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Background
In this paper, we consider the second-order impulsive differential equation with mixed 
nonlinearities of the form

where t ≥ t0, k ∈ N, {τk} is the impulse moments sequence with

and

(1)















(r(t)(x′(t))γ )′ + p(t)(x′(t))γ + q(t)xγ (t − δ)

+
�n

i=1 qi(t)|x(t − δ)|αi−1x(t − δ) = e(t), t �= τk;

x(τ+k ) = akx(τk), x
′
(τ+k ) = bkx

′(τk)

0 ≤ t0 = τ0 < τ1 . . . , lim
t→∞

τk = ∞,

x(τk) = x(τ−k ) = lim
t→τ−k

x(t), x(τ+k ) = lim
t→τ+k

x(t)

x′(τk) = x′(τ−k ) = lim
h→0−

x(τk + h)− x(τk)

h
,

x′(τ+k ) = lim
h→0+

x(τk + h)− x(τ+k )

h
.

Abstract 

In this paper, we present some sufficient conditions for the oscillation of all solutions 
of a second order forced impulsive delay differential equation with damping term. 
Three factors-impulse, delay and damping that affect the interval qualitative properties 
of solutions of equations are taken into account together. The results obtained in this 
paper extend and generalize some of the the known results for forced impulsive dif-
ferential equations. An example is provided to illustrate the main result.
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Let J ⊂ R be an interval and define PLC(J ,R) = {x : J → R : x(t) is continuous on each 
interval (τk , τk+1), x(τ

±
k ) exist, and x(τk) = x(τ−k ) for all k ∈ N}.

For given t0 and φ ∈ PLC([t0 − δ, t0],R), we say x ∈ PLC([t0 − δ,∞],R) is a solu-
tion of Eq. (1) with initial value φ if x(t) satisfies (1) for t ≥ t0 and x(t) = φ(t) for all 
t ∈ [t0 − δ, t0]. A non-trivial solution is called oscillatory if it has infinitely many 
zeros;otherwise it is called non-oscillatory.

In recent years the theory of impulsive differential equations emerge as an important 
area of research, since such equations have applications in the control theory, physics, 
biology, population dynamics, economics, etc. For further applications and questions 
concerning existence and uniqueness of solutions of impulsive differential equation, see 
Bainov and Simenov (1993), Lakshmikantham et al. (1989). In the last decades, interval 
oscillation of impulsive differential equations was arousing the interest of many research-
ers, see Li and Cheung (2013), Liu and Xu (2007, 2009), Muthulakshmi and Thandapani 
(2011)  and Özbekler and Zafer (2009, 2011) considered the following equations

As far as we know, it is the first article focusing on the interval oscillation for the impul-
sive differential equation with damping term. Their results well improved and extended 
the earlier one for the equations without impulse or damping. Recently Guo et al. (2014) 
considered a class of second order nonlinear impulsive delay differential equations with 
damping term and established some interval oscillation criteria for that equation.

However, for the impulsive equations, almost all of interval oscillation results in the 
existing literature were established only for the case of “without delay”, in other words, 
for the case of “with delay” the study on the interval oscillation is very scarce. To the 
best of our knowledge, Huang and Feng (2010) gave the first research in this direction 
recently. They considered second order delay differential equations with impulses

and established some interval oscillation criteria which developed some known results 
for the equations without delay or impulses (Liu and Xu 2007; El Sayed 1993). It is natu-
ral to ask if it is possible to research the interval oscillation of the impulsive delay equa-
tions with damping term. In this paper, motivated mainly by Huang and Feng (2010) and 
Özbekler and Zafer (2009), we study the interval oscillation of second order nonlinear 
impulsive delay differential equations with damping term (1). We establish some interval 
oscillation criteria which generalize or improve some known results of Guo et al. (2012a, 
b, 2014), Liu and Xu (2007, 2009), Muthulakshmi and Thandapani (2011), Pandian and 
Purushothaman (2012), Özbekler and Zafer (2009, 2011) and Li and Cheung (2013). 
Finally we give an example to illustrate our main result.

Main results
Throughout this paper, we assume that the following conditions hold:

(2)

{

(r(t)(�α(x
′))′ + p(t)�α(x

′)+ q(t)�β(x) = e(t), t �= τk;

�(r(t)�α(x
′))+ qi�β(x) = ei, t = τk , k ∈ N.

(3)







x′′(t)+ p(t)f (x(t − τ)) = e(t), t ≥ t0, t �= tk;

x(t+k ) = akx(tk), x
′
(t+k ) = bkx

′(tk), k = 1, 2, . . .
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(A1)  r(t) ∈ C1([t0,∞), (0,∞)) and p(t), q(t), qi(t), e(t) ∈ PLC([t0,∞),R), i = 1,

2 . . . , n, with r′(t)+ p(t) ≥ 0 for all t ≥ to;

(A2)  δ ≥ 0, τk+1 − τk > δ, k ∈ N, α1 > · · · > αm > γ > αm+1 > · · · > αn > 0 are 
constants;

(A3) ak , bk are real constants satisfying bk ≥ ak > 0, k = 1, 2, . . . .

We begin with the following notations: I(s) = max{i : t0 < τi < s}, rj = max{r(t) :

t ∈ [cj , dj]}, j = 1, 2 and

For two constants c, d /∈ {τk} with c < d and a function ϕ ∈ C([c, d],R), we define an 
operator � : C([c, d],R) → R by

where

To prove our main results, we need the following lemmas.

Lemma 1 Let (α1,α2, . . . ,αn) be an n-tuple satisfying α1 > α2 > · · · > αm > γ >

αm+1 > · · · > αn > 0. Then there exists an n-tuple (η1, η2, . . . , ηn) satisfying

 and also either

or

The proof of Lemma 1 can be found in Hassan et al. (2011) and Özbekler and Zafer 
(2011) which is the extension of (Lemma 1, Sun and Wong 2007).

Remark 1 For given constants α1 > α2 > . . . αm > γ > αm+1 > · · · > αn > 0, Lemma 
1 ensures the existence of n-tuple (η1, η2, . . . , ηn) such that either (4) and (5) or (4) and 
(6) hold. Particularly when n = 2, and α1 > γ > α2 > 0 in the first case we have

Ecj ,dj = {u ∈ C1([cj , dj],R) : u(t) �≡ 0, u(cj) = u(dj) = 0}.

�d
c [ϕ] =

{

0 for I(c) = I(d),

ϕ(τI(c)+1)θ(c)+
∑I(d)

i=I(c)+2 ϕ(τi)ε(τi) for I(c) < I(d),

θ(c) =
(aI(c)+1)

γ − (bI(c)+1)
γ

(aI(c)+1)
γ (τI(c)+1 − c)γ

and ε(τi) =
a
γ
i − b

γ
i

a
γ
i (τi − τi−1)γ

.

(4)

n
∑

i=1

αiηi = γ

(5)

n
∑

i=1

ηi < 1, 0 < ηi < 1

(6)

n
∑

i=1

ηi = 1, 0 < ηi < 1.
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where η0 be any positive number satisfying 0 < η0 <
α1−γ
α1

. This will ensure that 
0 < η1, η2 < 1 and conditions (4) and (5) are satisfied. In the second case, we can solve 
(4) and (6) and obtain

The Lemma below can be found in Hardy et al. (1934).

Lemma 2 Let X and Y be non-negative real numbers. Then

where equality holds if and only if X = Y .

Let γ > 0, A ≥ 0, B > 0 and y > 0.  Put � = 1+ 1
γ
, X = B

γ
γ+1 y, Y =

(

γ
γ+1

)γ

AγB
−γ 2

γ+1 
in Lemma 2, we have

Theorem  1 Suppose that for any T > 0, there exist cj , dj /∈ {τk}, j = 1, 2 such  
that c1 < d1 ≤ d1 + δ ≤ c2 < d2 and q(t), qi(t) ≥ 0, t ∈ [c1 − δ, d1] ∪ [c2 − δ, d2],

i = 1, 2, . . . , n  and

and uj ∈ Ecj ,dj such that

where

where ηi > 0 are chosen according to given α1,α2, . . . αn as in Lemma 1 satisfying (4) and 
(5), and

η1 =
γ − α2(1− η0)

α1 − α2
, η2 =

α1(1− η0)− γ

α1 − α2

η1 =
γ − α2

α1 − α2
, η2 =

α1 − γ

α1 − α2
.

�XY �−1 − X� ≤ (�− 1)Y �, � > 1

(7)A− B ≤

(

A

γ + 1

)γ+1
(γ

B

)γ

.

(8)e(t) =

{

≤ 0 if t ∈ [c1 − δ, d1],

≥ 0 if t ∈ [c2 − δ, d2],

(9)

∫ dj

cj

[

r(t)

(γ + 1)γ+1

∣

∣

∣

(γ + 1)u′(t)−
p(t)u(t)

r(t)

∣

∣

∣

γ+1
]

dt −

∫ τ
I(cj )+1

cj

Q(t)Q
j
I(cj)

(t)|u(t)|γ+1dt

−

I(dj)
∑

k=I(cj)+2

∫ τ
k

τ
k−1

Q(t)Q
j

k(t)|u(t)|
γ+1dt −

∫ dj

τ
I(dj )

Q(t)Q
j

I(dj)
(t)|u(t)|γ+1dt

< rj�
dj
cj [|u(t)|

γ+1], j = 1, 2

Q(t) = q(t)+ η
−η0
0

n
∏

i=1

(η−1
i qi(t))

ηi |e(t)|η0 , η0 = 1−

n
∑

i=1

ηi
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then every solution of Eq. (1) is oscillatory.

Proof Let x(t) be a non-oscillatory solution of Eq. (1). Without loss of generality, we 
may assume that x(t) > 0 and x(t − δ) > 0 for all t ≥ t0 > 0. Define

Then for all t �= τk , t ≥ t0, we have

By taking η0 := 1−
∑n

i=1 ηi,

and using the the arithmetic–geometric mean inequality,

we have

Since

and

Q
j

k(t) =







(t−τk )
γ

(akδ+bk (τ−τk ))
γ , t ∈ (τk , τk + δ),

(τ−τk−δ)γ

(τ−τk )
γ , t ∈ [τk + δ, τk+1],

k = I(cj), I(cj)+ 1, . . . , I(dj),

(10)ω(t) =
r(t)(x′(t))γ

xγ (t)
, t ∈ [c1 − δ, d1].

(11)

ω′(t) = −q(t)
xγ (t − δ)

xγ (t)
−

n
∑

i=1

qi(t)|x(t − δ)|αi−γ x
γ (t − δ)

xγ (t)
+

e(t)

xγ (t)
−

p(t)ω(t)

r(t)
−

γ |ω(t)|
γ+1

γ

(r(t))
1
γ

.

ζ0 = η−1
0

∣

∣

∣

∣

e(t)xγ (t − δ)

xγ (t)

∣

∣

∣

∣

x−γ (t − δ)

ζi = η−1
i qi(t)

xγ (t − δ)

xγ (t)
xαi−γ (t − δ), i = 1, 2, . . . , n

n
∑

i=0

ηiζi ≥

n
∏

i=0

ζ
ηi
i , ζi ≥ 0

(12)

n
∑

i=1

qi(t)
xαi−γ (t − δ)

xγ (t)
xγ (t − δ)+

|e(t)|

xγ (t)
≥ η

−η0
0

|e(t)|η0
n
∏

i=0

η
−ηi
i q

ηi
i (t)

xηi(αi−γ )(t − δ)

xηiγ (t)
xηiγ (t − δ)

×
xη0 γ (t − δ)

xη0 γ (t)
x−η

0
γ (t − δ).

n
∏

i=0

xηiγ (t − δ)

xηiγ (t)
=

x(η0+η
1
+···+ηn )γ (t − δ)

x(η0+η
1
+···+ηn )γ (t)

=
xγ (t − δ)

xγ (t)

n
∏

i=1

x(αi−γ )η
i (t − δ)x−η

0
γ (t − δ) = 1,
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from (12), (11) becomes

For t = τk , k = 1, 2, . . . , we have

Multiply both sides of (13) by |u(t)|γ+1 where u(t) ∈ Ec
1
,d
1
 and integrating from c1 to d1, 

then using integration by parts on the left side, we have

Using (7) with

we have

Now for t ∈ [c1, d1] \ τk , k ∈ N from (1) it is clear that

(13)

ω′(t) ≤− q(t)
xγ (t − δ)

xγ (t)
− η

−η
0

0

n
∏

i=1

η
−η

i
i q

η
i

i (t)|e(t)|η0 −
p(t)ω(t)

r(t)
−

γ |ω(t)|
γ+1
γ

(r(t))
1
γ

=− Q(t)
xγ (t − δ)

xγ (t)
−

p(t)ω(t)

r(t)
−

γ |ω(t)|
γ+1
γ

(r(t))
1
γ

, t �= τk .

(14)ω(τ+k ) =
b
γ

k

a
γ

k

ω(τk).

(15)

I(d1)
∑

k=I(c1)+1

|u(τk)|
γ+1[ω(τk)− ω(τ+k )]

≤

∫ d1

c1

(γ + 1)uγ (t)u′(t)ω(t)dt −

∫ d1

c1

Q(t)|u(t)|γ+1 x
γ (t − δ)

xγ (t)
dt

−

∫ d1

c1

p(t)ω(t)

r(t)
|u(t)|γ+1dt −

∫ d1

c1

γ |ω(t)|
γ+1

γ

(r(t))
1
γ

|u(t)|γ+1dt

≤ −

∫ τ
I(c1)+1

c1

Q(t)|u(t)|γ+1 x
γ (t − δ)

xγ (t)
dt −

I(d1−1)
∑

k=I(c1)+1

∫ τk+1

τk

Q(t)|u(t)|γ+1 x
γ (t − δ)

xγ (t)
dt

−

∫ d1

τ
I(d1)

Q(t)|u(t)|γ+1 x
γ (t − δ)

xγ (t)
dt +

∫ d1

c1

[(

∣

∣

∣

∣

(γ + 1)u′(t)−
p(t)u(t)

r(t)

∣

∣

∣

∣

)

|ω(t)||u(t)|γ

−
γ |ω(t)|

γ+1

γ

(r(t))
1
γ

|u(t)|γ+1

]

dt.

A =

(

∣

∣

∣

∣

(γ + 1)u′(t)−
p(t)u(t)

r(t)

∣

∣

∣

∣

)

, B =
γ

(r(t))
1
γ

, and y = |ω(t)||u(t)|γ

(16)

(

(γ + 1)|u′(t)| −
p(t)|u(t)|

r(t)

)

|ω(t)||u(t)|γ −
γ |ω(t)|

γ+1

γ

(r(t))
1
γ

|u(t)|γ+1

≤
r(t)

(γ + 1)γ+1

(

(γ + 1)|u′(t)| −
p(t)|u(t)|

r(t)

)γ+1

.

(r(t)(x′(t))γ )′ + p(t)(x′(t))γ = e(t)− q(t)xγ (t − δ)−

n
∑

i=1

qi(t)|x(t − δ)|αi−1x(t − δ) ≤ 0.
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That is

which implies that

is non-increasing on [c1, d1] \ τk .
Because there are different integration intervals in (15), we will estimate x(t − δ)/x(t) 

in each interval of t as follows. We first consider the situation where I(c1) ≤ I(d1). In 
this case, all the impulsive moments in [c1, d1] are τI(c1)+1, τI(c2)+1, . . . τI(d1).

Case 1 For t ∈ (τk , τk+1] ⊂ [c1, d1] we have the following two sub cases: 

(a) If τk + δ ≤ t ≤ τk+1, then (t − δ, t) ⊂ (τk , τk+1]. Thus there is 
no impulse moment in (t − δ, t). For any s ∈ (t − δ, t), we have 
x(s) > x(s)− x(τ+k ) = x′(ξ)(s − τk), ξ ∈ (τk , s). Then

 Since (x′(s))γ exp
∫ s
c1

r′(v)+p(v)
r(v)

dv is non-increasing in [c1, t], we have

 From (17) and (18) we have

Therefore x
′(s)
x(s)

< 1
s−τk

. Integrating both sides of the above inequality from t − δ to 
t,  we obtain

(b) If τk < t < τk + δ, then τk − δ < t − δ < τk < t < τk + δ. There is an impul-
sive moment τk in (t − δ, t). Similar to (a), we have x

′(s)
x(s)

< 1
s−τk+δ

 for any 
s ∈ (τk − δ, τk ]. Upon integrating from t − δ to τk , we obtain

For any t ∈ (τk , τk + δ), we have

((x′(t))γ )′ +
( r′(t)+ p(t)

r(t)

)

(x′(t))γ ≤ 0

(x′(t))γ exp

∫ t

c1

r′(s)+ p(s)

r(s)
ds

(17)(x(s))γ ≥ (x′(ξ))γ (s − τk)
γ .

(18)(x′(ξ))γ exp

∫ ξ

c1

r′(v)+ p(v)

r(v)
dv ≥ (x′(s))γ exp

∫ s

c1

r′(v)+ p(v)

r(v)
dv.

(19)

(x(s))γ ≥
(x′(s))γ exp

∫ s
c1

r′(v)+p(v)
r(v)

dv

exp
∫ ξ

c1

r′(v)+p(v)
r(v)

dv
(s − τk)

γ

≥ (x′(s))γ (s − τk)
γ .

x(t − δ)

x(t)
>

t − τk − δ

t − τk
> 0.

(20)
x(t − δ)

x(τk)
>

t − τk

δ
≥ 0.

x(t)− x(τ+k ) < x′(t+k )(t − τk), ξ ∈ (τk , t).
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Using the impulsive conditions in Eq. (1) we get

Using x
′(τk )
x(τk )

< 1
δ
, we obtain

That is

From (20) and (21), we have

 Case 2 For t ∈ [c1, τI(c1)+1
) we have the following three sub-cases:

(a)  If c1 < t < τ
I(c1)

+ δ and τ
I(c1)

> c1 − δ, then t − δ ∈ [c1 − δ, τ
I(c1)

) and there is 
an impulsive moment τ

I(c1)
 in (t − δ, t). Similar to Case 1(b), we have

(b) If τ
I(c1)

+ τ < t < τ
I(c1)+1  and τ

I(c1)
> c1 − δ, then there are no impulsive 

moments in (t − δ, t). Making a similar analysis of Case 1(a), we obtain 

x(t−δ)
x(t)

>
t−δ−τ

I(c1)

t−τ
I(c1)

≥ 0.

(c) If τ
I(c1)

> c1 − δ, then there are no impulsive moments in (t − δ, t). So

Case 3 For t ∈ (τ
I(d1)

, d1], there are three sub-cases:

(a) If τ
I(d1)

+ δ < d1, t ∈ [τ
I(d1)

, τ
I(d1)

+ δ), then there is an impulsive moment τ
I(d1)

. 
Similar to Case 2(a), we have

(b) If τ
I(d1)

+ δ < t < d1 then there are no impulsive moments in (t − δ, t). Making 
a similar analysis of Case 2(b), we obtain

x(t)− akx(τk) < bkx
′(τk)(t − τk)

x(t)

x(τk)
≤

bkx
′(τk)

x(τk)
(t − τk)+ ak .

x(t)

x(τk)
< ak +

bk

δ
(t − τk).

(21)
x(τk)

x(t)
>

δ

akδ + bk(t − τk)
.

x(t − δ)

x(t)
>

t − τk

akδ + bk(t − τk)
≥ 0.

x(t − δ)

x(t)
>

t − τ
I(c1)

a
I(c1)

δ + b
I(c1)

(t − τ
I(c1)

)
≥ 0.

x(t − δ)

x(t)
>

t − δ − τ
I(c1)

t − τ
I(c1)

≥ 0.

x(t − δ)

x(t)
>

t − τ
I(d1)

a
I(d1)

δ + b
I(d1)

(t − τ
I(d1)

)
≥ 0.

x(t − δ)

x(t)
>

t − δ − τ
I(d1)

t − τ
I(d1)

≥ 0.
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(c) If τ
I(d1)

+ δ ≥ d1, then there is an impulsive moment τ
I(d1)

 in (t − δ, t).

  Similar to Case 3(a), we obtain

Combining all these cases, we have

Using (16) and (22) in (15) we get

For any t ∈ (c1, τI(c1)+1
], we have x(t)− x(c1) = x′(ξ)(t − c1), ξ ∈ (c1, t). Since x(c1) > 0, 

we have x(t) > x′(ξ)(t − c1). Then

Using the monotonicity of (x′(t))γ exp
(

∫ t
c1

r′(s)+p(s)
r(s)

ds
)

, and (24) we have

for some ξ ∈ (c1, t). It follows

Letting t → τ
I(c1)+1

, from (9), we have

Making a similar analysis on (τk−1, τk ], k = I(c1)+ 2, . . . , I(d1), we can prove that

x(t − δ)

x(t)
>

t − τ
I(d1)

a
I(d1)

δ + b
I(d1)

(t − τ
I(d1)

)
≥ 0.

(22)
x
γ (t − δ)

xγ (t)
>















Q
1

I(c1)
(t) for t ∈ [c1, τI(c1)+1

],

Q
1
k
(t) for t ∈ (τk , τk+1], k = I(c1)+ 1, . . . , I(d1)− 1,

Q
1

I(d1)
(t) for t ∈ (τ

I(d1)+1
, d1]

(23)

I(d1)
∑

k=I(c1)+1

|u(τk )|
γ+1[ω(τk )− ω(τ+k )]

≤

∫ d1

c1

r(t)

(γ + 1)γ+1

(

(γ + 1)|u′(t)| −
p(t)|u(t)|

r(t)

)γ+1

dt −

∫ τI(c1)+1

c1

Q(t)|u(t)|γ+1Q1
I(c1)

(t)dt

−

I(d1−1)
∑

k=I(c1)+1

∫ τk+1

τk

Q(t)|u(t)|γ+1Q1
k (t)dt −

∫ d1

τI(d1)

Q(t)|u(t)|γ+1Q1

I(d1)
(t)dt.

(24)(x(t))γ > (x′(ξ))γ (t − c1)
γ .

(x(t))γ ≥
(x′(t))γ exp

(

∫ t
c1

r′(s)+p(s)
r(s)

ds
)

exp
(

∫ ξ

c1

r′(s)+p(s)
r(s)

ds
) (t − c1)

γ

≥ (x′(t))γ (t − c1)
γ

(x′(t))γ

(x(t))γ
≤

1

(t − c1)γ
.

(25)ω(τ
I(c1)+1

) ≤
r1

(τ
I(c1)+1

− c1)γ
.

(26)ω(τk) ≤
r1

(τk − τk−1)
γ
.
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From (24), (25) and (A3), we obtain

Since

from (23) we have

which contradicts (9).
If I(c1) = I(d1), then �d1

c1
[|u(t)|γ+1] = 0 and there is no impulsive moments in [c1, d1]. 

Similar to the proof of (22), we obtain

It is again a contraction with our assumption. The proof when x(t) is eventually negative 
is analogous by repeating a similar argument on the interval [c2, d2]. �

Following Kong (1999) and Philos (1989), we introduce a class of functions: 
D = {(t, s) : t0 ≤ s ≤ t}, H1,H2 ∈ C1(D,R). A pair of functions (H1,H2) is said to belong 
to a function class H, if H1(t, t) = H2(t, t) = 0, H1(t, s) > 0,H2(t, s) > 0 for t > s and 
there exist h1, h2 ∈ Lloc(D,R) such that

For � ∈ (cj , dj), j = 1, 2,

(27)

I(d1)
∑

k=I(c1)+1

a
γ

k − b
γ

k

a
γ

k

|u(τk)|
γ+1ω(τk)

≥
a
γ

I(c1)+1 − b
γ

I(c1)+1

a
γ

I(c1)+1(τI (c1)+1 − c1)γ
|u(τ

I(c1)+1
)|γ+1r1 +

I(d1)
∑

k=I(c1)+2

a
γ

k − b
γ

k

a
γ

k (τk − τk−1)
γ
|u(τk)|

γ+1r1

= r1�
d1
c1
[|u(t)|γ+1].

I(d1)
∑

k=I(c1)+2

|u(τk)|
γ+1[ω(τk)− ω(τ+k )] =

I(d1)
∑

k=I(c1)+1

a
γ

k − b
γ

k

a
γ

k

|u(τk)|
γ+1ω(τk),

∫ d1

c1

r(t)

(γ + 1)γ+1

(

(γ + 1)|u′(t)| −
p(t)|u(t)|

r(t)

)γ+1

dt −

∫ τI(c1)+1

c1

Q(t)|u(t)|γ+1Q1
I(c1)

(t)dt

−

I(d1)−1
∑

k=I(c1)+2

∫ τk

τk−1

Q(t)|u(t)|γ+1Q1
k (t)dt −

∫ d1

τI(d1)

Q(t)|u(t)|γ+1Q1

I(d1)
(t)dt > r1�

d1
c1
[|u(t)|γ+1]

∫ d1

c1

r(t)

(γ + 1)γ+1

(

(γ + 1)|u′(t)| −
p(t)|u(t)|

r(t)

)γ+1

dt −

∫ τI(c1)+1

c1

Q(t)|u(t)|γ+1Q1
I(c1)

(t)dt > 0.

(28)
∂H1(t, s)

∂t
= h1(t, s)H1(t, s),

∂H2(t, s)

∂s
= −h2(t, s)H2(t, s).

Ŵ1,j =

∫ τI(cj )+1

cj

H1(t, cj)Q(t)Q1
I(cj)

(t)dt +

I(dj)−1
∑

k=I(cj)+1

∫ τk+1

τk

H1(t, cj)Q(t)Q1
k(t)dt

+

∫ dj

τI(dj )

H1(t, cj)Q(t)Q1
I(dj )

(t)dt

−
1

(γ + 1)γ+1

∫

�j

cj

r(t)H1(t, cj)

∣

∣

∣

∣

h1(t, cj)−
p(t)

r(t)

∣

∣

∣

∣

γ+1

dt,



Page 11 of 16Thandapani et al. SpringerPlus  (2016) 5:558 

and

Theorem  2 Suppose that for any T > 0, there exist cj , dj , j = 1, 2, � /∈ {τk} such that 
c1 < �1 < d1 ≤ c2 < �2 < d2 and (8) holds. If there exists (H1,H2) ∈ H such that

where

then every solution of Eq. (1) is oscillatory.

Proof Let x(t) be a non-oscillatory solution of Eq. (1). Proceeding as in proof 
of Theorem  1, we get (13) and (14). Noticing whether or not there are impul-
sive moments in [c1, �1] and [�1, d1], we should consider the following four cases, 
namely: I(c1) < I(�1) < I(d1); I(c1) = I(�1) < I(d1); I(c1) < I(�1) = I(d1) and 
I(c1) = I(�1) = I(d1). Moreover, in the discussion of the impulse moments of x(t − δ), 
it is necessary to consider the following two cases: τ

I(�j )
+δ > �j and τ

I(�j )
+δ ≤ �j . Here we 

only consider the case I(c1) < I(�1) < I(d1); with τ
I(�j )

+δ > �j . For the other cases, simi-
lar conclusions can be obtained.

For this case there are impulsive moments τI (c1) + 1, τI (c1) + 2, . . . , τ
I(�1)

 in [c1, d1] and 
τ
I(�1)+1

, τ
I(�1)+2

, . . . , τ
I(d1)

 in [�1, d1]. Multiplying both sides of (13) by H1(t, c1) and inte-
grating it from c1 to �1, we have

Ŵ2,j =

∫ τI(�j )+1

�j

H2(dj , t)Q(t)Q1
I(�j)

(t)dt +

I(dj)−1
∑

k=I(�j)+1

∫ τk+1

τk

H2(dj , t)Q(t)Q1
k(t)dt

+

∫ dj

τI(dj )

H2(dj , t)Q(t)Q1
I(dj )

(t)dt

−
1

(γ + 1)γ+1

∫ dj

�j

r(t)H2(t, cj)

∣

∣

∣

∣

h1(dj , t)−
p(t)

r(t)

∣

∣

∣

∣

γ+1

dt.

(29)
1

H1(�1, c1)
Ŵ1,1 +

1

H2(d1, �1)
Ŵ2,1 > �(H1,H2; cj , dj)

(30)�(H1,H2; cj , dj) = −

[

rj

H1(�j , cj)
�

�j
cj [H1(., cj)] +

rj

H2(dj , �j)
�

dj
�j
[H2(dj , .)]

]

,

∫

�1

c1

H1(t, c1)Q(t)
xγ (t − δ)

xγ (t)
dt ≤ −

∫

�1

c1

H1(t, c1)ω
′(t)dt

−

∫

�1

c1

p(t)ω(t)

r(t)
H1(t, c1)dt

−

∫

�1

c1

γ |ω(t)|
γ+1

γ

(r(t))
1
γ

H1(t, c1)dt.



Page 12 of 16Thandapani et al. SpringerPlus  (2016) 5:558 

Applying integration by parts on first integral of R.H.S of last inequality, we get

Using (7) with A =

∣

∣

∣

h1(t, c1)−
p(t)
r(t)

∣

∣

∣

, B =
γ

r(t)
1
γ

, y = |ω(t)| in the last inequality, we 
have

Similar to the proof of Theorem 1, we need to divide the integration interval [c1, �1] into 
several subintervals for estimating the function x(t−δ)

x(t)
. Now,

�

�1

c1

H1(t, c1)Q(t)
xγ (t − δ)

xγ (t)
dt

≤ −

I(d1)
�

k=I(c1)+1

H1(τk , c1)

�

a
γ

k − b
γ

k

a
γ

k

�

ω(τk)−H1(�1, c1)ω(�1)

+





� τ
I(c1)+1

c1

+

I(d1)−1
�

k=I(c1)+1

� τk+1

τk

+

�

�1

τ
I(d1)







h1(t, c1)ω(t)

−
p(t)

r(t)
ω(t)−

γ |ω(t)|
γ+1

γ

(r(t))
1
γ



H1(t, c1)dt

≤ −

I(d1)
�

k=I(c1)+1

H1(τk , c1)

�

a
γ

k − b
γ

k

a
γ

k

�

ω(τk)−H1(�1, c1)ω(�1)

+





� τ
I(c1)+1

c1

+

I(d1)−1
�

k=I(c1)+1

� τk+1

τk

+

�

�1

τ
I(d1)









�

�

�

h1(t, c1)ω(t)

−
p(t)

r(t)

�

�

�

�

|ω(t)| −
γ |ω(t)|

γ+1

γ

(r(t))
1
γ



H1(t, c1)dt.

(31)

∫

�1

c1

H1(t, c1)Q(t)
xγ (t − δ)

xγ (t)
dt

≤ −

I(d1)
∑

k=I(c1)+1

H1(τk , c1)

(

a
γ

k − b
γ

k

a
γ

k

)

ω(τk)−H1(�1, c1)ω(�1)

+
1

(γ + 1)γ+1

∫

�1

c1

r(t)H1(t, c1)

∣

∣

∣

∣

h1(t, c1)−
p(t)

r(t)

∣

∣

∣

∣

γ+1

dt.

(32)

∫

�1

c1

H1(t, c1)Q(t)
x
γ (t − δ)

xγ (t)
dt ≥

∫ τI(c1)+1

c1

H1(t, c1)Q(t)Q1
I(c1)

(t)dt

+

I(d1)−1
∑

k=I(c1)+1

∫ τk+1

τk

H1(t, c1)Q(t)Q1
k
(t)dt +

∫

d1

τI(d1)

H1(t, c1)Q(t)Q1

I(d1)
(t)dt.
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From (31) and (32),we obtain

On the other hand multiplying both sides of (13) by H2(d1, t) and then integrating from 
�1 to d1 and using similar analysis to the above, we can obtain

Dividing (33) and (34) by H1(�1, c1) and H2(d1, �1) respectively and adding them, we get

Using the same method as in (27), we obtain

From (33) and (36), we obtain

which is a contradiction to the condition (29). When x(t) < 0, we choose interval [c2, d2] 
to study Eq. (1). The proof is similar and hence omitted. Now the proof is complete.  �

Remark 2 When p(t) = 0, Eq. (1) reduces to the equation studied by Guo et. al (2012b). 
Therefore our Theorem 1 provides an extension of Theorem 2.3 with ρ(t) = 1 to damped 
impulsive differential equation.

(33)

∫ τI(c1)+1

c1

H1(t, c1)Q(t)Q1
I(c1)

(t)dt +

I(d1)−1
∑

k=I(c1)+1

∫ τk+1

τk

H1(t, c1)Q(t)Q1
k (t)dt

+

∫ d1

τI(d1)

H1(t, c1)Q(t)Q1

I(d1)
(t)dt −

1

(γ + 1)γ+1

∫

�1

c1

r(t)H1(t, c1)

∣

∣

∣

∣

h1(t, c1)−
p(t)

r(t)

∣

∣

∣

∣

γ+1

dt

≤

I
(�1)
∑

k=I(c1)+1

H1(τk , c1)

(

a
γ

k − b
γ

k

a
γ

k

)

ω(τk )−H1(�1, c1)ω(�1).

(34)

∫ τI(�1)+1

�1

H2(d1, t)Q(t)Q1
I(�1)

(t)dt +

I(d1)−1
∑

k=I(�1)+1

∫ τk+1

τk

H2(d1, t)Q(t)Q1
k (t)dt

+

∫ d1

τI(d1)

H2(d1, t)Q(t)Q1

I(d1)
(t)dt −

1

(γ + 1)γ+1

∫ d1

�1

r(t)H2(t, c1)

∣

∣

∣

∣

h1(d1, t)−
p(t)

r(t)

∣

∣

∣

∣

γ+1

dt

≤ −

I(d1)
∑

k=I(�1)+1

H2(d1, τk )

(

a
γ

k − b
γ

k

a
γ

k

)

ω(τk )−H2(d1, �1)ω(�1).

(35)

1

H1(�1, c1)
Ŵ1,1 +

1

H2(d1, �1)
Ŵ2,1

≤ −

(

1

H1(�1, c1)

I(d1)
∑

k=I(c1)+1

H1(τk , c1)

(

a
γ

k
− b

γ

k

a
γ

k

)

ω(τk)

+
1

H2(d1, �1)

I(d1)
∑

k=I(�1)+1

H2(d1, τk)

(

a
γ

k
− b

γ

k

a
γ

k

)

ω(τk)

)

.

(36)

−

I(d1)
∑

k=I(c1)+1

H1(τk , c1)

(

a
γ

k − b
γ

k

a
γ

k

)

ω(τk) ≤− r1�
�1
c1
[H1(., c1)]

−

I(d1)
∑

k=I(�1)+1

H2(d1, τk)

(

a
γ

k − b
γ

k

a
γ

k

)

ω(τk) ≤− r2�
d1
�1
[H2(d1, .)].

1

H1(�1, c1)
Ŵ1,1 +

1

H2(d1, �1)
Ŵ2,1 ≤ −

(

r1�
�1
c1
[H1(., c1)] + r2�

d1
�1
[H2(d1, .)]

)

≤ �(H1,H2; cj , dj)
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Remark 3 When δ = 0, that is, the delay disappears and our results reduces to that of 
Theorem 2.1 and Theorem 1 with ρ(t) = 1 in Pandian and Purushothaman (2012).

Remark 4 When p(t) = 0 and γ = 1 our Theorem 1 is a generalization of Theorem 2.2 
in Li and Cheung (2013).

Remark 5 When the impulse is disappear, i.e., ak = bk = 1 for all k = 1, 2, . . . , the delay 
term δ = 0 and p(t) = 0 Eq. (1) reduces to the situation studied in Hassan et al. (2011). 
Therefore our Theorem 1 extends Theorem 2.1 of Hassan et al. (2011).

Example 1 Consider the following impulsive differential equation

Here r(t) = 2+ cost, p(t) = 1+ sin t, q1(t) = m1 cos t, q2(t) = m2 cost, e(t) = sin 2t,

γ = 9
5
, α1 =

5

2
, α2 =

3

2
  and m1, m2 are positive constants. Also δ = π

8
, τk+1 − τk =

π/2 > π/8. For any T > 0, we can choose k large enough such that 
T < c1 = 4kπ − π

2 < d1 = 4kπ and c2 = 4kπ + π
8 < d2 = 4kπ + π

2 , k = 1, 2 . . . . 
Then there is an impulsive moment τk = 4kπ − π

4  in [c1, d1] and an impulsive moment 
τk+1 = 4kπ + π

4  in [c2, d2]. Now choose η0 = 1/5, η1 = 3/5, η2 = 1/5, therefore

If we take u1(t) = u2(t) = sin 4t, τ
I(c1)

= 4kπ − 7
4π , τI(d1)

= 4kπ − π
4 , then by a simple 

calculation, the left side of Eq. (9) is the following:

(37)























(((2+ cost)x′(t)
9
5 ))′ + (1+ sin t)(x′(t))

9
5 +m1(cos t)|x(t −

π
8
)|

3
2 x(t − π

8
)

+m2(cos t)|x(t −
π
8
)|

1
2 x(t − π

8
) = sin 2t, t �= 2kπ ± π

4
;

x(τ+
k
) = 1

3
x(τk), x

′
(τ+

k
) = 2

3
x
′(τk), τk = 2kπ ± π

4
, k = 1, 2, . . .

Q(t) = 5
2

1
5

3
3
5

(m1)
3
5 (m2)

1
5 | cos t|| sin t|

1
5

∫ d1

c1

r(t)

(γ + 1)γ+1

(

(γ + 1)|u′(t)| −
p(t)|u(t)|

r(t)

)γ+1

dt −

∫ τI(c1)+1

c1

Q(t)|u(t)|γ+1Q1
I(c1)

(t)dt

−

I(d1−1)
∑

k=I(c1)+1

∫ τk+1

τk

Q(t)|u(t)|γ+1Q1
k(t)dt −

∫ d1

τI(d1)

Q(t)|u(t)|γ+1Q1

I(d1)
(t)dt

≥
1

( 14
5
)
14
5

∫ 4kπ

4kπ− π
2

(2+ cos t)
(

56

5
| cos 4t| −

(1+ sin t)| sin 4t|

(2+ cos t)

)

14
5
dt

−

∫ 4kπ− π
4

4kπ− π
2

Q(t)| sin 4t|
14
5

(

t − π
8
− 4kπ + 7π

4

t − 4kπ + 7π
4

)

9
5

dt

−

∫ 4kπ− π
8

4kπ− π
4

Q(t)| sin 4t|
14
5

(

t − 4kπ + π
4

a
I(c1)+1

(t + π
8
− 4kπ + π

4
)

)

9
5

dt

−

∫ 4kπ

4kπ− π
8

Q(t)| sin 4t|
14
5

(

t − π
8
− 4kπ + π

4

t − 4kπ + π
4

)

9
5

dt

≈ (m1)
3
5 (m2)

1
5 (1.5196)− 0.6739.
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Since I(c1) = k − 1, I(d1) = k , r1 = 3, we have

The condition (9) is satisfied in [c1, d1] if

Similarly, we can show that for t ∈ [c2, d2], the condition (9) is satisfied if

Since the condition (38) is weaker than (39) we can choose the constants m1, m2 small 
enough such that (39) holds. Hence by Theorem 1 every solution of Eq. (37) is oscilla-
tory. In fact for m1 = 1/5, m2 = 1/6, every solution of Eq. (37) is oscillatory.

Remark 6 The result obtained in Guo et al. (2012a, b, 2014) and  Erbe et al. (2010) can-
not be applied to Example 1, since the results in Guo et  al. (2012a) can be applicable 
only to equations having only one nonlinear term and the results in Guo et al. (2012b), 
Guo et al. (2014), Erbe et al. (2010) can be applied to equations without damping term. 
Therefore our results extent and compliment to Guo et al. (2012a, b, 2014), Hassan et al. 
(2011), Li and Cheung (2013), Pandian and Purushothaman (2012) and Erbe et al. (2010).

Conclusion
In this paper we have obtained interval oscillation criteria for Eq. (1) which extend and 
generalize some known results in Guo et al. (2012a), Li and Cheung (2013), Hassan et al. 
(2011) and  Özbekler and Zafer (2011), Pandian and Purushothaman (2012).
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