (2014), Pazos et al. (2011), which includes relevant infor-
mation for the correct translation of queries. The architecture of the SID is described in 
“Semantic information dictionary” section.

Semantic information dictionary

The SID (or domain dictionary) is the keystone of our NLIDB, since it stores the infor-
mation necessary for the interface to correctly interpret a query. The performance of an 
interface highly depends on the quantity and quality of the semantic information stored 
in the domain dictionary; i.e., the better the information stored the better the under-
standing of the NL query by the NLIDB, which in turn yields a better success rate.

The SID mainly stores words and phrases that are used for referring to DB tables and 
columns, as well as information of the DB schema. The customization of the NLIDB for 
a particular database consists of populating the SID with relevant semantic information 
of the database. For this reason it is important that the DB administrator performs the 
customization task.

For many NLIDBs, the customization process is usually lengthy, complicated, and 
requires a deep knowledge of the inner workings of the system in order to achieve the 
best success rate that the interface can deliver. Therefore, recent interfaces carry out 
an automatic customization process, which extracts information from the names and 
descriptions of the DB tables and columns stored in the data dictionary of the DB man-
agement system. This automatic customization permits reducing the time and effort for 
customizing the NLIDB. Unfortunately, automatically customized NLIDBs yield poor 
success rates, so it is necessary to fine-tune the initial customization.

Initially, our NLIDB carries out an automatic customization, which permits populat-
ing its SID based on the descriptions of the DB tables and columns and the information 
of relations between tables, which are stored in the data dictionary of the DB manage-
ment system. Additionally, the SID of our NLIDB can keep information on words and 
phrases that refer to tables, columns, relations between tables, imprecise values, alias 
values, which permits having the necessary information and facilitates query interpreta-
tion. Usually the automatic customization is not enough for obtaining a high percentage 
of correctly answered queries; and consequently, it is necessary that the DB administra-
tor fine-tunes the NLIDB for supplying the information mentioned above.

Figure 1 presents the DB schema of the SID. The most important tables of the SID are 
tables, columns and relationships, which are used for storing information on DB tables, 
columns and relations between tables. These dictionary tables contain relevant informa-
tion extracted from the DB schema, as well as descriptors for different syntactic categories 
(nouns, verbs, adjectives and prepositions) and lemmas. The SID includes three more small 
tables: imprecise_values, alias_values and aggregate_functions, which are used for stor-
ing information on imprecise values, alias values and aggregate functions. Finally, the SID 
includes three more tables: views, view_tables and view_columns, which are used for storing 
the definition of views [a mechanism for dealing with complex queries, whose explanation 
is too lengthy to be included in this article, but it can be found in Aguirre (2014)].
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Figure 2 presents an example of a fragment of the SID of the relevant information that 
is stored for a DB column. For each DB column, the SID stores the following informa-
tion: DB name, table name, column name, data type, an indication if the column par-
ticipates in the primary key, 2 nominal descriptors, 2 lemmas corresponding to the 
preceding descriptors, 2 values indicating the success rate of the corresponding descrip-
tor (for future use), 2 values indicating the occurrence rate of the corresponding descrip-
tor (for future use), 2 verbal descriptors (and the corresponding lemmas, success rates 
and occurrence rates), 2 adjectival descriptors (and the corresponding lemmas, success 
rates and occurrence rates), and 2 prepositional descriptors (and the corresponding lem-
mas, success rates and occurrence rates).

Finally, it is worth mentioning that the size of the SID is proportional to the size of 
the database schema; specifically it is several times as large; and it is independent of the 
amount of data stored in the database (unlike other NLIDBs such as ELF).

For better understanding the customization process of the SID, the description of this 
process is explained in “Customization of the semantic information dictionary” section.

Proposed architecture

Systems whose design is based on functionality layers (like the OSI model for commu-
nication networks) provide the flexibility and modularity for implementing more com-
plex processing strategies than systems designed otherwise. Figure 3 depicts the general 
architecture of our NLIDB, and Fig. 4 details the architecture of the most important part 
of the interface: the translation module, whose design is based on functionality layers.

The functionality layers described in this subsection were devised for providing a 
desirable functionality in a NLIDB; i.e., each layer deals with a problem that must be 
solved so our interface can obtain a correct query translation; for example: treatment of 

Fig. 1  Database schema of the SID
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Fig. 2  Example of column description in the SID

Fig. 3  Proposed architecture for the NLIDB
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imprecise and alias values, resolution of semantic ellipsis. It is important to mention that 
the functionality layers included in our architecture are those that we think any NLIDB 
should have in order to solve most of the problems found in the translation process from 
natural language to SQL. The layers that have been implemented so far are indicated by 
a check mark, while those that are planned for future work are indicated by a cross. A 
brief explanation of the functionality layers of the translation module is given in the rest 
of this subsection.

Lexical analysis

 It carries out a lexical tagging process by retrieving the syntactic category of each query 
word from a lexicon stored in a database. In this layer, lexical errors should be corrected 
and syntactic category ambiguity and homography problems should be resolved. The 
result obtained consists of the tagged query.

Algorithm 1 shows the pseudocode that describes the general structure of the lexical 
analysis implemented. In the pseudocode, Q is the query introduced by the user, Qi is a 
token of query Q, n is the total number of tokens in Q, and L is a temporal list used to 
store temporally grammatical categories1 of token Qi. At line 4, for each token of query 
Q, a list of possible grammatical categories of Qi are stored in L; in lines 6 to 9, if the list 
L is not empty, all the grammatical categories found in the token are assigned to Qi, oth-
erwise, the token Qi is tagged as a possible search value. 

1  These grammatical categories are extracted from the lexicon DB.

Fig. 4  Functionality layers of the translation module
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Algorithm 1 Pseudocode for the lexical analysis
1: procedure LexicalAnalysis(Q, n,L)
2: for i = 0 to n− 1 do
3: L ← getGrammaticalTags(Qi) Get a list of grammatical tags
4: if L = ∅ then
5: assignGramamaticalTags(L, Qi) Assign grammatical tags to token Qi

6: else Maybe Qi is a value
7: tagAsV alue(Qi) Set Qi as value

Syntactic analysis

Using the tagged query, a syntax tree of the query is built, where syntactic errors 
have been corrected, syntactic ellipsis has been resolved, and anaphora problems are 
detected. Since this layer has not been implemented, a shallow analysis is performed 
instead, which is explained in “Processing of queries” section.

Semantic analysis

From the tagged query, a representation of its meaning is constructed, which can be 
used for translating it to SQL. This layer is the most complex, since most of the problems 
are related to understanding the meaning of the query. This layer is constituted by the 
following sub-layers:

	 1	 Resolution of polysemy and homography. The polysemy and homography problems 
detected in the lexical analysis layer are resolved in this sub-layer.

	 2	 Discourse treatment. The process performed in this sub-layer resolves the anaphora 
problems detected in the syntactic analysis.

	 3	 Treatment of imprecise and alias values. In this sub-layer words that denote impre-
cise values (i.e., words that represent value ranges) and aliases (i.e., words for refer-
ring to numerical values, such as noon, dozen, third) are detected and dealt with. 
Algorithms 2 and 3 show the pseudocodes (as implemented) that describe the gen-
eral structure of this functionality sub-layer.

	The pseudocode of Algorithm  2 describes the process of tagging imprecise values. The 
process begins at line 1, for each token of query Q; if Qi is an imprecise value (found 
in the SID), the DB column, lower bound and upper bound specified in the SID for 
the imprecise value are associated to Qi (lines 2 to 7). 

Algorithm 2 Pseudocode for treatment of imprecise values
1: procedure TreatmentOfImpreciseValues(Q, n)
2: for i = 0 to n− 1 do
3: if isImpreciseV alue(Qi) then
4: tagAsImpreciseV alue(Qi) Token Qi is tagged as imprecise value
5: tagAsIV Column(Qi) Token Qi is tagged as imprecise value column
6: storeLowerBound(Qi) Store lower bound of the imprecise value in Qi

7: storeUpperBound(Qi) Store upper bound of the imprecise value in Qi
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		  Algorithm 3 describes the process of tagging alias values. The process begins at line 
1, for each token of query Q; if Qi is an alias value (found in the SID), the equivalent 
value (specified in the SID) for the alias value is associated to Qi (lines 2 to 5). 

Algorithm 3 Pseudocode for treatment of alias values
1: procedure TreatmentOfAliasValues(Q, n)
2: for i = 0 to n− 1 do
3: if isAliasV alue(Qi) then
4: tagAsAliasV alue(Qi) Token Qi is tagged as alias value
5: setV alue(Qi) Token Qi is tagged as imprecise value column
6: storeLowerBound(Qi) Set the equivalent value to token Qi

	 4	 Identification of tables and columns. Once the search values are identified in the NL 
query and the tokens have been tagged, the task of this sub-layer is to identify the DB 
tables and columns referred to by query words and phrases, which can be nominal, 
verbal, adjectival, or prepositional.

		  Algorithm  4 shows the pseudocode (as implemented) that describes the general 
structure of this functionality sub-layer. S is a temporary string to store tokens that 
form a phrase and j is the position of the last token of Qi that constitutes the phrase. 
The process begins at line 1. For each token of query Q that constitutes a phrase, the 
token is stored in S. Lines 4 to 6 verify if S is a grammatical descriptor that describes 
a column in the SID; if so, all the tokens from i to j are tagged with the column name, 
and all the tokens are marked as elements of the phrase. If S is not a descriptor 
for a column, in lines 8 to 11, it is determined if S is a grammatical descriptor that 
describes a table in the SID; if so, all the tokens from i to j are tagged with the table 
name, and all the tokens are marked as elements of the phrase.

		  At this point, it is worth pointing out that, unlike other NLIDBs (such as ELF and 
C-Phrase), the translation process of our NLIDB does not look into the database nor 
the data dictionary for search values in order to determine the DB columns involved 
in the SQL query. We avoid doing this, because it is impractical for large databases 
(databases whose tables have more than 100,000 rows), as the experiment described 
in Pazos et al. (2014) for ELF shows.

	 5	 Identification of the Select and Where phrases. From the identification of tables, col-
umns and search values, a heuristic method is used to determine the segments of 
the query that constitute the Select and Where phrases; where the Select phrase and 
the Where phrase are the query segments that will be respectively translated to the 
Select clause and the Where clause of the SQL statement. The result of this sub-layer 
is the association of search values to columns and the determination of the columns 
whose data the user wishes to de displayed.

		  Algorithm 4 shows the pseudocode (as implemented) that describes the structure of 
the Identification of the Select and Where phrases. L is a temporary list to store the 
position of the tokens that are values, j is the position of the value selected, and n is 
the number of values in query Q. At line 1, first the position of the search values are 
determined and are stored in list L. The process begins at line 2, for each search value 
of query Q from the last element to the first of the list. If the token to the left of the 
search value refers to a column, token Qj and the previous token are marked as part of 
the Where phrase (lines 3 and 4). Otherwise, if the token to the left of the search value 



Page 13 of 30Pazos R. et al. SpringerPlus  (2016) 5:553 

refers to a table, token Qj and the previous token are marked as part of the Where 
phrase (which is an error, but it is tagged with the purpose of identifying the type 
of error) (lines 6 and 7). Otherwise, if token Qi is part of a set of search values (e.g., 
flight number 1, 2, 3 and 4), token Qj and the previous tokens are marked as part of 
the Where phrase (lines 9 and 10). Otherwise, if token Qi is part of a Between phrase 
(i.e. departure time between 1200 and 1900 h), token Qj and the previous tokens are 
marked as part of the Where phrase (lines 12 and 13). Otherwise, continue with the 
next token value in the list. Finally, in lines 21 and 22, if there are tokens not tagged as 
Where phrase, all the remaining tokens are tagged as part of the Select phrase. 

Algorithm 4 Pseudocode for the identification of tables and columns
1: procedure IdentificationOfTablesAndColumns(Q, n)
2: for i = 0 to n− 1 do
3: identifyAPhrase(Qi, j)
4: j ← position of the last token that constitutes the phrase
5: if isColumn(S) then
6: tagColumn(Qi, i, j) Tag all the tokens from i to j with the column name
7: markAsAPhrase(Qi, i, j) Mark all tokens from i to j as elements of a phrase
8: else if isTable(S) then
9: tagTable(Qi) Tag Qi with the table name found in the SID
10: markAsAPhrase(Qi, i, j)

	 6	 Treatment of negation. This sub-layer identifies and deals with the lexical compo-
nents of the query that denote negation. Queries that involve negation can be easily 
expressed in natural language; for example: which are the golf courses without prac-
tice course? or which camping grounds do not require a camping permit? However, 
they might pose some difficulty when they are interpreted for translation into SQL: 
some translation approaches for NLIDBs do not distinguish between negative and 
affirmative sentences, for example, those described in Androutsopoulos et al. (1993), 
Minock (2010), Popescu et al. (2004a), Stratica et al. (2005).

	 7	 Treatment of temporal and deductive problems. Temporal queries are issued to a 
database that permits storing the history of values that a piece of data may adopt 
over time. Temporal databases have a temporal data model and a temporal version 
of SQL. An example of a temporal query is the following: who was the spokesman of 
the Soviet Embassy in Baghdad during the invasion of Kuwait? Additionally, deduc-
tive queries are those that are based on deductions by using inference. This type of 
queries are usually formulated to deductive databases, which may be implemented 
on relational databases but include facts and logic rules. An example of a logic rule 
is: every father of a father is a grandfather; therefore, assuming there is no informa-
tion on grandfathers in a database, the query who is the grandfather of John? based 
on the preceding rule must return the desired result.

	 8	 Analysis of aggregate functions and grouping. This sub-layer identifies and deals with 
the lexical components of the query referring to aggregate functions and group-
ing (Group By); for example words such as average, how many, minimal, maximal, 
smallest, largest, first, best, for each, etc. are used to refer to aggregate functions.

	 9	 Resolution of semantic ellipsis. The term semantic ellipsis refers to the omission of 
important words in the wording of a query written in natural language; more spe-
cifically, the omission of words for specifying DB tables or columns involved in 
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the query, which the user assumes they can be guessed. The task of this sub-layer 
is to detect several ellipsis problems that were classified according to a typification 
described in Pazos et al. (2010). These problems are solved by an interaction with the 
user employing clarifying dialogues (Dialogue Manager in Figure 1).

	10	 Determining implicit joins. Once all the tables and columns referred to in the query 
have been identified, sometimes the query can not be translated to SQL because the 
graph that represents these tables and their relations is not connected. In this case it 
might be necessary to include additional tables (not mentioned in the natural language 
query) and arcs (relations between tables) in order to generate a connected graph. For 
overcoming this problem this sub-layer uses a heuristic method, which consists of per-
forming a breadth-first traversal of the semantic graph that represents all of the DB 
tables and relations between tables in order to find the smallest set of tables for gener-
ating a connected sub-graph than includes all the previously identified tables. Finally, 
from this resulting sub-graph the SQL statement can be easily generated. 

Algorithm 5 Pseudocode for the identification of the Select and Where phrases
1: procedure IdentificationOfSelectWherePhrases(Q, n, i)
2: L ← identifySearchV alues(Q)
3: for j = n− 1 to 0 do From the last value to the first
4: if isColumn(getTokenLeft(Qj)) and typeOfColumnEqualsTypeOfV alue(Qi) then
5: tagAsElementOfWherePhrase(getLeftToken(Qj), Qj)
6: else if isTable(getTokenLeft(Qj)) then
7: tagAsElementOfWherePhrase(getLeftToken(Qj), Qj)
8: else if isPartOfASetOfV alues(Qj) then
9: tagAllElementsOfTheSetOfV alues(Qj)
10: else if isPartOfABetweenSentence(Qj) then
11: tagAllElementsOfTheBetweenSentence(Qj)
12: else
13: continue There is no element to be tagged
14: if thereAreTokensNotTaggedAsWherePhrase(Q) then
15: tagAllRemainingTokensAsSelectPhrase(Q)

		  Algorithm 6 shows the pseudocode (as implemented) that describes the functionality 
layer for determining implicit joins. In the pseudocode, G is the semantic graph that 
contains the relationships between tables (this information is obtained from the SID), 
T is a list that stores the tables involved in the query. First at line 1, the semantic graph 
is loaded from the SID into G. Then, in line 2, the tables involved in Q are stored in 
T. In lines 3 and 4, if the number of tables involved is just one, it returns the table 
because there is no need to create a search tree. Otherwise, if the number of tables 
involved in Q is larger than one, for each pair of tables in T a breadth first search 
tree is created starting from one of the tables evaluated, if there is a path between the 
tables being evaluated, then return the foreign keys of the path found between the 
two tables evaluated; otherwise, return an error because there is no path between the 
tables evaluated. 



Page 15 of 30Pazos R. et al. SpringerPlus  (2016) 5:553 

Algorithm 6 Pseudocode for determining implicit joins
1: procedure DeterminingImplicitJoins(Q, n)
2: G ← loadSemanticGraph(SID)
3: T ← getTables(Q)
4: if sizeOf(T ) = 1) then
5: return T
6: else if sizeOf(T ) > 1 then
7: for i = 0 to sizeOf(T )− 2 do
8: G.BFS(Ti) Create the search tree starting from the DB table Ti

9: G.findPath(Ti, Ti+1) Find shortest path between two tables recursively
10: if thereIsAPath(Ti, Ti+1) then
11: return foreignKeys(G.path(Ti, Ti+1))
12: else
13: return error

For better understanding the process performed by our NLIDB, an example of the pro-
cess for a query with several of the aforementioned problems is explained in “Example of 
the application of the semantic information dictionary” section.

Processing of queries

The interface that we are currently developing is part of a far-reaching project aiming at 
solving most of the problems occurring in queries, described in Pazos et al. (2013) and 
dealt with by the architecture depicted in Fig.  4. The version presented in this article 
deals only with the problems implemented so far; i.e., those indicated by a check mark in 
Fig. 4.

For exemplifying the translation process, the following NL query will be used:

 List round trip fares from Philly to DFW arriving in the evening.

The translation process starts by lexically tagging each token of the query. For each 
token its tag consists of its syntactic category (or categories) as shown in Fig. 5. The tag-
ging is performed by looking for the token in a lexicon that contains all the language 
words (approximately 1,132,000 words). If a token can not be found in the lexicon, it is 
tagged with a question mark, and it is a candidate for being considered as a search value. 
It is important to make clear that our NLIDB only answers queries in Spanish; however, 
because of the similarities among European languages, the process of our NLIDB can be 
applied also to English. Therefore, for the sake of clarity the examples presented in this 
article are for English.

Next, instead of the syntactic analysis mentioned in Fig. 4, a shallow analysis is applied 
to the query in order to obtain only one syntactic category for those words that have 
two or more, as shown in Fig. 6. The shallow analysis consists of some heuristic rules. 
Additionally, irrelevant words are ignored; for example, list (a verb of an imperative sen-
tence), the (article) and in (a preposition is usually ignored, unless an entry of the SID 
indicates that it is used for referring to a column, such as preposition from).

For detailing the processing of a query, Fig.  7 depicts a table that shows the infor-
mation generated for each query token. A token can be treated as an independent ele-
ment, which is a structure that contains a set of attributes that are used for processing 
the query. The attributes contained in each structure of the token are: lexical compo-
nent, lemma, syntactic category, phrase (sequence of words that contains the token), 
phrase identifier, type of the phrase (Select or Where) it is part of, tag(s) of the column(s) 
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referred to, tag(s) of the table(s) referred to, final tag, indicator if it refers to a table, indi-
cator if it refers to a column, indicator if it is a search value, indicator if it is a search 
value of a view, indicator if it is an imprecise value, indicator if it is an alias value, and 
indicator if it is marked for being processed.

The rows with headings Lexical component, Lemma, Syntactic category, Final tag, 
Value, and Marked (Fig. 7) show the information generated by the lexical analysis for the 
tokens of the NL query. It is convenient to make clear that the value Philly in the Final 
tag row is not yet the final value for the token Philly, since this is an alias value that has 
to be converted to its equivalent value. The values false in the Marked row indicate that 
the corresponding tokens are irrelevant for the translation.

The first sub-layer of the semantic analysis that has been implemented deals with the 
treatment of imprecise and alias values (Fig. 4). The corresponding process looks for alias 
values and imprecise values that are declared in the SID; for example, the token Philly 
has been declared for referring to the search value PHL, and the token evening has been 
declared for referring to the value range 1900–2359 (Fig. 8). The rest of the tokens that 
have not been identified so far, are considered search values since they are not language 
words, DFW in the example. The rows with headings Final tag, Value, Imprecise value 

Fig. 5  Example of lexical tagging

Fig. 6  Example of shallow analysis for discriminating syntactic categories

Fig. 7  Example of information generated during the lexical analysis
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and Alias value (Fig. 11) show the information generated by the treatment of imprecise 
and alias values.

The next sub-layer deals with the identification of DB tables and columns. In this sub-
layer a search in the SID of the tagged tokens of the query is carried out, either as indi-
vidual words or phrases of different syntactic categories (nominal, verbal, adjectival, or 
prepositional). If there is a word/phrase in the SID that matches a word/phrase of the 
query, then the query word/phrase is tagged with the table or column referred to by the 
word/phrase. As shown in Fig. 9, according to the semantic information stored in the 
SID, the nominal phrase round trip fare refers to column rnd_trip_cost of table fare, the 
verb arrive refers to column arrival_time of table flight, and the prepositions from and to 
refer to columns from_airport and to_airport of table flight.

The rows with headings Phrase, Phrase ID, Column tag and Table tag of the table 
depicted in Fig.  11 show the information generated by the identification of DB tables 
and columns. Notice that the third column of the table results from the combination of 
the third and fourth columns of the table depicted in Fig. 7, which occurred because the 
phrase round trip fare was found in the SID as descriptor of column fare.rnd_trip_cost. 
The list 1, 2 in the Phrase ID row indicates that the phrase is constituted by tokens 1 and 
2 (note: the numbering of tokens starts at 0).

The next sub-layer deals with the identification of the Select and Where phrases. After 
the tables and columns have been identified, as well as the search values, now it is pos-
sible to divide the query into its Select and Where phrases. For performing this task each 
search value present in the query is associated to the column on its left, as shown in 
Fig. 10. The set of pairs of column-search values constitute the Where phrase. The rest of 

Fig. 8  Example of treatment of imprecise and alias values using the SID

Fig. 9  Example of table and column identification using the SID
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the column-tagged tokens are considered as constituents of the Select phrase. The row 
with heading Phrase type (Fig. 11) shows the information generated by the identification 
of the Select and Where phrases.

The next (and last) sub-layer implemented is in charge of determining implicit joins in 
the query when necessary. For carrying out the generation of an SQL statement it is nec-
essary that the graph constituted by the tables identified and the join conditions (search 
conditions that involve one column from one table and one column from another table) 
be a connected graph, like the one depicted in Fig. 13. When this is not the case, then 
it is necessary to include tables and join conditions for obtaining a connected graph as 
explained in “Proposed architecture” section. For this example, Fig.  12 depicts a frag-
ment of the ATIS database schema that shows tables fare and flight and some adjacent 
tables (i.e., tables related by a foreign key), as well as segmented lines that denote for-
eign-key relations between tables. At this point of the process, the semantic graph of 
the query is unconnected and consists of two components: one includes table fare and 
the other includes table flight. For this example, our heuristic algorithm finds the short-
est path between tables fare and flight (Fig. 12), which indicates that it is necessary to 
include table flight_fare, and the corresponding join conditions fare.fare_code = flight_
fare.fare_code and flight.flight_code = flight_fare.flight_code (Fig. 13).

The final result of the query processing consists of a semantic graph that contains all 
the information that the NLIDB needs for “understanding” the query (Fig. 13). From the 
semantic graph, the process for obtaining the SQL statement is straightforward.

Additional details on query processing can be found in Aguirre (2014).

Fig. 10  Example of separation of the Select and Where phrases

Fig. 11  Example of information generated during the semantic analysis
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Example of the application of the semantic information dictionary

As previously mentioned, the SID of our NLIDB permits using words or phrases of syn-
tactic categories such as nouns, verbs, adjectives and prepositions for relating them to 
DB tables or columns. In addition, it permits storing another type of information related 
to values (i.e., data that may be stored in the database), such as imprecise values and alias 
values. For exemplifying the advantages of the design of our SID, based on the SEDBM 
model, an example is described next.

Use of words or phrases of different syntactic categories

Usually DB tables and columns are referred to by nominal words or phrases; however, a 
study of several query corpora revealed that words and phrases of verbal, adjectival and 
prepositional categories are also used in natural language queries for referring to tables 
and columns (Pazos et al. 2005). For illustrating this case, let us consider the following 
query of the well known ATIS database: Give me a list of flights from DFW to BOS that 
arrive before 700.

The semantic analysis of this query shows that the words flights, from, to and arrive 
refer to columns of table flight. Initially the system tags with syntactic categories each 
word found in the query. Afterwards, the query is analyzed, and at different moments 

Fig. 12  Example of determination of implicit joins

Fig. 13  Example of connected semantic graph
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of this process (Algorithm 4), the system accesses the SID to find out if these words or 
phrases are present in the grammatical descriptor of some DB table or column. Figure 14 
shows how the columns referred to by the abovementioned words are identified in the 
SID by the column descriptors.

Customization of the semantic information dictionary

The customization of our NLIDB for a particular database consists of populating the SID 
with relevant semantic information of the database. The customization is carried out in 
two steps: automatic customization and fine-tuning.

The automatic customization extracts information from the DB schema and populates 
the SID by associating the descriptions stored in the schema to DB tables, columns and 
relations between tables; for example, the description for column flight.from_airport in 
the schema is origin airport, so this phrase is stored in the SID as a descriptor for the 
column. Specifically, for each DB table it extracts: DB name, table name, and a nominal 
descriptor (most DB management systems permit storing a description for tables); for 
each DB column it extracts: DB name, table name, column name, data type, an indica-
tion if the column participates in the primary key, and a nominal descriptor; and for 
each relation between tables it extracts: DB name, column name of the table referred, 
name of the table referred, column name of the referring table, and name of the referring 
table.

The fine-tuning of our NLIDB is carried out as follows: first the customizer has 
to detect a query that has not been correctly translated by the interface, and then he/
she has to determine what information is lacking (or is wrong) in the SID that could 
be causing the error. To this end, the user has to compare the SQL statement gener-
ated by the NLIDB and the correct SQL statement, and he/she has to detect the differ-
ences; afterwards, by taking into account the NL query and the database schema, the 
user has to find out what information he/she has to store (or correct) in the SID. To this 
end, our NLIDB has a domain editor which allows associating words/phrases of differ-
ent grammatical categories (nominal, verbal, adjectival and prepositional) to DB tables 
and columns. For example, the NLIDB will not be able to interpret the query How much 
is a round-trip fare from BOS to DFW?, because BOS is a value stored in column flight.
from_airport, whose descriptor is origin airport (as mentioned before). This problem can 
be solved by using the domain editor to include the word from as another descriptor 
for column flight.from_airport. Other elements that can be defined using the editor are 
imprecise values and alias values.

Fig. 14  Example of grammatical descriptors in column descriptions
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For example, after the automatic customization of the NLIDB, the following query 
How much is a round trip fare from BOS to DFW? is incorrectly translated to

SELECT fare.rnd_trip_cost FROM fare;
however, the correct SQL statement is
SELECT fare.rnd_trip_cost
FROM fare, flight, flight_fare
WHERE flight.from_airport LIKE ‘BOS’ AND flight.to_airport LIKE ‘DFW’
AND flight.flight_code = flight_fare.flight_code
AND flight_fare.fare_code = fare.fare_code.
By looking at the two SQL statements, it is clear that the interface does not “under-

stand” the phrase from BOS to DFW; this is so because, after the initial customization, 
prepositions from and to are not stored in the SID. Incidentally, the SID only has the fol-
lowing nominal descriptor for column flight.from_airport: origin airport, and similarly 
for column flight.to_airport. In order to correct this situation, it is necessary to perform 
a fine-tuning of the interface, which consists of storing preposition from as a preposi-
tional descriptor for column flight.from_airport (Fig.  2) and storing preposition to as 
prepositional descriptor for column flight.to_airport. After this process the interface will 
“understand” that preposition from followed by a search value X is used for referring to 
column flight.from_airport and likewise for preposition to.

In general, once the NLIDB has been customized for “understanding” certain words/
phrases, then it will correctly interpret them when they are found in previously unseen 
queries. For example, the query List all flights from DEN to PIT and list the fares is not 
correctly answered after the automatic customization; therefore, it is necessary to fine-
tune the interface by storing: the nominal descriptor flight for column flight.flight_num-
ber, the prepositional descriptor from for column flight.from_airport, the prepositional 
descriptor to for column flight.to_airport, and the nominal descriptor fare for columns 
fare.one_way_cost and fare.rnd_trip_cost. After this process, the interface will correctly 
answer this query.

Additionally, the query Please show me flights that leave after noon is not correctly 
translated after the automatic customization; therefore, it is necessary to fine-tune the 
interface by storing: the verbal descriptor leave for column flight.departure_time and an 
alias value for noon, which has to be declared to represent 1200. In this case, the inter-
face already “understands” that flight refers to column flight.flight_number. After this 
process, the interface will correctly answer the last query.

Finally, if the interface is given a previously unseen query such as List fares for all 
flights leaving after noon from BOS to BWI, it will correctly translate it, since it already 
“understands” the meaning of fare, flight, leave, noon, from and to. However, with this 
customization information, the current version of the interface would not be able to 
answer the query List fares for all flights departing after noon from BOS to BWI, because 
it does not “understand” the meaning of departing. The new version under development 
includes a synonym dictionary that will permit answering this query; however, it would 
not correctly answer the query List fares for all flights flying after noon from BOS to BWI 
because, in general fly is not considered synonym of leave.

The customization of C-Phrase is carried out in two phases. In the first one, the DB 
administrator manually generates a file that contains information on the connection 
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to the DB and the data dictionary. The file defines the dictionary as an ontology that 
describes the relations between tables/columns and words that can be used in queries 
to refer to them, it also contains match patterns for each table/column, which define the 
phrases that are expected to be used for referring to the table/column; for example, table 
state can be referred to by the word state and has 38 patterns defined for it. An exam-
ple of this pattern is $C5 most populated is interpreted by the interface as X|STATE(X) 
and TOP-POPULATION ($C5,X), where X and $C5 denote a state name (or set of state 
names to show) and a numeric variable that indicates the number of states to show. 
Additionally, the file defines text substitutions for words/phrases that may occur in que-
ries; for example, the file defines a substitution for how many square kilometers, which 
if found in a query it would be replaced by sum area. The customization supplied by 
the implementers for Geobase has 75 substitutions. It is important to point out that 
the customization file provided by the implementers for Geobase has 1593 lines of text 
(C-Phrase 2010).

The second phase is performed for fine-tuning the data dictionary and adding/modify-
ing substitutions. C-Phrase has an authoring tool that allows editing the names of DB 
tables/columns, associating patterns to tables/columns, and editing substitutions. For 
example, the pattern containing fewer that $C1 people is interpreted by the interface as 
X|STATE(X) and X.POPULATION < $C1, (where X and $C1 represent a state name and 
a search value). In this process the DB administrator has to define the last expression 
and one or more patterns for it.

The customization of ELF is performed in two phases also: the first phase is automatic 
and the second is manual. In the first phase, ELF stores in the data dictionary the names 
of tables/columns extracted from the DB schema and assigns synonyms to tables/col-
umns, which are words that are derived from their names. ELF also stores in the data 
dictionary the values stored in the database: for each value it records the name of the 
column where it is stored. This information is used by ELF to identify the tokens in the 
NL query that are search values and to find out which column or columns store the iden-
tified search value.

The second phase is executed for fine-tuning the data dictionary. The ELF editing tool 
allows looking for a table or column in order to add/delete synonyms for it; for example, 
a new synonym class could be added for column SupplierID. The Phrase Editor allows 
defining substitutions for words or phrases, like C-Phrase.

The main aspects of our approach that differ from those of ELF and C-Phrase are the 
following:

• • No use of patterns for query translation. C-Phrase associates patterns and rules for 
performing a NL query translation. A disadvantage of this approach is that it is nec-
essary to define a new pattern when a user formulates a NL query not considered 
in the set of patterns. Our approach is more flexible, since our NLIDB only stores 
descriptors in the SID for tables and columns, which are used by a semantic analysis 
process that determines, from the NL query, the information of tables, columns and 
search values required to construct the SQL statement.

• • No substitution of query text. Unlike ELF and C-Phrase, our NLIDB does not use 
text substitution. A disadvantage of text substitution is that it may yield perplexing 
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results. For example, for the following query from the Geobase corpus: what is the 
shortest river  in the usa?, C-Phrase responds there is no river with name “rivera”. The 
explanation for this result is that the customization provided by the implementers 
specifies that the string “ in the us” has to be replaced by an empty string (C-Phrase 
2010); therefore, the query is internally rephrased as follows: what is the shortest 
rivera, but rivera is not a value stored in the database.

• • No storage of DB data in the data dictionary. As mentioned before, ELF stores DB 
data in its data dictionary, which limits its ability to query large databases: its dic-
tionary may become as large as the database to be queried. Additionally, ELF relies 
very much on this information for query translation and sometimes is misled by it; 
for example, ELF translates the query Which states does the Mississippi river run 
through? into SELECT DISTINCT HighLow.state_name FROM HighLow WHERE 
(HighLow.lowest_point = “mississippi river”). The explanation for this result is that it 
finds the value mississippi river in table HighLow. Furthermore, this approach works 
fine for static databases, but it fails when databases undergo changes (insertions, 
deletions and updates), because ELF might not be able to identify search values and 
the corresponding columns.

• • No searching of values in the database for query translation. C-Phrase searches the 
database for values in order to determine the column where the value is stored. For 
example, for the query How big is mexico, C-Phrase responds There is no lake with 
name “mexico”, There is no mountain with name “mexico”, There is no state named 
“mexico”, There is no river with name “mexico”, There is no mountain with state “mex-
ico”, and There is no city named “mexico”. The disadvantage of searching a value in 
the database for determining the column that stores the value, is that it may be pro-
hibitive for large databases.

Experimental evaluation
Comparative evaluation of the performance of NLIDBs is a difficult task, since there is 
no established benchmark that permits comparing the performance results from differ-
ent NLIDBs. This evaluation aims at comparing the customization effectiveness of our 
NLIDB with respect to that of ELF. We decided to use ELF for comparison because it is 
easily available and it is one of the few surviving commercial NLIDBs.

In this experiment the interfaces are tested using a query corpus for the ATIS data-
base, which deals with information on airline flights. We decided to use the ATIS data-
base for testing because it is an example of complex medium-size databases that can be 
found in real-life applications. Because of the complexity of the benchmark (28 tables, 
127 columns, and a corpus with 85 % of elliptical queries), only a few NLIDBs have dared 
to evaluate their performance against this benchmark (Table 1).

For the experiments a subset of the ATIS corpus was extracted, which consists of 70 
significant queries (i.e., excluding similar queries) that involve problems of the following 
types: use of different syntactic categories (nouns, verbs, adjectives and prepositions), 
use of imprecise and alias values.

At this point it is important to mention that the current version of our NLIDB is under 
development; therefore, it was tested with neither dialogue manager nor a learning mod-
ule. Thus, our interface and ELF were tested in similar conditions.
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In each of the experiments described next, the customization of the interfaces was per-
formed in two steps: first an automatic customization was carried out (both interfaces 
have this functionality), and finally the initial customization was manually fine-tuned. 
The performance results were evaluated using the recall metric, described in Pazos et al. 
(2013), Lu (2013):

As shown by expression (1), recall is the percentage of correctly answered queries with 
respect to the number of queries input to the interface.

The first experiment was conducted using the 70-query corpus mentioned before, and 
the customization was performed by a group of 28 undergraduate students majoring in 
engineering in computer science, which is the minimal academic background required 
for customizing a NLIDB. In order to avoid bias towards any of the interfaces (ELF and 
ours), the group was divided into two subgroups, each with similar average grades. Each 
subgroup customized one of the interfaces.

For testing the easiness of the interface customization process, the students were 
given 2  h. Since fine-tuning the customization of ELF is particularly obscure, the stu-
dents received two manuals (one for each interface) about 10 pages long several days 
in advance, so they could read them prior to the test. Both manuals included the same 
examples showing how to customize the interface for correcting some translation errors. 
Additionally, together with the manuals, the students were given an 11-page document 
with a description of the ATIS database, which includes a brief description of each table 
and column, as well as the list of the 70 queries of the corpus (both in English and Span-
ish) together with the translation of each query into SQL, so the students could receive 
feedback on the quality of their customization.

The average results obtained in the first experiment are summarized in Table 2. Our 
NLIDB obtained 44.69 % recall, while ELF obtained 11.83 % recall. It is convenient to 
mention that one student could make our NLIDB achieve 90 % recall. The fifth column 
of Table 2 shows the average time that it took students to fine-tune the interface in order 
to increase by 1 the number of correctly answered queries. This column shows that it 
took 94.4 min to fine-tune ELF for increasing by 1 the number of correct queries; while 
for our NLIDB it took 8.4 min.

The second experiment was conducted using the same corpus of queries; however in 
this case, a group of 18 undergraduate students majoring in engineering in computer 
science. Since this was a smaller group, we used cross-testing in order to avoid bias. To 
this end, first we divided the group into two subgroups: A and B; then in the first session 

(1)recall =
total number of correct queries

total number of queries
× 100

Table 2  Evaluation results of the first experiment

NLIDB Total queries Correct w/
initial  
customization

Correct w/
fine-tuning

Minutes 
for custom-
izing one 
query

Recall w/
initial  
customiza-
tion (%)

Recall w/ 
fine-tuning (%)

ELF 70 7 8.28 93.4 10 11.83

Our NLIDB 70 17 31.28 8.4 24.28 44.69
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subgroup A customized our NLIDB and subgroup B customized ELF; finally, in the sec-
ond session subgroup A customized ELF and subgroup B customized our interface. The 
results obtained from the second experiments are summarized in Table 3, which shows 
that our interface achieved 77.05  % recall, and ELF obtained 13.48  % recall. The fifth 
column of Table 3 shows that it took 49.2 min to fine-tune ELF for increasing by 1 the 
number of correct queries; while for our NLIDB it took 3.2 min.

As mentioned in “Introduction” section, the success rate of NLIDBs highly depends on 
the quality of their customization; moreover, the quality of a customization depends on 
the ability of the customizer. The large difference in the performances (44.69 and 77.05 % 
for our NLIDB) reported in Tables 2 and 3 is explained by the fact that the students of 
the second group are better (as revealed by their academic grades). Notice that the per-
formance for ELF obtained by the second group is also larger than that of the first group. 
Additionally, the performances within each group also vary widely.

Finally, the following question arises: how far are the recall figures obtained by stu-
dents from the highest recall that can be obtained from our NLIDB? For answering this 
question, in the third experiment both interfaces were customized by ourselves. Table 4 
shows the results obtained, which shows that our interface obtained 90 % recall. We also 
include the recall for ELF for comparison. (A demo of our NLIDB is available at: http://
nlp.itcm.edu.mx:8080.)

These results show that the performance of our NLIDB when customized by the stu-
dents is far (a 12.95–44.31 % difference) from the 90 % when customized by the interface 
implementers. The main reason for this difference is that for customizing the interface it 
is necessary to have: some understanding of the inner workings of the interface (specifi-
cally, the need to associate NL descriptors to DB tables and columns), familiarity with 
the database schema, and expertise in SQL. Unfortunately, the ability of our undergrad-
uate students is far below that of the implementers. Additionally, the students were given 
only 2  h for customizing the interface; with more time available they could probably 
have obtained better results.

Table 3  Evaluation results of the second experiment

NLIDB Total queries Correct  
w/initial  
customization

Correct w/
fine-tuning

Minutes 
for custom-
izing one 
query

Recall w/initial 
customization 
(%)

Recall w/
fine-tuning 
(%)

ELF 70 7 9.44 49.2 10 13.48

Our NLIDB 70 17 53.94 3.2 24.28 77.05

Table 4  Evaluation results with a customization performed by the implementers

NLIDB Total queries Correct  
w/initial  
customization

Correct w/
fine-tuning

Minutes 
for custom-
izing one 
query

Recall w/initial 
customization 
(%)

Recall w/
fine-tuning 
(%)

ELF 70 7 11 40 10 15.7

Our NLIDB 70 17 63 2.6 24.28 90

http://nlp.itcm.edu.mx:8080
http://nlp.itcm.edu.mx:8080
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Table 4 shows that 10 % (=7) of the queries are not correctly answered by our NLIDB. 
One of these queries is Please list only economy class flights leaving after noon. In this 
case, the interface fails because economy class refers to column compound_class.econ-
omy (which only stores two possible values YES and NO) and the search value YES for 
this column is missing in the NL query, though in this context it is implicit. In some real-
world databases, there exist columns for storing binary values (YES/NO, True/False, 
1/0) that pose this kind of problem.

One of the most difficult situations occurs with the following query: Please show me 
the business fare class cost for flight number 1. The interface can not translate correctly 
this query because fare class is a descriptor for columns restrict_class.ex_fare_class, com-
pound_class.fare_class and fare.fare_class; however, the search value business is not a 
possible value for these columns, but it is a value for column compound_class.class_type, 
whose descriptor is class type; therefore, the query could be correctly answered if it were 
reformulated as follows: Please show me the cost for business class type for flight number 
1. Unfortunately, it can not be realistically expected that users know this subtlety of the 
database schema. This problem could be partially overcome if we stored fare class as 
another descriptor for column compound_class.class_type. Unfortunately, this trick does 
not solve the problem either, because the interface would have to choose one of the four 
columns referred to by descriptor fare class. In this case a clarification dialog interface-
user would not be helpful, because it is unlikely that the user knows that business is a 
possible value only for column compound_class.class_type.

A recently developed module of our NLIDB for the treatment of aggregate functions 
(Fig.  4), allowed to conduct an experiment using the Geoquery250 corpus (Tang and 
Mooney 2001), which has been used for testing other NLIDBs. In this experiment our 
NLIDB and ELF were customized by us, and for C-Phrase the customization provided 
by the implementers was used (C-Phrase 2010). The queries were translated into Span-
ish, since our NLIDB only answers queries in this language. The experimental results are 
shown in Table 5. The second column indicates the total number of queries of the cor-
pus, and the third column shows the number of queries that require text substitutions 
for translation. The fourth column contains the number of correct queries. The fifth col-
umn shows the recall obtained considering all the queries (those that require and do 
not require substitutions), and the sixth column contains the recall excluding the queries 
that require substitutions.

The experimental results show that C-Phrase obtains the largest recall (71.6  %) and 
ELF the smallest (35.6 %), while our NLIDB obtains 56.4 %. Since our NLIDB does not 
use the substitution mechanism, the last column of the table shows the effectiveness of 
our translation approach when excluding this mechanism; in this case the recalls for our 
NLIDB, ELF and C-Phrase are respectively 56.4, 35.6 and 56.4  %. Note: from the 179 

Table 5  Evaluation results using the Geoquery250 corpus

NLIDB Total queries Queries with  
substitutions

Correctly 
answered

Recall (including 
substitutions) (%)

Recall (excluding 
substitutions) (%)

Our NLIDB 250 0 141 56.4 56.4

ELF 250 0 89 35.6 35.6

C-Phrase 250 63 (38 correct) 179 71.6 56.4
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correctly answered queries by C-Phrase, 38 required text substitution; thus leaving 141 
queries for calculating the recall in the last column.

It is important to mention that this corpus includes 96 queries that involve aggregate 
functions and grouping; from these, only 37 could be correctly answered by our NLIDB, 
the other 59 contain different types of problems (e.g., semantic ellipsis, lexical ambiguity, 
arithmetical operations, deductive queries, non-existent tables or columns) for which 
the corresponding modules (Fig. 4) have not been developed. The difference in perfor-
mance of our interface when tested with ATIS (90 % recall) and Geoquery250 (56.4 % 
recall) is explained by the fact that the ATIS corpus has a smaller percentage of queries 
not dealt with by the interface.

Conclusion
NLIDBs are tools that permit users to request information stored in databases more eas-
ily than other type of interfaces; i.e., users simply type queries in natural language simi-
larly as they would do when communicating with other people. Unfortunately, despite 
the large number of NLIDBs developed, there still exist unsolved problems that pre-
vent attaining a successful translation rate that is acceptable for business users (close to 
100 %).

Despite the existence of many NLIDBs that claim to be domain independent, porting 
them to a different database is a complex task, due to the amount of time and tedious-
ness that their customization usually involves. It has been observed that for a NLIDB 
to obtain good results in the translation process, besides the adequate treatment of the 
problems occurring in queries, it should provide facilities for customizing adequately 
the interface, since the more correct information it has the better the identification of 
elements in the query would be.

We propose the use of the SEDBM model, which includes information needed for 
solving most of the problems occurring in several query corpora that we analyzed. The 
design of our SID is based on this model, which endows it with enough robustness for 
obtaining the required information for a successful translation of most queries (90  % 
recall). Additionally, the design of the SID makes easier the customization of our NLIDB, 
when compared with other interfaces such as ELF, as revealed by the experiments 
described in “Experimental evaluation” section.

For evaluating the performance and easiness of customization of our NLIDB, we chose 
to compare it with the commercial interface ELF, because it is readily available and is 
reputed as being one of the best interfaces still on sale. For the comparative experiments 
we decided to use undergraduate students majoring in engineering in computer science; 
since we think that, for NLIDBs to be widely used in businesses, it is necessary that they 
be customized so easily that any professional of this academic level should be able to do 
it.

The experiments were carried out on the ATIS database, because it is representative 
of complex databases that can be found in real-life applications. For the experiments we 
used 70 difficult queries from the ATIS corpus, which involve many problems usually 
found in queries of different domains. For the performance evaluation, we considered 
the recall rate (instead of accuracy), since business users are mostly interested in the per-
centage of correctly answered queries. In many evaluations reported in the literature on 
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NLIDBs, the answer to a NL query is considered correct even if it includes information 
additional to what it is requested; in this respect, it is important to point out that in our 
experiments such answers were considered incorrect.

For the experiment that involved the first group of students, our NLIDB obtained a 
44.69 % average recall and ELF 11.83 %; while for the experiment involving the second 
group, our interface attained 77.05 % average recall and ELF 13.48 %. These results lead 
to the following conclusions: for obtaining a good performance from a NLIDB it is nec-
essary that the interface is correctly customized; moreover, the performance is highly 
dependent on the ability of the customizer. Our NLIDB is easier to customize than 
ELF, since for increasing by one the number of correctly answered queries, it takes less 
time for our interface (3.2–8.4 min, Tables 2 and 3) than what it takes for ELF (49.2–
93.4 min). Finally, the explanation of the low performance of ELF, compared with what 
has been usually reported in the literature (Conlon et  al. 2004), is that ATIS is a very 
complex database and the corpus includes very difficult queries.

The performance of our NLIDB when customized by the students is far (a 12.95–
44.31  % difference) from the 90  % when customized by ourselves. At this point it is 
important to underscore that the students were given only 2 h for carrying out the cus-
tomization, and it is not clear from the experiments what would the performance be if 
they had 8 or 16 h. Anyway, the experiment shows that the design of our interface has 
attained a competitive degree of easiness of customization when compared to a com-
mercial software; however, it is necessary to improve the design so that it permits pro-
fessionals with undergraduate level to obtain a performance close to 90 %.

Concerning the maximal performance (i.e., when the NLIDB is customized by the 
implementers), our NLIDB obtained competive results when compared with ELF and 
C-Phrase, as shown by the results in Table 5.

Though our NLIDB was developed for Spanish, we think that the approach used is 
general enough to be applied to other European languages such as English, French, Ital-
ian, and Portuguese.

Human beings use two methods for dealing with NL sentences: guessing and deep 
understanding. Small children use guessing because their brains have an incomplete 
and imprecise model of the world, they do not know the exact meaning(s) of words, and 
they have not learned the language grammar. In this case they sometimes grasp the cor-
rect meaning of a sentence and sometimes do not. Conversely, lawyers can not afford to 
guess the meaning of law articles, they have to understand their exact meaning in order 
to determine if an article can be useful for a specific legal issue. In general, human beings 
use a combination of guessing and understanding. In our NLIDB we are trying to repli-
cate the process performed by lawyers, or more precisely, the process carried out by a 
DB administrator when understanding a NL query for translating it into SQL.

We have just finished the implementation of a wizard for fine-tuning the interface 
(Aguirre 2014). Unlike the current version of our NLIDB, this wizard does not require 
from the customizer to have any knowledge about grammatical concepts (such as nomi-
nal phrase, verbal phrase, etc.) nor understanding the inner workings of our interface 
(i.e., the need for adequately relating query words to DB tables and columns). Prelimi-
nary experiments show that the recalls obtained by the NLIDB when fine-tuned with 
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the wizard were 80.53 and 84.82 % for two groups of undergraduate students, which are 
considerably higher than those obtained without the wizard (Tables 2, 3).

Finally, the use of a semantic information dictionary (based on a new semantically-
enriched data model) and a layered architecture for the translation of NL queries to SQL, 
allows the systematic treatment of problems occurring in NL queries. This approach 
permits systematically customizing our NLIDB to such an extent that it has made pos-
sible to automate its customization by using the wizard.
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