
Pérez et al. SpringerPlus (2016) 5:443
DOI 10.1186/s40064-016-2041-8

SOFTWARE

A nested virtualization tool
for information technology practical education
Carlos Pérez1, Juan M. Orduña1* and Francisco R. Soriano1,2

Abstract

Background: A common problem of some information technology courses is the difficulty of providing practical
exercises. Although different approaches have been followed to solve this problem, it is still an open issue, specially in
security and computer network courses.

Results: This paper proposes NETinVM, a tool based on nested virtualization that includes a fully functional lab, com-
prising several computers and networks, in a single virtual machine. It also analyzes and evaluates how it has been
used in different teaching environments.

Conclusions: The results show that this tool makes it possible to perform demos, labs and practical exercises,
greatly appreciated by the students, that would otherwise be unfeasible. Also, its portability allows to reproduce class-
room activities, as well as the students’ autonomous work.

Keywords: Nested virtualization, Network security, Computer networks, Lecture-based learning, System
administration, Problem-based learning

© 2016 Pérez et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
Security, system administration and computer networks
are fundamental elements of information technology
(IT) systems today, and many related courses (operat-
ing systems, computer network fundamentals, computer
and network security, network management, etc.) are
included in computer science graduate and postgradu-
ate degrees. A common problem that arises in all these
courses is the difficulty of designing practical exercises.

It is widely accepted that students learn more effectively
from courses that provide for involvement in practical
activities (e.g., setting up a customized network, installing
and configuring network services, testing ethical hack-
ing techniques, etc.), as shown in a wide variety of papers,
conferences and books devoted to computer science edu-
cation (Sarkar 2006; Trabelsi and Alketbi 2013; O’Grady
2012; Carter 2013). However, it is very difficult to design
practical exercises that do not seriously affect the infra-
structure where these exercises are done. Operating system

administration exercises or penetration tests are examples
of such activities, that may be even illegal. Simulation tools
such as Packet Tracer from Cisco (2014) could be an alter-
native to real systems. However, the complexity of simu-
lating real systems make these tools to focus on certain
subsystems (i.e. the network), thus limiting their scope.

Virtualization techniques were proposed some years
ago as an efficient alternative for teaching computer net-
works related courses in a secure and controlled environ-
ment (Bulbrook 2006; Gaspar et al. 2008; Pizzonia and
Rimondini 2008; Burd et al. 2009), and they are currently
used in many courses (Faircloth 2011; Salah 2014; Raman
et al. 2014). These proposals use virtualization in order to
set up network and computer infrastructures that resem-
ble the actual ones (even in the user interface), while
they provide the required security and isolation from the
actual infrastructures. These tools provide users with an
easily reproducible environment, and they allow students’
autonomous work. Virtualization and nested virtualiza-
tion tools have also been proposed in many education
environments (Bower 2010; Wannous et al. 2012).

Traditionally, two different approaches have been
used: the first one is to provide copies of virtual machine

Open Access

*Correspondence: Juan.Orduna@uv.es
1 Departamento de Informática, Universidad de Valencia, Avda.
Universidad, s/n, 46100 Burjassot, Valencia, Spain
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2041-8&domain=pdf

Page 2 of 9Pérez et al. SpringerPlus (2016) 5:443

images to the students so that they run them in its own
computer, and the second one is to setup a virtual labo-
ratory using the institution’s infrastructure, providing
students with remote access. Both of these approaches
present some inconveniences. The first one should be
limited to a single virtual machine in order to provide
ease of use. Otherwise, it requires that each student
configures its own virtual lab using several images and
creating its own virtual network infrastructure (a non-
trivial and error-prone process, which is bounded by the
resources of the host computer). The second approach
requires significant investment in infrastructure
resources, and the requirements are proportional to the
number of students. Additionally, the availability of the
resources cannot be guaranteed once the course finishes
(for example, in subsequent years).

The advent of cloud computing and the increasing
availability of web services during the last years (Mari-
nescu 2013; Amazon 2014; Google 2014) has allowed to
go one step further, and some cloud-based virtualiza-
tion tools for online teaching have been proposed (Salah
2014; Willems et al. 2011; Abraham 2013; Xu et al. 2014).
Nevertheless, the deployment of cloud services adds
some drawbacks to virtualization tools. First, the use
of a given cloud infrastructure forces the user to learn
and use a concrete technology and services, making the
course dependent on a given service provider. Second,
the number of students in a given course may require a
cloud infrastructure size that exceeds the maximum size
that the provider offers for free, increasing the cost of the
course. Third, the use of cloud resources may add signifi-
cant latencies that affect the interactivity of the exercises.
Finally, the reproducibility and usability along time is
seriously affected, since students are not guaranteed that
the cloud infrastructure is accessible some time after the
course finishes (Son et al. 2012), like the second approach
in the use of virtualization techniques described above.

In order to avoid the problems introduced by these
approaches, this paper proposes NETinVM, a tool based
on nested virtualization (virtual machines inside a virtual
machine) that includes a fully functional lab in a single
virtual machine. This lab comprises three interconnected
networks with several computers attached to each net-
work, providing a portable and realistic scenario for
teaching courses related to security, system administra-
tion and computer networks. The paper analyzes the use
of NETinVM in different learning techniques [Problem-
Based Learning (PBL) and traditional Lecture-Based
Learning (LBL)] applied to courses of different computer
science fields. The results show that this tool allows to
perform labs and practical exercises that would otherwise
be unfeasible. Also, it allows to reproduce the results of

the proposed exercises, providing portability and allow-
ing the students to work autonomously.

The rest of the paper is organized as follows: “Imple-
mentation” section summarizes the implementation and
main features of NETinVM. Next, “Results and discus-
sion” section shows the application of NETinVM to dif-
ferent learning and training environments and the results
obtained with this tool. Finally, “Conclusions” section
shows come conclusion remarks and future work to be
done.

Implementation
NETinVM is a VMware virtual machine image that
includes, ready to run, a computer network of User-Mode
Linux (UML) virtual machines. When started, the UML
machines form a computer network named “example.
net” whose general structure is shown in Fig. 1. This sec-
tion, describes these three basic elements (the VMware
virtual machine, the UML virtual machines and the vir-
tual network) and how some critical infrastructure issues
have been solved. For a detailed description, the NET-
inVM web page can be consulted (Pérez and Pérez 2014).

VMware virtual machine image
The VMware virtual machine, named Base, provides
the base to run and monitor the UML virtual machines,
and its fully qualified domain name is “base.example.
net”. Base includes 1 32-bit processor, 2 GB of RAM, a
20 GB SCSI hard disk, a DVD player, 1 network inter-
face connected to VMware’s NAT network, USB con-
troller, 1 sound card, and 1 graphics card. On this virtual
hardware, version 12.1 of openSUSE (Novell 2008) is
executed, which provides the KDE desktop, LibreOffice
and C/C++ development tools. Base also includes the
tools needed to monitor the execution of UML machines,
such as Tcpdump or Wireshark. Obviously, it also
includes UML and the disk image used by the UML vir-
tual machines that will run in it. Even with all these tools
installed, Base has around 13 GB of free disk space. This
storage capacity allows to start and work with the UMLs,
and also to install additional tools.

UML virtual machines
The UML virtual machines (UMLs) are created using
User-Mode Linux and, depending on the network they
are connected to, they assume different roles: corpo-
rate workstation, internal server, router, bastion node,
external server or Internet node. Each UML has the fol-
lowing virtual hardware: 1 32-bit processor, 128 MB
RAM, 1 GB hard drive, and 1 network interface (except
the UML that acts as a router—labeled as “fw” in Fig. 1,
which has 3 interfaces). All UMLs use the copy-on-write

Page 3 of 9Pérez et al. SpringerPlus (2016) 5:443

technique provided by UML. Therefore, all of them ini-
tially start using the same file system, and each one writes
his changes to a separate sparse file. In this file system the
version 6 of Debian (2008) is installed, including appro-
priate tools for teaching networking, system administra-
tion and security topics. There are several advantages
derived from all UML machines sharing the same root
file system, which we call “reference file system” (RFS):

1. It saves space. Using copy-on-write, 19 UML
machines can be running taking as little as 0.5 GB of
Base’s disk.

2. It simplifies maintenance. Updating all UML
machines with the latest security patches or adding a
software package to all of them is as simple as doing
it in one of them.

3. It simplifies its use. All UMLs are similar and have
the same software installed.

Virtual networks
NETinVM is pre-configured to create three intercon-
nected virtual networks, playing the role of the corpo-
rate, perimeter and external networks of an organization.
These networks are named “int” (for internal network),
“dmz” (for DMZ or demilitarized zone, which is often
used as a synonym for perimeter network) and “ext” (for

external network). The networks are created using the
“uml_switch” program included with UML. This program
implements a virtual Ethernet hub or switch (configured
as a hub in NETinVM). One of the UML machines, “fw”
(for firewall), interconnects the three networks provid-
ing communication and packet filtering, as shown in
Fig. 1. The rest of UMLs have a single network inter-
face connected to the network they are named after,
as follows (where X can be from “a” to “f”): intX UMLs
are connected to the internal network. These machines
only offer the SSH service. dmzX UMLs are connected
to the perimeter network (DMZ). They are conceived as
bastion nodes. In this network there are two machines
with alias. “dmza” has the alias “www.example.net” and
it provides HTTP and HTTPS services; “dmzb” has the
alias “ftp.example.net” and it offers FTP. Finally, extX
UMLs are connected to networks that are external to the
organization (e.g., “Internet”). These three networks are
connected through base to VMware’s “vmnet8” (NAT)
virtual network, which allows the connection of UML to
external (real) networks.

The default gateway for the internal and perimeter net-
works (machines “intX” and “dmzX”) is “fw”, the default
gateway for “fw” is the IP address of “base” in the “ext”
network, and the machines on the external network
(“extX”) have “base” as the default gateway, and “fw” as

Fig. 1 General structure of NETinVM. Virtual machines and networks within NETinVM

Page 4 of 9Pérez et al. SpringerPlus (2016) 5:443

the gateway to access the perimeter and internal net-
works. “fw” applies NAT to all traffic from the inter-
nal and perimeter networks that is going out through
its external network interface, so that these packets get
to the external network with 10.0.0.254 as source IP
address. Therefore, the traffic among UML machines of
the three networks always goes through “fw”, while the
traffic directed to machines outside “base” goes through
“fw” if and only if it comes from the internal or the
perimeter networks. In any case, the traffic to the out-
side world always goes through “base”, which, as “fw”,
has also enabled IP forwarding and NAT. Communica-
tions between “base” and any UML Machine are carried
out directly, without passing through “fw” (provided
that the IP of “base” corresponding to the network of the
UML machine is used). This arrangement is convenient
because it allows access from “base” to all UML machines
using SSH, regardless of the configuration of routing and
packet filtering in “fw”. The UML machines can com-
municate each other via standard network protocols. All
UML machines have the SSH service enabled by default
and there are bastion nodes offering HTTP and FTP ser-
vices, but any other standard IP service can be also con-
figured (NFS, SMTP, ...).

The configuration of SNAT in “fw” as described above
is necessary so that responses to outgoing connections
to Internet originated in the internal and perimeter net-
works get back through “fw”. If SNAT were not active in
“fw”, the responses would be sent by “base” directly to the
UML machines, thus bypassing “fw”.

Inter‑machine communication
The UML machines can communicate each other via
standard network protocols. All UML machines have the
SSH service enabled by default and there are bastion nodes
offering HTTP and FTP services, but any other standard
IP service can be also configured (NFS, SMTP, ...).

Communications between “base” and the UML
machines can also be carried out through the network,
with the advantage that “base” is directly connected to
the three subnets and, therefore, it has access to all UML
machines regardless of the configuration of “fw”.

Also, when a UML virtual machine starts, 3 vir-
tual terminals appears in Base. In this way, the user
can work with the UMLs even when the network is
not operational, as if having physical access to the
machines.

Finally, the UML machines have access to the directory
“$HOME/uml/mntdirs/tmp” of Base using the path “/
mnt/tmp”. To set up this correspondence, it is used UML’s
“hostfs” file system. Thus, all of the UMLs and Base share
a directory through which they can exchange informa-
tion without network access.

Configuration of UMLs
Although sharing the same reference file system (RFS) is
very positive, it is clearly necessary that each UML vir-
tual machine can be adapted to play different roles. For
example, ‘fw’ has three network interfaces and performs
packet filtering, ‘dmza’ provides HTTP and HTTPS, ‘exta’
only provides SSH, ...

The RFS includes one and only configuration tool, the
script “configure.sh”, which is stored in “base” and is also
accessible to the UMLs using the “hostfs” file system
introduced before. When starting, every UML tries to
run this script, whose algorithm is as follows:

1. Checks if the UML has already been configured. If so,
it ends.

2. Marks the machine as configured.
3. Applies the default settings.
4. Applies the network specific settings.
5. Applies the machine specific settings.

The configuration (the default, network specific or
machine specific) involves enabling services and/or exe-
cute orders. In any case, as the configuration is done only
once per virtual machine, the changes have to be perma-
nent and stored in the machine’s filesystem. For example,
if a service “fw” is added, symbolic links must be added to
“/etc/rcX.d” (where X is the default run level).

This configuration mechanism has three key
advantages:

1. Configuration (even “configure.sh” itself) can be
completely changed without starting any UML
machine.

2. Once they are running (even after the first boot),
UMLs have a standard Debian file system, since the
only commands executed are those of the standard
booting process.

3. Different configurations can be easily saved so that
different exercises begin with a known different ini-
tial state.

Backup and restore
NETinVM includes a tool for creating and restoring
backups. To save the state of all of the UMLs is enough
to run the script “uml_backup.sh”. And, to restore a pre-
viously saved state, it is just necessary to run the script
“uml_restore.sh”. Both utilities use the standard KDE file
dialog to select where to store copies (“uml_backup.sh”)
and which backup to restore (“uml_restore.sh”). The only
requirement is that the UMLs must be stopped to per-
form a backup or restoration.

Backups are TGZ files including configuration files
(which are small) and copy-on-write files (which are

Page 5 of 9Pérez et al. SpringerPlus (2016) 5:443

sparse files that include only changes made with respect
to the RFS). Thus, each backup usually takes some KB or,
at most, a few MB of disk space. This makes it possible
to perform dozens of exercises, each one with multiple
restoration points, without consuming too much storage
space.

Results and discussion
NETinVM has been intensively used at University of
Valencia since 2012 for teaching courses related to secu-
rity, system administration and network planning. These
courses are part of the degree curricula for Telematics
Engineering and Computer Engineering and master cur-
ricula for web services, and they are based on different
learning techniques: Problem-Based Learning (PBL) and
traditional Lecture-Based Learning (LBL). Also, NET-
inVM has been used in other scenarios such as books and
web-based courses. In this section, we analyze the use of
NETinVM in all these environments.

Lecture‑based learning in a computer security course
Traditional Lecture-Based Learning, where the teacher
makes an oral presentation intended to present the main
concepts of the course, is usually complemented with
exercises to be carried out by the students. This is the
case for computer security, a mandatory course sched-
uled in the third year of both the Degree in Computer
Engineering (DCE) the Degree in Telematics Engineer-
ing (DTE). This is an introductory course of computer
security and thus it has a wide scope. Nevertheless, it has
the goal of providing the students with practical skills. In
order to achieve this goal, we have extended the tradi-
tional LBL model with the following teaching activities,
made possible by NETinVM: demos, exercises and labs.
Demos, are practical explanations where the teacher per-
forms and discusses the activity with the students in a
lecture session. This kind of activity provides the stu-
dents with deeper insights and it fosters their participa-
tion. NETinVM allows the students to reproduce later
the same activities or even test new cases. Exercises con-
sist of practical assignments involving several hosts and
networks that students must do autonomously. By using
NETinVM, these activities can be securely performed
in a realistic and reproducible scenario. Finally, labs are
guided sessions where complex exercises are performed
by the students under the teacher supervision. NET-
inVM allows the students to complement the guided
session with further optional work. A representative
example of a demo could be using Snort as a NIDS. This
demo consists of running the Snort intrusion detection
software (Snor_team 2014), and showing how alerts are
generated when suspicious activities are detected. The
examples used were scanning the network with Nmap,

connecting as administrator to a remote SQL database,
and asking the DNS server for a zone transfer. While
performing these activities, the network traffic was cap-
tured with Wireshark and the results were discussed
with the students. An example of exercise carried out in
the classroom is understanding security alerts. Two CVE
alerts were selected, and the students were asked to test
if “base” or the UML machines were vulnerable, and if
there was an exploit that worked against them. Finally,
a representative example of labs is firewall configura-
tion. Using Linux Iptables, the lab goes from configur-
ing a single machine (personal firewall) to configuring
a machine which is responsible for the interconnection
and filtering of the three NETinVM networks, thus pro-
viding a real case scenario. The lab includes both basic
static rules and more advanced possibilities as packet
logging or stateful rules.

Next, we describe some representative examples of
these teaching activities carried out during the 2013–
2014 year. Two of the demos performed were the follow-
ing ones:

 • Public key cryptography in SSH for server authenti-
cation In this demo, an initial connection to a SSH
server is started. Since the server’s public key is not
present in the client’s known hosts file, a confirma-
tion message appears. The importance of answering
this question is discussed with the students, high-
lighting that this verification is the only protection
against man-in-the-middle attacks.

 • Using Snort as a NIDS This demo consists of running
the Snort intrusion detection software (Snor_team
2014), and showing how alerts are generated when
suspicious activities are detected. The examples used
were scanning the network with Nmap, connecting
as administrator to a remote SQL database, and ask-
ing the DNS server for a zone transfer. While per-
forming these activities, the network traffic was cap-
tured with Wireshark and the results were discussed
with the students.

Two examples of the exercises proposed were the fol-
lowing ones:

 • Understanding security alerts Two CVE alerts were
selected, and the students were asked to test if “base”
or the UML machines were vulnerable, and if there
was an exploit that worked against them.

 • Analysis of Snort rules Students were asked to per-
form two kinds of remote access to a database. Each
access should trigger a snort alert. They had to cap-
ture network activity, correlate the information in the
captured packets with the corresponding snort rule,

Page 6 of 9Pérez et al. SpringerPlus (2016) 5:443

and justify why the alert was or was not generated,
depending on the case. This exercise is an extension
of the second example demo explained above. In this
way, once the session in the classroom finishes, the
students can not only reproduce the demo by their
own, but they can also extend that demo through this
exercise.

Finally, these are two examples of the labs carried out:

 • Firewall configuration Using Linux Iptables, the lab
goes from configuring a single machine (personal
firewall) to configuring a machine which is respon-
sible for the interconnection and filtering of the three
NETinVM networks, thus providing a real case sce-
nario. The lab includes both basic static rules and
more advanced possibilities as packet logging or
stateful rules.

 • Forensic analysis Students are challenged to use The
Sleuth Kit (TSK) and Autopsy tools (Carrier 2014) to
construct a time line and retrieve information from
a file system image of a hacked UML machine. They
have previously learned to obtain file system images
in a demo in the classroom. Similarly, another demos
have been performed to introduce them to the TSK
and Autopsy tools. The challenge includes finding a
binary trojan, recovering deleted files related to mali-
cious activity, and finding hidden information in the
file system.

It must be noticed that NETinVM permits to eas-
ily modify a given activity to become a different kind of
activity in a different year. This is possible because the
same platform (NETinVM) is used for all three kind of
activities, and this platform is available for the students
anywhere and anytime. For example, it is easy to change
one demo into one or more autonomous exercises. Also,
it is easy to convert a lab session into a set of demos or
exercises.

We have qualitatively and quantitatively evaluated the
approach followed in this course. The quantitative eval-
uation comes from numeric evaluations of the course
carried out by the students as part of the University
of Valencia’s quality assessment protocol. This proto-
col includes anonymous annual surveys with questions
regarding different aspects of the teaching-learning pro-
cess. The most significant one for our work is the evalu-
ation of the methodology, but we have also included the
global average for the course, since it is a global assess-
ment of both the NETinVM tool and its use throughout
the course. Numeric values can be between 0 and 5, with
a mark of 5 being the best possible score. Table 1 shows

the quantitative evaluation of the course made by the stu-
dents. The first row in this table shows the specific results
for the methodology followed in the security course, and
the second one shows the general results for the course.
The first (most-left) column shows the results for the
security course in the Degree in Computer Engineer-
ing, and for comparison purposes the second column
shows the average values obtained in all the courses of
this Degree. The two next columns show the analog val-
ues for the Degree in Telematics Engineering, and the
last column, labelled as “Univ.”, shows the average values
obtained by all the courses taught in the University of
Valencia. This table shows that the marks obtained by the
security course in both degrees are significantly higher
than the average values of their degrees and the Univer-
sity. These values clearly show that the students greatly
appreciate the approach followed by the course, that
NETinVM has made possible.

In order to complement this evaluation, we have used
a reduced version of the Critical Incident Question-
naire, proposed by Brookfield (2014a). We have asked
the students to write down the best and the worst things
about the course. Although they were not specifically
asked about the utilization of NETinVM, their comments
clearly show that they appreciate the practical approach
made possible by this tool. Effectively, the most repeated
positive opinions were (in descending order) the follow-
ing ones: excellent demos; up to date and interesting
content; agile and enjoyable classes; excellent laboratory
assignments, and Lab assignments closely related to the-
oretical contents.

These comments clearly show that using NETinVM
throughout the course, and the practical activities that
can thus be added to the traditional LBL, are greatly
appreciated by the students.

Problem based learning in a network planning course
Problem-based learning (PBL) (Barrows and Tamblyn
1980; Savery 2006) is a teaching methodology where
the student’s learning process relies on a problem (con-
structed by the teacher or other students) similar to
those problems that the student will face in real life. The
teacher is limited to be a “coach” or a moderator, instead
of the source of knowledge, while the students should
collaboratively solve the problem through cooperative

Table 1 Students course evaluation

Data from University of Valencia’s quality assessment protocol

Security (DCE) DCE Security (DTE) DTE Univ.

Methodology 4.49 3.63 4.04 3.74 3.88

Course average 4.48 3.52 4.08 3.67 3.83

Page 7 of 9Pérez et al. SpringerPlus (2016) 5:443

learning. PBL methodology was applied in the context of
a network planning course in the Engineering School, at
University of Valencia. This is a mandatory course sched-
uled in the fourth year of the Degree of Telematics Engi-
neering. The course focuses on network planning and
management, including saturation and bottleneck detec-
tion. Concretely, NETinVM has been used to design a lab
session where practical ways of detecting network satura-
tion should be learned through PBL methodology.

The problem is set up as a team contest for winning the
Best Hacker and the Best Administrator Awards. Each
team should design and implement a secret procedure
that tries to saturate the NETinVM networks. The only
rule is that the saturation procedure must not require to
become root in any of the NETinVM hosts. As a previ-
ous work to the lab session (prior to the contest), each
team should design, implement and try as many different
procedures they want in order to saturate the networks
in NETinVM, and they can demand help to the teacher
to guide the process. Prior to the start of the contest,
each team should privately present the teacher (the sat-
uration procedure is secret for the rest of the teams) a
written report describing the final procedure they have
implemented. The awards are based on a single real-time
competition that takes place in one or more lab sessions,
with as many rounds as participating teams. When it is
the turn for each team, that teams becomes the hacker
in that round, and the team components should imple-
ment the saturation procedure designed by that team in
the NETinVM copies of the rest of the teams. The rest of
the teams act as administrators in that round, and they
should detect the source node (the NETinVM host) and
the program(s) causing the network saturation as soon as
possible, within maximum time of 20 min. Any errone-
ous detection is “punished” with the rating of that team
as the last one in that round. All the rounds are timed,
starting when every team (except the one acting as the
hacker) has its NETinVM network saturated, and finish-
ing either when all the teams have found the origin of the
network saturation, or when 20 min have passed. After
the contest, there is a round table discussion where all
the teams present their saturation procedure to the rest
of the teams, as well as the strategy and commands/pro-
grams used for detecting the origin of the saturation.
Since the exercise has not a limited number of solutions,
the validity, advantages and disadvantages of each pro-
posal are discussed. The teams are marked in each round
as both administrators and hackers. As administrators,
the teams are marked according to the time required for
finding the cause of the network saturation (in inverse
order). As hackers, they are marked according to the time
took by the first team that discovered the origin of the
saturation (the longer time, the higher they are marked).

The aggregated marks for all the rounds will determine
the final team rankings for both contests, being the win-
ner of each contest the team heading the ranking. The
participation in the contests ensures a minimum mark,
but the position in each ranking determines the mark as
each of the roles. The final mark obtained by each team is
the in the average value of the mark obtained in the two
contests. The prize for each contest winner is some addi-
tional mark, ranging in 0.5 and 1 points out of 10.

The final resolution activity took two lab sessions (there
were five teams, each one composed of four members),
and the students reported an average dedication of 5 h
per team member to the particular problem resolution,
including team meetings (80 % of time) and individual
work (20 %). All the groups showed great interest in the
activity, and they developed sophisticated problem solu-
tions showing a deep knowledge of Linux and network
fundamentals. No erroneous detections happened in the
contest, and one team achieved that the rest of the teams
except one exceeded the maximum time to find the ori-
gin of the saturation.

The feasibility of the proposed PBL activity fully relies
on NETinVM, since the saturation of any network should
significantly affect the actual network infrastructure.
Therefore, we asked the students to evaluate the activ-
ity, instead of the tool. Concretely, we made an anony-
mous survey, asking the students (grouped by teams) to
evaluate the proposed activity in regard to standard lab
sessions where students should perform practical exer-
cises following the guide notes provided by the teacher.
A mark of 5 out of 10 corresponds to an evaluation where
the students equally value both kinds of lab sessions, a
mark of 0 means that they absolutely prefer the standard
lab sessions, and a mark of 10 means that they definitely
prefer the activity based on PBL methodology. We also
asked to report the main feature(s) of the activity that
they liked the best. Table 2 shows the results of the sur-
vey. This table shows that the students significantly prefer
the proposed activity. Also, they valued the freedom for
designing any feasible solution and the format of contest
among the existing teams as the best two aspects of the
activity (in that order). The first aspect would not be pos-
sible without the use of NETinVM, since it provides the
students with a virtual copy of real networks and hosts,
allowing them to test any solution. Therefore, these

Table 2 Evaluation of the activity provided by the stu-
dents

Teams Avg.

1 2 3 4 5

Marks 8.0 9.0 7.0 8.5 8.0 8.1

Page 8 of 9Pérez et al. SpringerPlus (2016) 5:443

results validate NETinVM as a valuable tool for activities
based on PBL methodology.

Using NETinVM for teaching enterprise web applications
development
Enterprise web applications are built by integrating spe-
cialized components (web servers, application servers,
database management systems, ...) connected via net-
works. At postgraduate level, students must be able to
develop skills in integrating all of these components in
real-world scenarios. This is the case of the Master in
Systems and Services in the Information Society, where
a common platform for all the courses of the master was
desirable. The authors engaged in the project of adapting
NETinVM to provide a satisfactory teaching and learning
environment for enterprise web application development,
including facets such as application development, applica-
tion deployment, server administration and security.

The solution consisted of adapting the standard con-
figuration of NETinVM to suit the specific needs of this
project. The following changes were performed: Install-
ing and configuring an application server (Glassfish) in
“dmzc”; installing and configuring MySQL and LDAP in
“intb”; installing and configuring Eclipse in “base”; Adapt-
ing the rules at “fw” to the new environment. In par-
ticular, the application’s server front-end interface (port
80) had to be publicly accessible, the application’s server
administrative interface had to be accessible only from
selected nodes of the internal network, and the appli-
cations’ server should be able to contact the LDAP and
MySQL internal server.

This adapted version of NETinVM provided master’s
students and teachers with a common platform that
proved to be appropriate to conduct all the practical exer-
cises and demonstrations, with the following advantages
(Pérez et al. 2011): the students had to learn only a sin-
gle tool (NETinVM) that was shared by different subjects
in different areas, such as operating system administra-
tion, computer and network security, and web develop-
ment; students were able to develop, deploy and test their
applications in their own portable environment without
compromising real systems or networks; students and
teachers shared a common environment, so classroom
demonstrations could be reproduced by students; finally,
using the same tool throughout the master allowed for
better coordination among teachers of different subjects.

Other uses of NETinVM
The ease of portability and reproducibility of a realistic
scenario yielded by NETinVM make this virtual machine
an ideal tool for Massive Open Online Courses (MOOC).
In this way, it has been used as the platform for a new
Massive Open Online Course (MOOC) at University

of Valencia (Pérez 2016). In this open course, the net-
works and virtual machines included in NETinVM are
used for providing each student with its own virtual lab
where practical network and security exercises can be
performed.

Nevertheless, NETinVM has been successfully used in
other scenarios by people not related to the University
of Valencia. Effectively, in the book “CASP: CompTIA®
Advanced Security Practitioner, Study Guide”, by Gregg
(2012), the author uses NETinVM in 11 out of 20 labs.
These labs provide a hands-on approach necessary to
fully understand the concepts introduced in the book,
which is preparatory to the “CompTIA® Advanced Secu-
rity Practitioner” exam (Brookfield 2014b). NETinVM is
used for labs such as port scanning, network traffic analy-
sis, web vulnerability assessment, system auditing, net-
work intrusion detection, or rootkit detection.

Another example of use is the paper titled “Using
OSSEC with NETinVM” (Allen 2010), submitted by
Jon Mark Allen as part of the GIAC (GCIH) Gold Cer-
tification from the SANS Institute (2014). This paper,
presented in September 17, 2010, uses NETinVM as an
appropriate virtual scenario for installing and custom-
izing the host-based intrusion detection system OSSEC
(2014). Using NETinVM allowed the author to configure
OSSEC to comply with a security policy. In addition, it
also made possible launching attacks, checking that alerts
were effectively generated, and seeing how OSSEC auto-
matically responded to the attacks.

Finally, NETinVM has also been adapted to suit more
specific requirements. This is the case of the “Lab in a
box” of the PenTestlaboratory, where NETinVM was
modified to build a virtual laboratory for penetration test-
ing courses (PenTestlaboratory 2014). In this set up, UML
machines where specifically configured to be vulnerable,
in order to become potential targets of pentesters.

Conclusions
This paper has proposed NETinVM, a tool based on
nested virtualization that includes a fully functional lab
in a single virtual machine. Also, it has analyzed and eval-
uated how it has been used in different environments.
The results show that this tool makes it possible to per-
form demos, labs and practical exercises, greatly appreci-
ated by the students, that would otherwise be unfeasible.
In addition, it allows to reproduce the results of the pro-
posed exercises, providing portability and allowing the
students to work autonomously. Also, NETinVM has
been adapted to suit other scenarios, such as enterprise
web application development or penetration testing.

As a future work, the authors plan to add support for
controlled remote access, thus allowing the instructor to
provide students with remote assistance.

Page 9 of 9Pérez et al. SpringerPlus (2016) 5:443

Availability and requirements
 • Project name: NETinVM
 • Project home page: http://www.netinvm.org
 • Hardware requirements:

• Processor with hardware support for virtualization
• 4 GB RAM
• 20 GB of available hard disk space
 • Software requirements:

• VMware Player, VMware Workstation or Virtual-
box

• Operating system(s): Any of the OS on which
VMware or Virtualbox works.

Authors’ contributions
CP is one of the NETinVM tools co-authors, and he has also been one of the
instructors of both security and the enterprise web applications develop-
ment courses described in the “Results and discussion” section. JMO has been
the instructor of the network planning course described in the “Results and
discussion” section. FRS has been one of the instructors of the security course
described in the “Results and discussion” section. Finally, all the authors have
participated in the writting of this paper. All authors read and approved the
final manuscript.

Author details
1 Departamento de Informática, Universidad de Valencia, Avda. Universidad,
s/n, 46100 Burjassot, Valencia, Spain. 2 IRTIC, Universidad de Valencia, Polígono
La Coma, s/n, Paterna, Valencia, Spain.

Acknowledgements
This work has been supported by Springerplus under Grant COMPPLUSSCI15.
Also, this work has been supported by Spanish MINECO and EU FEDER funds
under Grant TIN2015-66972-C5-5-R.

Competing interests
The authors declare that they have no competing interests.

Received: 24 September 2015 Accepted: 22 March 2016

References
Abraham S (2013) Virtual learning tools in cyber security education. In: 16th

Annual NY State cyberSecurity conference. IEEE, Los Alamitos, CA, pp
408–415

Allen JM (2010) Using OSSEC with NETinVM. http://www.sans.org/
reading-room/whitepapers/detection/ossec-netinvm-33473

Amazon (2014) Amazon Web Services. http://aws.amazon.com/
Barrows H, Tamblyn R (1980) Problem-based learning: an approach to medical

education. Springer, New York, NY
Bower T (2010) Experiences with virtualization technology in education. J

Comput Sci Coll 25(5):311–318
Brookfield S (2014a) Critical Incident Questionnaire. http://www.stephen-

brookfield.com
Brookfield S (2014b) CompTIA certifications and exams. http://certification.

comptia.org/
Bulbrook H (2006) Using virtual machines to provide a secure teaching lab

environment. White paper. Durham Technical Community College,
Durham

Burd SD, Seazzu AF, Conway C (2009) Virtual computing laboratories: a case
study with comparisons to physical computing laboratories. J Inf Technol
Educ Innov Pract 8(8):55–78

Carrier B (2014) Autopsy and The Sleuth Kit tools. http://www.sleuthkit.org/
index.php

Carter J (ed) (2013) ITiCSE ’13: proceedings of the 18th ACM conference on
innovation and technology in computer science education. ACM, New
York, NY

Cisco (2014) Cisco Packet Tracert. https://www.netacad.com/es/web/
about-us/cisco-packet-tracer

Debian_Project (2008) Debian: the universal operating system. www.debian.
org

Faircloth J (2011) Penetration tester’s open source toolkit, 3rd edn. Syngress
Publishing, Sebastopol, CA

Gaspar A, Langevin S, Armitage WD, Rideout M (2008) March of the (virtual)
machines: past, present, and future milestones in the adoption of virtual-
ization in computing education. J Comput Small Coll 23(5):123–132

Google (2014) Google Cloud Platform. https://cloud.google.com/
Gregg M (2012) CompTIA® Advanced Security Practitioner. Study Guide.

Sybex. A Wiley Brand, Hoboken, NJ, USA
Marinescu DC (2013) Cloud computing: theory and practice. Elsevier Science,

Amsterdam
Novell I (2008) openSUSE.org. http://software.opensuse.org/121
OSSEC (2014) Open Source SEcurity. http://www.ossec.net
O’Grady MJ (2012) Practical problem-based learning in computing education.

Trans Comput Educ 12(3):10–11016. doi:10.1145/2275597.2275599
PenTestlaboratory (2014) Lab in a Box. http://pentestlab.org/lab-in-a-box
Pizzonia M, Rimondini M (2008) Netkit: easy emulation of complex networks

on inexpensive hardware. In: Proceedings of the 4th international confer-
ence on testbeds and research infrastructures for the development of
networks & communities, pp 1–10

Pérez C, Pérez D (2014) NETinVM: a tool for teaching and learning about
systems, networks and security. http://www.netinvm.org

Pérez C, Gutiérrez J, Grimaldo F, Castro I (2011) A virtual web lab for teaching
enterprise web applications development. In: ICERI2011, International
conference of education, research and innovation, pp 408–415

Pérez C (2016) UV006 Seguridad informática práctica. http://uvx.uv.es/courses
Raman R, Achuthan K, Nedungadi P, Diwakar S, Bose R (2014) The vlab oer

experience: modeling potential-adopter student acceptance. IEEE Trans
Educ 57(4):235–241. doi:10.1109/TE.2013.2294152

SANS I (2014) SANS information security training and cyber certifications.
http://www.sans.org

Salah K (2014) Harnessing the cloud for teaching cybersecurity. In: Proceed-
ings of the 45th ACM technical symposium on computer science educa-
tion. ACM, New York, NY, pp 529–534. doi:10.1145/2538862.2538880

Sarkar NI (2006) Teaching computer networking fundamentals using practical
laboratory exercises. IEEE Trans Educ 49(2):285–291

Savery J (2006) Overview of problem-based learning: definitions and distinc-
tions. Interdiscip J Probl Based Learn 1:9–29

Snort_team (2014) The Snort Project. https://www.snort.org/
Son J, Irrechukwu C, Fitzgibbons P (2012) A comparison of virtual lab solutions

for online cybersecurity education. Commun IIMA Int Inf Manag Assoc
12(4):81–96

Trabelsi Z, Alketbi L (2013) Using network packet generators and snort rules
for teaching denial of service attacks. In: Proceedings of 18th ACM confer-
ence on innovation and technology in computer science education.
ACM, New York, NY, pp 285–290

Wannous M, Nakano H, Nagai T (2012) Virtualization and nested virtualization
for constructing a reproducible online laboratory. In: Global engineer-
ing education conference (EDUCON), 2012 IEEE, pp 1–4. doi:10.1109/
EDUCON.2012.6201022

Willems C, Klingbeil T, Radvilaviciusyz L, Cenysz A, Meinel C (2011) A distrib-
uted virtual laboratory architecture for cybersecurity training. In: IEEE
Proceedings of the 6th international conference on internet technology
and secured transactions. IEEE, Los Alamitos, CA, pp 408–415

Xu L, Huang D, Tsai W-T (2014) Cloud-based virtual laboratory for net-
work security education. IEEE Trans Educ 57(3):145–150. doi:10.1109/
TE.2013.2282285

http://www.netinvm.org
http://www.sans.org/reading-room/whitepapers/detection/ossec-netinvm-33473
http://www.sans.org/reading-room/whitepapers/detection/ossec-netinvm-33473
http://aws.amazon.com/
http://www.stephenbrookfield.com
http://www.stephenbrookfield.com
http://certification.comptia.org/
http://certification.comptia.org/
http://www.sleuthkit.org/index.php
http://www.sleuthkit.org/index.php
https://www.netacad.com/es/web/about-us/cisco-packet-tracer
https://www.netacad.com/es/web/about-us/cisco-packet-tracer
http://www.debian.org
http://www.debian.org
https://cloud.google.com/
http://software.opensuse.org/121
http://www.ossec.net
http://dx.doi.org/10.1145/2275597.2275599
http://pentestlab.org/lab-in-a-box
http://www.netinvm.org
http://uvx.uv.es/courses
http://dx.doi.org/10.1109/TE.2013.2294152
http://www.sans.org
http://dx.doi.org/10.1145/2538862.2538880
https://www.snort.org/
http://dx.doi.org/10.1109/EDUCON.2012.6201022
http://dx.doi.org/10.1109/EDUCON.2012.6201022
http://dx.doi.org/10.1109/TE.2013.2282285
http://dx.doi.org/10.1109/TE.2013.2282285

	A nested virtualization tool for information technology practical education
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	VMware virtual machine image
	UML virtual machines
	Virtual networks
	Inter-machine communication
	Configuration of UMLs
	Backup and restore

	Results and discussion
	Lecture-based learning in a computer security course
	Problem based learning in a network planning course
	Using NETinVM for teaching enterprise web applications development
	Other uses of NETinVM

	Conclusions
	Availability and requirements
	Authors’ contributions
	References

