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Background
Let I be an interval on R = (—o00, 00). A function f : I — R is said to be convex if
fOx+ 1=y <ifx)+ A=) 1)

for x,y € I and 1 € [0, 1]. If the inequality (1) reverses, then fis said to be concave on I.
A function f : I € Ry = (0,00) — R is said to be geometrically convex on [ if

£(#') = r@rron'™

forx,y € I and 4 € [0, 1].

One of the most famous inequalities for convex functions is Hermite—Hadamard’s
inequality: if f : I € R — R is convex on an interval / of real numbers and a, b € I with
a < b, then

a+b 1t fl@+fb)
f( )5 m/ﬂf(x)dxff, )

2

if fis concave on J, then the inequality (2) is reversed.
We now collect several Hermite—Hadamard type integral inequalities as follows.

Theorem 1 (Dragomir and Agarwal 1998) Let f:I° CR — R be a differentiable
mapping on I° and a, b € I° with a < b. If|f'|is convex on [a, D], then
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1 b
b—a/a fx)dx

Theorem 2 (Xi and Qi 2013) Let f:I C Ry — R be a differentiable function on I°
and a,b € I°witha < b. If|f’|is geometrically convex on [a, b], then

1 bf(x) Inb—Ina , 12 ) 17211 2
W/ xd"—fW“_”>\f4{L([aV<a>|] NZCIES IS

f@+f®b)
2 8

’< b —a[lf @ + ' ®)]

where

u—v
Lu,v) = ———
Inu—Inv

Sforu,v > 0and u # v is called the logarithmic mean.

Theorem 3 (Dragomir and Agarwal 1998) Let f:1° CR — R be a differentiable
mapping on I° and a,b € I° with a < b. If|f'|1 for ¢ > 1is convex on |a, b], then

=<

‘f(a) +fb) b—a <lf’(a)|" + lf’(b)|q>1/"
2

4 2

1 b
b—a/a fx)dx

and

(439) 5% o

Theorem 4 (Kirmaci 2004) Let f : I € R — R be differentiable on I° and a, b € I with
a<b. If[f’|1"/(p_1)forp > 1is convex on [a, b], then

b _ 1p
L/(“”’)— : /f(x)dxsb “( : ) {[u”(anp/@—“
2 b—a/,

16 \p+1
e L 3@/ e-Y 4 ey p/e-0]
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=

b—a(|f' @+ |f' (k)"
(SR

Corresponding to the concept of geometrically convex functions, the geometrically
quasi-convex functions were introduced in Qi and Xi (2014) as follows.

Definition 1 (Definition 2.1 Qi and Xi 2014) A function f : I € Ry — Ry = [0, 00) is
said to be geometrically quasi-convex function on [ if

FEY ) < suplf @), £ ()}

forx,y € Iand 4 € [0, 1].

In Qi and Xi (2014), some integral inequalities of Hermite—Hadamard type for geo-
metrically quasi-convex functions were established.

In recent years, some other kinds of Hermite—Hadamard type inequalities were gen-
erated. For more systematic information, please refer to Bai et al. (2012), Pearce and
Pecari¢ (2000), Pecari¢ and Tong (1991), Wang and Qi (2013), Wang et al. (2012), Xi
et al. (2012) and related references therein.
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The aim of this paper is to find more integral inequalities of Hermite—Hadamard type
for n-times differentiable and geometrically quasi-convex functions.

ALemma
In order to obtain our main results, we need the following Lemma.

Lemma 1 (Wangand Shi2016) Forn € N, let f : I € Ry — R be a n-times differenti-
able function on I° and a,b € I witha < b. If f* € L1 ([a, b)), then

Z( lk) (64D b) — d'r* V(@) - / f@)dx
k=1

_ (=)™ 1(Inb —lna)

1
' / (Ve D=0 £ () (dtbl—t)dt'
n! Jo

Remark 1 Under the conditions of Lemma 1, taking # = 1, we obtain

b 1
bf (b) — af (a) — / f@dx = (nb—1Ina) / A p*Of (a'p ) de,

0

which can be found in Zhang et al. (2013).

Inequalities for geometrically quasi-convex functions
Now we start out to establish some new Hermite—Hadamard type inequalities for
n-times differentiable and geometrically quasi-convex functions.

Theorem 5 Forn € N, suppose that f : 1 C Ry — R is a n-times differentiable func-
tion on I° that " e Li([a, bl), and that a,b € I with a < b. Ifo(”) |q is geometrically
quasi-convex on [a, b] for ¢ > 1, then

1
- k) (B¢ (b) — akf & D ()] - / f@)dx
Inb—1
< (In - nﬂ)L(a"H,b"H) Sup{lf(")(d)’rv(")(b)uo

Proof By the geometric quasi-convexity of 1, Lemma 1, and Hélder's inequality, one has

k-
Z( - [bkf(k D(p) — kf(k 1)(61) /f(x)dx
k=1
_Inb-lna /umwbmﬂm—w [ (a6
- n! 0

— 1 1-1/q
Inb 'ln“ V a<”+1>fb(”+1>(1—”dt}
n 0

1 1/q
(n+Dt py(n+1) (A1) (n) 1 M9 dt}
{ [ sap{ /@7, 1 0]}

Inb—1 L n+1’bn+1
_ b~ LTI sl @l [ o)

Theorem 5 is thus proved. U
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Corollary 1  Under the assumptions of Theorem 5, if ¢ = 1, then

3 ED k) — gt ] / Flod

k!
k=1

%L(“("H)’ DY sup{ [FP @), [FP B)| ).

Theorem 6 For n € N, suppose that f : 1 C Ry — R is a n-times differentiable func-
tion on I°, that " € Ly([a, b)), and that a,b € I with a < b. If | |q is geometrically

quasi-convex on [a, b] for q > 1, then

Inb—1n
n!

52 CEVT ) — by o] - / S
k=1

 [o(a T ) T )] s {0 @), [ )

for0 <m,r < (n+ 1)g.

Proof From the geometric quasi-convexity of [f(”) |q, Lemma 1, and Holder’s inequality,

we have

Z( 1k) [bkf(k D(b) kf(k U(a) /f(x)dx
k=1

1
- lnb—'lna/ a(n+1)tb(n+1)(lft)v(n)(atblft>|dt
n 0

— 1 1-1/q
L Inb '1““ { / a[Q(nJrl)m]t/(ql)b[II(n+1)r](1t)/(q1)dt:|
n 0

1 1/q
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0
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P
X sup{ [f(”) (a)|, [f(”) (b)| }

The proof of Theorem 6 is complete. ]

Corollary 2  Under the conditions in Theorem 6,

1. ifm=r =0, then

52 O ) — b0 )] - / S
k=1

Inb—Ina qnt) gD\ 11-1/q
< 7'[L(a =1 b a1 )} sup{
n
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2. ifm=r=qn+1),then
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3. ifm=0andr =qn+ 1), then
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4. z’fm:n—l—landr:q(n—{—l), then

Z( 1) [bkf(k 1)(]9) kf(k 1)(6[) /f( )dx
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5. ifm=qn+1)andr =0, then

Inb—1n
n!

52 EVT ) — by )] - / Sd|=
k=1 '

o) e sl )

6. z'fm:q(n+1)andr:n+1,then

Z( DI 1k gy — gk )] / J )=

k!
k=1
« [L(l,b"“)] 1-1/q [L(aq(n+1),bn+1)} 1/q sup{lf(”)(a)’, V(")(b)’}-

Inb —
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Conclusion
Our main results in this paper are those integral inequalities of Hermite—Hadamard type
in Theorems 5 and 6 and Corollaries 1 and 2.
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